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In this talk  …

I will review different experimental and astrophysical observational (NSs) constraints
of the nuclear EoS (i.e., thermodynamical relation between pressure & energy density
P=P(e)) as well as some of the ab-initio theoretical many-body approaches &
phenomenological models commonly used in its description

Three recent reviews on the topic are

F. Burgio & A. Fantina, in “The Physics & Astrophysics of Neutron Stars”, L. Rezzolla,
P. Pizzochero, I. Jones, N. Rea & I.V. Eds, Springer-Verlag 2018

F. Burgio, H.-J. Schulze, I.V. & J. B. Wei, Prog. Part. Nucl. Phys. 120, 103879 (2021)

M. Oertel, M. Hempel,T. Klahn & S. Typel, Rev. Mod. Phys. 89, 015007 (2017)



The Nuclear EoS

However, its determination is very challenging due
to the wide range of densities, temperatures &
isospin asymmetries found in these astrophysical
scenarios.

The Nuclear EoS is a fundamental ingredient for the understanding of the static & dynamical
properties of NS, core-collapse SN & compact star mergers

Main difficulties associated to:

ü Complexity of the bare baryon-baryon
interaction

ü Very complicated resolution of the so-
called nuclear many-body problem

ρ0 ∈ 105 −1015#$ %& g/cm
3

T ∈ 0.1−100[ ] MeV
Y ∈ 0.05− 0.5[ ]

Conditions in the center of the star from the onset of the 
collapse up to 25 ms after bounce  (15 Msun progenitor)
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What do we know to build the nuclear EoS ? 
J. Erler et al., Nature 486, 509 (2012)

² Scattering (cf. > 4000 NN data for Elab < 350 MeV)

² Masses, radii & other properties of more than 3000
isotopes

Ø Around r0 & b=0 the nuclear EoS can be characterized by a few isoscalar (E0 ,K0, Q0) &
isovector (Esym, Ksym, Qsym) parameters which can be constrained by nuclear experiments
& astrophysical observables

Ø Extrapolation to high densities should rely on theoretical models to be tested with
astrophysical observations
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Constraints from Nuclear Physics Experiments



Density Distributions & Nuclear Binding Energies 

² Density distributions:

(e,e’) elastic scattering, hadron proves
A = N + Z→∞

ρ0 ~ 0.16 fm−3

² Nuclear binding energies:

B(N,Z ) = avA+ asA
2/3 + ac

Z 2

A1/3
+ aAvA+ aAsA

2/3( ) (N − Z )2

A2
+δapA

−1/2

Measurements of nuclear binding energies
allow the identification

aV ⇔ Bsat = −E0
aAv ⇔ Esym

A = N + Z→∞(in the limit )

Bsat = 15.96± 0.31( ) MeV, Esym = 31.2± 6.7( ) MeV

Bsat = 16.13± 0.51( ) MeV, Esym = 33.4± 4.7( ) MeV

Recent fits of binding energies with
non-relativistic & relativistic EDF give

SHF models:

RMF models:

Dutra et al., PRC 85, 035201 (2012); PRC 90, 055203 (2014)



Nuclear Resonances
² ISGMR ² IVGDR

² ISGQR & IVGQR ² PDR

Phys. Rep. 64, 171 (1980); PRC 90, 055203 (2014)

K0 from the measurement of excitation energy EISGMR

Typical values in the range ~ 210 – 270 MeV

Trippa et al., PRC 77, 061304 (R) (2008)

Symmetry energy influences the excitation energies
of IVGDR. Their analysis allows to determine Esym

23.3< Esym ρ = 0.1fm-3( ) = 24.9 MeV

Roca-Maza et al., PRC 87, 037301 (2013)

Correlation of Drnp with ISGQR & IVGQR
excitation energies from which

Δ 208Pb( ) = 0.14± 0.03 fm, L = 37±18 MeV

Carbone et al., PRC 81, 041301 (R) (2010)

Sensitive to the symmetry energy. A recent analysis
of PDR in 68Ni & 132Sn using RPA models for the
dipole response based in Skyrme & RMF give

