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Use numerical methods!

Ask others to join!

Suppose you succeed, did you really understand the problem?
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Take a different perspective: use analogies

We do not have to reinvent the wheel. ..

Using the wheel in different ways we better understand how 1t works
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In a recent note! it was shown that the Gold-
stone theorem,? that Lorentz-covariant field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson® has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.

The simplest theory which exhibits this be-
havior is a gauge-invariant version of a model
used by Goldstone®? himself: Two real®* scalar
fields ¢,, ¢, and a real vector field A  interact
through the Lagrangian density

2 2
L=-3(Ve,) -3(Ve,)

2 2
“Vig ey )=aF P )

where

v @12

3 -eA )
u u¥1 Ne:

v =8
u9272,%9 +eAu<,01,

F =3 A -3 A ,
(73 VI VN V)

e is a dimensionless coupling constant, and the
metric is taken as —+++. L is invariant under
simultaneous gauge transformations of the first
kind on ¢, + i@, and of the second kind on A .

Let us suppose that V'(¢,?) =0, V''(¢,?) > O;uthen
spontaneous breakdown of U(1) symmetry occurs.
Consider the equations [derived from (1) by
treating Ay,, A¢,, and A# as small quantities]
governing the propagation of small oscillations

508

about the “vacuum?” solution ¢,(x) =0, @,(x) = @,:

o _
9 {au(Aqu)—ewoAu}—O, (2a)
{8°-4¢,* V' (9,2) HAag,) =0, (2b)
aVF“V=e(pO{8M(A<p1)—e<pOA u}. (2¢)

Equation (2b) describes waves whose quanta have
(bare) mass 2¢,{V'"(¢,5)}''%; Egs. (2a) and (2¢)
may be transformed, by the introduction of new
variables

B =A -(ep.)"ts (ag,),
VR ( ¢0) u( “1

G =0 B-8 B =F |, (3)
ny Ly v ou wy

into the form
m w2 2 4
d =0, @ =0. 4
uB » 2 G ve ¢4 B (4)

Equation (4) describes vector waves whose quanta
have (bare) mass eq,. In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.?

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion.* The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y =0,

I, =0 members of the octet.” There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

6
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Equation (4) describes vector waves whose quanta
have (bare) mass eq,. In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.?

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion.* The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y =0,

I, =0 members of the octet.” There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

6

The hard problem: .

failing of the Goldstone
theorem for gauge symmetries
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field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass

scalar and vector bosons, respectively. In pass-

ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.?

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion.* The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y =0,
I, =0 members of the octet.” There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe
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The hard problem: .

failing of the Goldstone
theorem for gauge symmetries

Massive gauge bosons appear
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Equation (4) describes vector waves whose quanta
have (bare) mass eq,. In the absence of the gauge

field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass

scalar and vector bosons, respectively. In pass-

ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.?

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion.* The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y =0,
I, =0 members of the octet.” There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

6
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failing of the Goldstone
theorem for gauge symmetries

Massive gauge bosons appear
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Equation (4) describes vector waves whose quanta
have (bare) mass eq,. In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.?

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion.® The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
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numbers; the remaining six components of the
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components of the gauge-field octet to describe
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Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. We show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger’s idea. It is also shown that Schwinger’s criterion that the vector field m 0 implies that the matter
spectrum before including the Yang-Mills interaction contains m =0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difficulty in theories with broken symmetries are given.

ECENTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge
transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces.? The
problem of the mass of the bosons represents the major
stumbling block in Sakurai’s attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge?® (We use the term ‘“Yang-
Mills” in Sakurai’s sense, to denote any generalized
gauge field accompanying a local conservation law.)
The purpose of this article is to point out that the
familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger’s theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the “plasma frequency,”
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
1J. Schwinger, Phys. Rev. 125, 397 (1962).

2T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
8 J. J. Sakurai, Ann. Phys. (N, Y.) 11, 1 (1961).

is equivalent to the mass, while the finite density of
electrons leading to divergent ‘‘vacuum’ current
fluctuations resembles the strong renormalized coupling
of Schwinger’s theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
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is the source for A4 and the two are connected by field
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product expectation value of the current as
ap
(2m)?
X4 (p)8(p*+m?) (pupr— gurt?).-

The Fourier transform of the corresponding retarded
Green’s function is our response function:

eir(z—2")

(e [ oo [

dm? m?B,(m?)
K,(P)::/ ————"pupr— gt}
PZ__.m2

and

lm " (§)= (pubr—gut?) / dnit By(m).