Esym = 32.3±1.3 MeV, L = 64.8±15.7 MeV

Collective oscillation of 
neutron skin against 

the core

Collective monopole mode 
oscillation of all neutrons & 

protons in a nucleus vibrating 
in phase

Collective dipole model 
oscillation of all neutrons & 

protons in a nucleus vibrating 
in opposite phase

Collective quadrupole mode oscillation of 
all neutrons & protons in a nucleus vibrating 

in (IS) & out (IV) of phase



Neutron Skin Thickness & Symmetry Energy

Accurate measurements of Drnp via parity-violating electron scattering at JLAB can constrain Esym(r), particulary L via its
strong correlation with Drnp

𝐴!" =
𝜎↑ − 𝜎↓
𝜎↑ + 𝜎↓
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𝐺%𝑞&
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neutron form factor

proton form factor

Δ𝑟!" = 𝑟! # − 𝑟"
#

CREX & PREX-II experiments

Δ𝑟!" 208Pb = 0.283 ± 0.071 fm

Esym=34-42 MeV

L=74-149 MeV

PRL 126, 172502 (2021

Δ𝑟!" 48Ca = 0.121 ± 0.026 fm



Neutron Skin Thickness & Crust-Core Transition Density in Neutron Stars

Inverse correlation between dR and rt

(Horowiz & Piekarewicz)

ê

Accurate measurements of neutron skin in neutron rich
nuclei such as the ones performed at JLAB can provide
considerable & valuable information on the crust-core
transition density

Neutron Star Crust & Neutron Skin are made out
of neutron rich matter at similar densities

Both are governed by EoS at subnuclear densities in 
particular by Esym(r) & its derivativesNeutron Star Heavy nucleus

ê



EoS from Heavy Ion Collisions

The analysis of data from HIC requires the use of transport models
which do not depend directly on the EoS but rather on the mean
field of the participant particles & the in-medium cross sections of
the relevant reactions

However, there are several transport codes in the market. A
natural question arises: How much the results depend on the
transport codes ?

Several observables in HIC are sensitive to the nuclear EoS

ü n/p & t/3He ratios
ü isospin fragmentation & isospin scaling
ü np correlation functions at low rel. mom.
ü isospin difussion/transport

ü neutron-proton differential flow

ü p-/p+ & K-/K+ ratios
ü np differential transverse flow
ü nucleon elliptic flow at high trans. mom.

ü n/p ratio of squeezed out nucleons
perpendicular to the reaction plane

sub-saturation densities supra-saturation densities

P. Danielewicz et al., Science 298, 1592 (2002)



What do we know to include hyperons in the nuclear  EoS ? 
Hyperons are expected to appear in the interior of NSs and play an important role on their structure & 
properties, however, our knowledge of the YN & YY interactions is much more limited than that on 

the NN one in order to put to put stringent constraints on hypernuclear EoS

Ø Very few YN scattering data due to short lifetime
of hyperons & low intensity beam fluxes

§ ~ 35 data points, all from the 1960s

§ 10 new data points, from KEK-PS E251
collaboration (2000)

Ø No YY scattering data exists

Λp→Λp
 

(cf. > 4000 NN data for Elab < 350 MeV)



Hypernuclear Physics in a Nutshell

Alternative information can be obtained from the study of hypenuclei (bound nuclear systems of nucleons & hyperons). The goal of 
hypernucler physics is to relate hypernuclear observables with the underlyning bare YN & YY interactions

§ 41 single L-hypernuclei LN attractive (UL(r0) ~ -30 MeV)
§ 3 double-L hypernuclei weak LL attraction (DBLL~ 1MeV)
§ Very few X-hypernuclei XN attractive (UX(r0) ~ -14 MeV)
§ Ambiguous evidence of S-hypernuclei SN repulsive (US(r0) > +15 MeV) ?

N

S
Z

Double L-hypernuclei (S=-2) 
produced by

),( +− KK

Single L-hypernuclei (S=-1) 
produced by

€ 

(π +,K +),(K−,π−),(e,e'K +)

Ordinary nuclei  (S=0)

§ Strangeness exchange production: (𝑍 𝐾), 𝜋) *
(𝑍

§ Associate strangeness production: (𝑍 𝜋+, 𝐾) *
(𝑍

§ Electroproduction: (𝑍 𝑒′𝐾+ *
( 𝑍 − 1

§ Production in HIC



Astrophysical (Neutron Stars) Constraints 



Neutron Star Masses

Kepler’s 3rd law

G(M1 +M2 )
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§ 5 orbital (Keplerian) parameters can be precisely 
measured: 

ü Orbital period (P)
ü Projection of semimajor axis on line of sight (a sin i)
ü Orbit eccentricity (e)
ü Time of periastron (T0)
ü Longitude of periastron (w0)

§ 3 unknowns: M1, M2, i

f (M1,M2, i) ≡
M2 sin i( )3

M1 +M2( )2
=
Pv3

2πG
mass function

NS masses can be inferred directly from 
observations of binary systems



Measure of at least 2 post-
Keplerian parameters

High precision NS mass 
determination

In few cases small deviations from Keplerian orbit due to GR 
effects can be detected
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Advance of the periastron 

Time dilation & grav. redshift

Shapiro delay “range”

Shapiro delay “shape”

Orbit decay due to GW emission



Recent Measurements of High NS Masses   

§ PSR J164-2230 (Demorest et al. 2010)

§ PSR J0348+0432 (Antoniadis et al. 2013)

In this decade NS with 2M have been observed by
measuring Post-Keplerian parameters of their orbits

M =1.928± 0.017M
 

¤

ü binary system (P=8.68 d)

ü low eccentricity (e=1.3 x 10-6)

ü companion mass:

ü pulsar mass: 

~ 0.5M¤

M = 2.01± 0.04M¤

ü binary system (P=2.46 h)

ü very low eccentricity 

ü companion mass:

ü pulsar mass: 

0.172± 0.003M
¤

¤

• Shapiro delay (range & shape)
• Orbital decay Pb

.

• Grav. redshift & time dilation g

• Advance of the periastron w.

§ MSP J0740+6620 (Cromartie et al. 2020)

M = 2.14
−0.0.9
+0.10 M

 
¤

ü binary system (P=4.76 d)

ü low eccentricity (e=5.10(3) x 10-6)

ü companion mass:

ü pulsar mass: 
0.258(8)M ¤

M = 2.14
−0.018
+0.20 M

 
¤

(68.3% c.i.)

(95.4% c.i.)



Formation of Binary Systems

Figure by P.C.C. Freire



Measured Neutron Star Masses (2022) 

Observation of ~ 2 M neutron stars imposes a 
very stringent constraint

updated from Lattimer 2013

¤

Demorest et al.

Antoniadis et al.

Any reliable nuclear EoS should satisfy

otherwise is rule out

Mmax EoS[ ] > 2M¤



The Hyperon Puzzle 

Hyperons are expected to appear in the core of neutron stars at r ~
(2-3)r0 when µN is large enough to make the conversion of N into
Y energetically favorable

But

The relieve of Fermi pressure due to its appearance leads to a
softer EoS and, therefore, to a reduction of the mass to values
incompatible with observation

“stiff” EoS

“soft” EoS

Observation of 
~ 2 M NS

¤

Any reliable EoS of dense matter
should predict Mmax EoS[ ] > 2M¤

Can hyperons be present in the interior of neutron stars 
in view of this stringent constraint ?



Limits on the Neutron Star Radius

The radius of a neutron star with mass M cannot be arbitrarily small

€ 

R >
2GM
c 2

General Relativity:
a Neutron Star is not a 

Black Hole

€ 

R >
9
4
GM
c 2

Finite Pressure: 
Neutron Star matter cannot 
be arbitrarily compressed 

€ 

R > 2.9GM
c 2

Causality: 
speed of sound must 

be smaller than c



The desired measurement of neutron star radii

A possible way to measure it is to use the thermal emission of low mass X-ray
binaries: NS radius can be obtained from:

² Flux measurement +Stefan-Boltzmann’s law
² Temperature (Black body fit+atmosphere model)
² Distance estimation (difficult)
² Gravitational redshift z (detection of absorption lines)

Radii are very difficult to measure because NS:
² are very small (~ 10 km)
² are far from us (e.g., the closest NS, RX J185635-3754, is at ~ 200 ly,

moving at 100 km/s)