Thus, (aside from a factor 4 which Schwinger has not
used in his field equation) his criterion is also that the
polarizability o', here expressed in terms of a dispersion
integral, have its maximum possible value, 1.

The polarizability of the vacuum is not generally
considered to be observable® except in its p dependence
(terms of order p* or higher in K). In fact, we can
remove (11) entirely by the conventional renormaliza-
tion of the field and charge

A;=AZAR, e=eZ'2, =7V

Z, here, can be shown to be precisely

Z= 1——47ra’=1—~/ dm? By(m?).

0

Thus, the renormalization procedure is possible for any
merely polarizable “vacuum,” but not for the special
case of the conducting “plasma” type of vacuum. In
this case, no net true charge remains localized in the
region of the dressed particle; all of the charge is
carried “at infinity”” corresponding to the fact, well
known in the theory of metals, that all the charge
carried by a quasi-particle in a plasma is actually on
the surface. Nonetheless, conservation of particles, if
not of bare charge, is strictly maintained. Note that
the situation does not resemble the case of “infinite”
charge renormalization because the infinity in the
vacuum polarizability need only occur at p*=0.

Either in the case of the polarizable vacuum or of
the “conducting” one, no low-energy experiment, and
even possibly no high-energy one, seems capable of
directly testing the value of the vacuum polarizability
prior to renormalization. Thus, we conclude that the
plasmon is a physical example demonstrating Schwing-
er’s contention that under some circumstances the
Yang-Mills type of vector boson need not have zero
mass. In addition, aside from the short range of forces
and the finite mass, which we might interpret without

¢ We follow here, as elsewhere, the viewpoint of W. Thirring,

Principles of Quanium Elecirodynamics (Academic Press Inc.,
New York, 1958), Chap. 14,

441

resorting to Yang-Mills; it is not obvious how to
characterize such a case mathematically in terms of
observable, renormalized quantities.

We can, on the other hand, try to turn the problem
around and see what other conclusions we can draw
about possible Yang-Mills models of strong interactions
from the solid-state analogs. What properties of the
vacuum are needed for it to have the analog of a
conducting response to the Yang-Mills field?

Certainly the fact that the polarizability of the
“matter” system, without taking into account the
interaction with the gauge field, is infinite need not
bother us, since that is unobservable. In physical
conductors we can see it, but only because we can get
outside them and apply to them true electromagnetic
fields, not only internal test charges.

More serious is the implication—obviously physi-
cally from the fact that a has a pole at p?=0—that
the “matter” spectrum, at least for the “undressed”
matter system, must extend all the way to m?=0. In
the normal plasma even the final spectrum extends to
zero frequency, the coupling rather than the spectrum
being affected by the screening. Is this necessarily
always the case? The answer is no, obviously, since the
superconducting electron gas has no zero-mass excita-

tions whatever. In that case, the fermion mass is finite
because of the energy gap, while the boson which
appears as a result of the theorem of Goldstone”® and
has zero unrenormalized mass is converted into a

finite-mass plasmon by interaction with the appropriate
gauge field, which is the electromagnetic field. The

same is true of the charged Bose gas.
It is likely, then, considering the superconducting

analog, that the way is now open for a degenerate-
vacuum theory of the Nambu type’ without any
difficulties involving either zero-mass Yang-Mills gauge
bosons or zero-mass Goldstone bosons. These two
types of bosons seem capable of “canceling each other
out” and leaving finite mass bosons only. It is not at
all clear that the way for a Sakurai® theory is equally
uncluttered. The only mechanism suggested by the
present work (of course, we have not discussed non-
Abelian gauge groups) for giving the gauge field mass
is the degenerate vacuum type of theory, in which the
original symmetry is not manifest in the observable
domain. Therefore, it needs to be demonstrated that
the necessary conservation laws can be maintained.

I should like to close with one final remark on the
Goldstone theorem. This theorem was initially con-
jectured, one presumes, because of the solid-state
analogs, via the work of Nambu' and of Anderson.!!
The theorem states, essentially, that if the Lagrangian

7 J. Goldstone, Nuovo Cimento 19, 154 (1961).

8 J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

9Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

1Y, Nambu, Phys. Rev. 117, 648 (1960).

1P, W. Anderson, Phys. Rev. 110, 827 (1958).