R∞ =
FD2

σ SBT
4 → RNS =

R∞
1+ z

= R∞ 1− 2GM
RNSc

2

Credit by NASA



Estimations of Neutron Star Radii from LMXB

The conclusion from past analysis of the thermal spectrum from 5 quiescent LMXB
in globular clusters was controversial

Steiner et al. (2013, 2014) Guillot et al. (2013, 2014)

R = 9.1−1.5
+1.3km

R = 9.4±1.2km 2014 analysis

2013 analysis

R =12.0±1.4km



NICER: Neutron Star Interior Composition Explorer  

A new way of measuring NS radius by tracking the X-ray
emission from “hot spots” on the star’s surface as the star
rotates. M/R is extracted by modeling the Pulse Profile of the
hot spots

² PSR J0740+6620

² PSR J0030+0451

M = 2.072
−0.066
+0.067M

 

M R = 0.156
−0.010
+0.008

 

R =13.7
−1.5
+2.6 km

 R =12.39
−0.98
+1.30 km

 

¤

R =13.02
−1.06
+1.24 km

 R =12.71
−1.19
+1.14 km

 

Miller et al., arXiv:2105.06979

Riley et al., arXiv:2105.06980

Miller et al., ApJ 887 L24 (2019)

Riley et al., APJ 887 L21 (2019)



Multi-messenger observations of the event 
GW170817

GW170817: the first NS-NS merger  

² Masses estimated from the chirp mass

² Radius from the tidal deformability

M c =
m1m2( )

3/5

(m1 +m2 )
1/5

!Λ =
16
13
1+12q( )Λ1 + q +12( )Λ2

1+q( )
5

A 1.36M   has a radius of 10.4 km (WFF1), 11.3 km (APR4), 11.7 km (Sly), 12.4 km (MPA1), 14.0 
(H4), 14.5 (MS1b) and 14.9 km (MS1) 

¤



Thermal Evolution of Neutron Stars
Information, complementary to that from mass & radius, can be also obtained from the measurement
of the temperature (luminosity) of neutron stars

Surface photon  emission
dominates at  t > 106 yrs

slow cooling

fast cooling

Core  cools by
neutrino emission

Two cooling regimes
Slow
Low NS mass

Fast
High NS mass

dEth

dt
=Cv

dT
dt

= −Lγ − Lν +H

üCv: specific heat
üLg: photon luminosity
üLn: neutrino luminosity
üH: “heating”

Strong dependence on the NS 
composition & EoS



Other neutron star observables       

Other NS observables can also help to constraint direct or indirectly the nuclear EoS

² Gravitational Redshift:

Measurements of z allow to constraint the ratio of M/Rz = 1− 2GM
c2R

"

#
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&
'
−1/2

−1

² Quasi-periodic Oscillations:

QPO in X-ray binaries measure the difference between the NS rot. freq. & the Keplerian freq. of the innermost
stable orbit of matter elements in the accretion disk. Their observation & analysis can put stringent constraints on
masses, radii & rotational periods

² NS moment of inertia:

I = J(Ω)
Ω

; J(Ω) = 8π
3

drr4 p(r)+ε(r)

1− 2M (r)
r

Ω−ω(r)( )e−ν (r )
0

R

∫
Measurements of I could also
constraint EoS. But not measured yet.
Lower bound can be inferred from
timing observations of Crab pulsar



Combined analysis of a few astrophysical data

² NICER PSR J0740+6620 & PSR J0030+0451

² GW170817

² Rossi X-ray Timing Explorer (RXTE) results
for the cooling tail spectra of 4U1702-429



Building the Nuclear EoS



Approaches to the Nuclear EoS: “Story of Two Philosophies”

Based on two- & three-nucleon realistic
interactions which reproduce scattering data
& the deuteron properties. The EoS is
obtained by “solving” the complicated many-
body problem

Ab-initio Approaches

Based on effective density-dependent
interactions with parameters adjusted to
reproduce nuclear observables & compact
star properties.