«— Back to Yang-Mills model
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Using analogies different approaches are intertwined
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Some analogies
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Kaon oscillations
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Phonon in a fluid <@g Scalar fields in GR
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Analogies for quark matter

Mark G. Alford et al. “Color superconductivity in dense quark matter”, Rev.Mod.Phys. 80 (2008) 1455-1515

MM, “Meson condensation”, MDPI-Particles 2 (2019) no.3, 411


https://inspirehep.net/literature/762418
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Quark matter

Building blocks of Q) Quarks (mass in MeV)
hadrons are quarks +2/3 | w (3) ¢ (1300) ¢t (170000)
and gluons —1/3 | d (5) s (130) b (4000)
proton neutron T

p — Céuud” n — Ccudd” 7-‘-_ — ,&/d

Open problems: Where does the proton mass come from?
Does an analog of confinement exist?
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Symmetries of QCD

Neglecting u, d and s quark masses

SU(3)e x SUB), x SUB)r xU(1)p

/NN

gauge color global chiral symmetry global baryonic number

A large symmetry group can be broken in a zoo of possible phases

The analogy with “standard” fermionic systems may serve as guidance



The dawn of color superconductors

QCD 1s an asymptotic free theory: in the UV interactions are perturbative

“Running” of the QCD interaction strength

Kaczmarek and Zantow

Physical Review D 71(11):114510 (2005)
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Also we might except [sic]
superfluidity and superconductivity, since the interquark forces are attractive

in at least some chanuels.

J. C. Collins and M.J. Perry Phys.Rev.Lett. 34 (1975) 1353
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Color Flavor Locked phase

Pairing of quarks of all flavors and colors
Alford, Rajagopal, Wilczek Nucl.Phys. B537 (1999) 443

4 )
Symmetry breaking ‘
v

SU(3)e x SUB)L x SUB)r x U(l)g — SU(3)errtr X Zo
—— ———

D) U(l)Q D) U(l)Q

* Breaking of SU(3).: 8 gauge bosons become massive. It 1s like having 8 (interacting) photons with
a Meissner mass.

* XSB: 8 (pseudo) Nambu-Goldstone bosons (NGBs)
e U(1)s breaking: 1 NGB. A genuine superfluid mode.

The system is at the same time a (color) superconductor and a (baryonic) superfluid
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Supersolid quark matter

R. Anglani, MM et al. “Crystalline color superconductors”, Review of Modern Physics 86, 509 (2014)

See Giovanni Modugno’s talk on supersolids tomorrow
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Inhomogeneous superconductor with a spatially modulated condensate

P. Fulde, R.A Ferrell "Superconductivity in a Strong Spin-Exchange Field". Phys. Rev. 135 (3A): AS50-A563 (1964).
A.lL Larkin, Yu.N. Ovchinnikov, 'Nonuniform state of superconductors' Zh. Eksp. Teor. Fiz. 47: 1136 (1964), Sov.Phys.JETP 20 (1965) 762

® In momentum space

< Y(Pu)V(Pa) > ~ Ad(Pu + Pa — 29)

® In coordinate space

<Y(@)d(z) > ~ Ae?I®

For O0pt1 < 0pt < Opt2 the superconducting FFLO phase is energetically favored

For two flavors in weak coupling

I
H1 = ﬁ O >~ 0.75 Ag
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Crystalline structures

E \ ® Complicated structures can be obtained

combining more plane waves

® “no-overlap” condition between ribbons

CX 2cubed5z

® Three flavors

< wai075wﬁj > Z AI Z 62iq}n.relaﬁelij

I=2,3 q;ne{q?ln}

simplifications

Rajagopal and Sharma Phys.Rev. D74 (2006) 094019



Free energy estimate
NJL + GL expansion!!
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Free energy estimate
NJL + GL expansion!!
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Rajagopal and Sharma Phys.Rev. D74 (2006) 094019
MM, Rajagopal and Sharma Phys.Rev.D 73 (2006) 114012

Improved GL expansion  S.Carignano, MM, O.Benhar and F.Anzuini Phys.Rev.D 97 (2018) 3, 036009
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Displacement of the crystal

p
Elastic deformation of a stressed crystal (Landau Lafsits, vol. 7)

Z

\ o /
| displacement vector u; = Ty — x4
i | Wi,j + Uy

deformation tensor Wij = :

1
stress tensor 0;; = Kukk57;j + 2v (Uij - —Ukk5ij>

N

compressibility shear modulus

® Crystalline structure given by the spatial modulation of the gap parameter

® It is this pattern of modulation that is rigid (and can oscillate)