Phenomenological Approaches

² Variational approaches: FHNC

² Diagrammatic: methods: BBG
(BHF), SCGF

² Monte-Carlo techniques: VMC,
DMC, GMC, AFDMC

² RG methods: Vlow k

² Non-relativistic: Skyrme & Gogny

² Relativistic: RMF

² SN approximation models: Liquid drop
models, TF models, Self-consistent models

² NSE models: NSE, Virial EoS, models with
in-medium mass shifts

Non-homogeneous matter



Difficulties of ab-initio approaches

² Different NN potentials in the market …
but all are phase-shift equivalent

² Short range repulsion makes any
perturbation expansion in terms of V
meaningless. Different ways of treating
SRC

² Complicated channel & operatorial
structure (central, spin-spin, spin-
isospin, tensor, spin-orbit, …)



The NN interaction: meson exchange & potential models
² Meson Exchange Models:

² Potential Models:

² scalar: s, d
² pseudocalar: p, K, h
² vector: r, K, w, f

€ 

Γs =1

€ 

Γps = iγ 5

€ 

Γv = γ µ , ΓT =σ µν

NN interaction mediated by the exchange of different
meson fields (e.g, Bonn, Nijmegen)

NN interaction is given by the sum of several local operators (e.g., Urbana, Argonne)
Ex: Local operators of Av18 potential

€ 

Vij = Vp (rij )Oij
p

p=1,18
∑ Oij

p=1,14 = 1,

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
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Oij
p=15,18 = Tij ,

 
σ i ⋅
 
σ j( )Tij ,SijTij , τ zi + τ zj( )[ ]

L = gMΓM ΨBΨB( )φM
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"p2

" VM p1p2 = u (p1
' )gM

(1)ΓM
(1)u(p1)

PM

p1 − p1
"( )2 −mM

2
u (p2

' )gM
(2)ΓM

(2)u(p2)

Machleidt et al., PR. 149, 1 (1987)
Nagels et al., PRD 17, 768 (1978)

Wiringa et al., PRC 51, 38 (1995)



The NN interaction: cEFT forces

² Starting point: most general effective chiral Lagrangian that respect
required QCD symmetries where p & N (recently also D) are the
relevant d.o.f. of the theory

² Systematic expansion in powers of Q/Lc [Q=mp, k; Lc ~ 1 GeV]

² Consistent derivation of 2N, 3N, 4N, … forces

Weinberg, PLB 251, 288 (1990); NPB 363, 3 (1991)
Entem & Machleidt, PRC 68, 041001(R) (2003)
Epelbaum et al., NPA 747, 363 (2005)



Renormalization Group Method

Ø A possible way to soften it consists in integrating out all the
momenta q larger than a certain cut-off L obtaining in this wat
effective interaction Vlow k that is equivalent to the original one
for momenta q < L

Ø The presence of a short–range hard core of the nucleon-nucleon
interaction V makes any perturbation expansion in terms of V
meaningless

This results in a modified Lippmann-Schwinger equation with a
cut-off dependent effective potential Vlow k

€ 

Bogner et al., Phys. Rep. 386, 1 (2003)

𝑇 𝑘,, 𝑘: 𝐸- = 𝑉./0 - 𝑘,, 𝑘 +
2
𝜋 𝑃:

1

*

𝑑𝑞𝑞&
𝑉./0 - 𝑘,, 𝑞 𝑇 𝑞, 𝑘: 𝐸-

𝑘& − 𝑞& + 𝑖𝜂



Renormalization Group Method
Ø By demanding 56 7!,7::"

5; = 0 one obtains a Renormalization Group equation for V𝑙𝑜𝑤 𝑘

Ø Integrating this flow equation one obtains a “universal” nucleon-
nucleon low-momentum potential Vlow k that is:

Ø Having a much softer core the Vlow k potential can be used in
perturbation expansions and nuclear structure calculations in a
more efficient way

Ø The method has been applied also to the hyperon-nucleon case.
The results seem to indicate a similar convergence to a
“universal” softer low-momentum hyperon-nucleon interaction

Vlow k evolved 
potentials

𝑑𝑉./0 - 𝑘,, 𝑘
𝑑Λ =

2
𝜋
𝑉./0 - 𝑘,, 𝑘 𝑇 Λ, 𝑘, Λ&

1 − ?𝑘& Λ&

ü phase shift equivalent
ü energy independent

ü hermitian
ü softer (no hard core)



Baryon-baryon interactions from Lattice QCD

NPLQCD & the HALQCD strategies

Ø NPLQCD

Combines calculations of correlation functions of two-baryon systems at
several light-quark-mass values with low-energy effective field theory to
extract scattering phase-shifts

Ø HALQCD

• Determine the Nambu-Bethe-Salpeter wave function on the lattice

𝜑# $ = 0 𝑁 (𝑥 + 𝑟, 0 𝑁(𝑥, 0) 6𝑞, 𝐸 , 𝑁 𝑥 = 𝜀%&'𝑞%(𝑥)𝑞&(𝑥)𝑞'(𝑥)

• De1ine a local potential 𝑈 𝑥, 𝑦 from 𝜑# $

𝐸 −
ℏ$∇$

2𝜇%
𝜑& ' = )𝑑(𝑦𝑈 𝑥, 𝑦 𝜑& ) , 𝑈 𝑥, 𝑦 = 𝑉(𝑥, ∇)𝛿 (𝑥 − 𝑦)

𝑉 𝑥, ∇ = 𝑉* 𝑥 + 𝑉+ 𝑥 𝑆,$ + 𝑉-. 𝑥 𝐿 6 𝑆 + 𝑉/ , ∇$ +⋯

• Calculate observables (phase shifts, binding energies, …)



² Variational Approach 
Based on the variational principle

E ≤min
ΨT Ĥ ΨT

ΨT ΨT
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,

correlation operator uncorrelated
w.f.

ΨT = F̂ Φ , F̂ = f ( p) (rij )Ôij
( p)

p
∑

i> j
∏

Variational & Diagrammatic Approaches      

f(p)(rij) determined through functional
minimization of the energy using
techniques like FHNC or VMC

² BBG theory 
Ground state energy of nuclear matter evaluated in
terms of the hole-line expansion derived by means
of Brueckner reaction matrix

Infinite sumation of 
two-hole line diagrams

BHF:

EBHF = αi K αi
i≤A
∑ +

1
2
Re αiα j G(ω) αiα j

i, j≤A
∑
#

$
%
%

&

'
(
(

² SCGF formalism
Energy obtained from the Galitskii-Migdal-Koltum
(GMK) sum rule

E = ν
ρ

d3k
2π( )3

dω
2π

1
2
2k2

2m
+ω

!
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$
%
&
A

k,ω( ) f ω( )

−∞

∞

∫∫

s. p. spectral function FD distribution

Spectral function A(

k,ω) = −2 ImΣ(


k,ω)

ω −
2k2

2m
−ReΣ(


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In-medium interaction Ladder self-energy Dyson equation

Free two-particle propagator
Self-consistent scheme

Fantoni & Rosati, Nuov. Cim. 25A, 593 (1975) Day, RMF.39, 719 (1967)

Carbone et al, PRC 88, 054326 (2013)



Quantum Monte-Carlo Techniques      
² VMC: ² DMC:

² GFMC: ² AFDMC:

i ∂
∂t

Ψ = Ĥ Ψ ⇒−
∂
∂τ

Ψ = Ĥ Ψ

Ψ(τ ) = exp − Ĥ −E0( )Δτ$
%

&
'∏ ΨV

Evaluate energy & other observables using the
Metropolis algorithm

Ô =
Ψ(

Ri ) Ô Ψ(


Ri ) /W (


Ri )

i
∑

Ψ(

Ri ) Ψ(


Ri ) /W (


Ri )

i
∑

Model a diffusion process rewriting the Schoedinger
equation in imaginary time

Sample a trial wave function by evaluating path
integrals of the form

Ψ(τ ) →
n→∞

Ψ0

Rewrite Green’s function in order to change the
quadratic dependence on spin & isospin operators
to a linear one by introducing Hubbard-
Stratonovich auxiliary fields

Carlson et al., PRC 68, 025802 (2003) Gandolfi et al., PRC 79, 054005 (2009)

Wiringa et al., PRC 62, 014001 (2000) Anderson, J. Chem. Phys. 63, 1499 (19755)



Phenomenological Models: Skyrme & Gogny interactions

² Skyrme interactions:

² Gogny interactions:

V̂ (r1,
r2 ) = t0 1+ x0P̂σ( )δ(r12 )+ t12 1+ x1P̂σ( ) k̂ 'δ(r12 )+δ(r12 )k̂ 2!

"
#
$

+t2 1+ x2P̂σ( ) k̂ 'δ(r̂12 )k̂ + t36 1+ x3P̂σ( )ρα (

R12 )δ(r̂12 )

+iW0 σ̂1 + σ̂ 2( ) k̂ ' ×δ(r̂12 )k̂"
#

$
%

Effective zero-range density dependent interaction Evaluation of the energy density in the HF
approximation yields for nuclear matter a
simple EDF in fractional powers of the
number densities. Many parametrizations
exist

Skyrme, Nucl. Phys. 9, 615 (1959)

V̂ (r1,
r2 ) = exp −

r12
2

µ j
2

"

#
$$

%

&
'' Wj +BjP̂σ −H jP̂τ −M jP̂σ P̂τ( )

j=1,2
∑

+t0 1+ x0P̂σ( )ρα (

R12 )δ(r̂12 )

Effective finite-range density dependent interaction

Due to the finite-range terms the evaluation
of the energy density is numerically more
involved. Less number of parametrizations
in the market

Brink & Boeker, NPA 91, 1 (1967)+iW0 σ̂1 + σ̂ 2( ) k̂ ' ×δ(r̂12 )k̂"
#

$
%



Phenomenological Models: Relativistic Mean Field Models

Based in effective Lagrangian densities where the interaction is modeled by meson exchanges

L = Lnuc + Lmes + Lint + Lnl

Lnuc = ψi
i=n,p
∑ γµi∂

µ −mi( )ψi

Lmes =
1
2
∂µσ∂µσ −mσ

2( )+ 12 ∂µ

δ∂µ

δ −mσ

2( )− 14GµνG
µν +

1
2
mω
2ωµω

µ −
1
4
HµνH

µν +
1
2
mω
2 ρµ ⋅


ρµ

Lint = - ψi
i=n,p
∑ γµ gωω

µ + gρ

τ ⋅

ρµ( )+ gσσ + gδ


τ ⋅

δ#

$
%
&ψi

Lnl = -
A
3
σ 3 −

B
4
σ 4 +

C
4
ωµω

µ( )
2
+D ωµω

µ( ) ρµ ⋅

ρµ( )

Nucleon & meson equations of motion are derived from the Lagrangian density and usually self-consistently solved in the
mean field approximation where mesons are treated as classical fields and negative-energy states of baryons are neglected

Boguta & Bodmer, NPA 292, 413 (1977)

Serot & Walecka, Adv. Nuc. Phys. 16, 1 (1986)



EoS for non-homogeneous nuclear matter

Non-uniform nuclear matter is present in the NS crust and SN cores (low r, low T). Till now only two types 
of phenomenological approaches have been used to describe it: 

Composition of matter is assumed to be made of
one representative heavy nucleus (the one
energetically favored) + light nuclei (a particles) or
unbound nucleons

Single-nucleus approximation models

ü (Comprenssible) Liquid-Drop models

ü (Extended) Thomas-Fermi models

ü Self-consistent mean-field models

Composition of matter is assumed to be a
statistical ensemble of different nuclear species
and nucleons in thermodynamical equilibrium

ü (Extended) NSE

ü Virial EoS

ü Models with in-medium mass shifts

Nuclear Statistical Equilibrium models



The final message of this talk

² Major experimental, observational & theoretical advances on understanding the
nuclear EoS have been done in the last decades & will be done in the near future

² The isoscalar part of the nuclear EoS is rather well constrained

² Why the isovector part is less well constrained is still an open question whose answer
is probably related to our limited knowledge of the nuclear force and, particularly, of
its spin & isospin dependence

The Nuclear EoS is a fundamental ingredient for the understanding of the static & dynamical 
properties of NS, core-collapse SN & compact star mergers



² You for your time & attention

² The organizers for their kind invitation & support