20 to 1000 times more rigid than the crust of neutron stars
vecesgc o 2.47 MeV/fm3
MM, Rajagopal and Sharma Phys.Rev. D76 (2007) 074026



Shear viscosity

P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94 (2005) 111601
Adams et al. New Journal of Physics 14 (2012) 115009
L. Chiofalo, D. Grasso, MM and S. Trabucco, e-Print: 2202.13790 [gr-qc]



Shear (laminar) flow

v=(v,0,0)

In an 1deal superfluid the laminar flow persists indefinitely

28



Shear viscosity n

In an non-ideal fluids the friction tends to reduce the laminar flow

A 1s mean free path
1~ npa p 1s the average momentum
n 1s the number density

29



Shear viscosity n

In an non-ideal fluids the friction tends to reduce the laminar flow

A 1s mean free path
1~ npa p 1s the average momentum
n 1s the number density

1
n

from pA>h it follows that >N

29



Shear viscosity n

In an non-ideal fluids the friction tends to reduce the laminar flow

A 1s mean free path
1~ npa p 1s the average momentum
n 1s the number density

1
n

from pA>h it follows that >N

In relativisic systems entropy works better. Entropy density s o kgn

29
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The KSS bound

e Increasing the temperature the shear viscosity should increase.
e Increasing the interaction strength the shear viscosity should decrease

Does the shear viscosity vanishes in some limit ?

It has been conjectured that in any physical system in 3+1 dimensions

shear viscosity coefficient

entropy density n 1 7

>
\S_47Zk3

P. Kovtun, D. T. Son, and A. O. Starinets, PRL 94, 111601 (2005)
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Shear viscosity to entropy ratio
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Adams et al. New Journal of Physics 14 (2012) 115009

It does not exist any real physical system that saturates or violates the KSS bound

31



Gravity analogs

W. Unruh, Experimental black hole evaporation, Phys.Rev.Lett. 46 (1981) 1351-1353
M. Visser, Acoustic black holes: Horizons, ergospheres, and Hawking radiation, Class. Quant. Grav. 15 (1998) 1767-1791
C. Barcelo, S. Liberati, and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12,
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An analog model

V, = C X =cy
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Is gravity an emerging phenomenon?

Gravity as emerging theory has been proposed by many, including
Sakharov

In Einstein’s theory of gravitation one postulates that
the action of space-time depends on the curvature (R is the
invariant of the Ricci tensor):

S(R) = - Te-f (dx)V 2R (1)

The presence of the action (1) leads to a “metrical elas-
ticity” of space, i.e., to generalized forces which oppose the
curving of space.

Here we consider the hypothesis which identifies the
action (1) with the change in the action of quantum fluctu-
ations of the vacuum if space is curved. Thus, we consider
the metrical elasticity of space as a sort of level displacement
effect (cf. also Ref. 1)."



An interesting
one page reading

Vacuum quantum fluctuations in curved space and the theory of gravitation

A.D. Sakharov

Dokl. Akad. Nauk SSSR 177, 70-71 (1967) [Sov. Phys. Dokl. 12, 1040-1041 (1968). Also S14,

pp- 167-169]
Usp. Fiz. Nauk 161, 6466 (May 1991)

In Einstein’s theory of gravitation one postulates that
the action of space-time depends on the curvature (R is the
invariant of the Ricci tensor):

S(R) = - T;‘—Gf(dx)\/_—_—gk. )

The presence of the action (1) leads to a “metrical elas-

ticity” of space, i.e., to generalized forces which oppose the
curving of space.

Here we consider the hypothesis which identifies the
action (1) with the change in the action of quantum fluctu-
ations of the vacuum if space is curved. Thus, we consider
the metrical elasticity of space as a sort of level displacement
effect (cf. also Ref. 1)."

In present-day quantum field theory it is assumed that
the energy-momentum tensor of the quantum fluctuations of
the vacuum T'% (0) and the corresponding action S(0), for-
mally proportional to a divergent integral of the fourth pow-
er over the momenta of the virtual particles of the form fk?*
dk, are actually equal to zero.

Recently Ya. B. Zel’dovich® suggested that gravitation-
al interactions could lead to a “small” disturbance of this
equilibrium and thus to a finite value of Einstein’s cosmolo-
gical constant, in agreement with the recent interpretation of
the astrophysical data. Here we are interested in the depend-
ence of the action of the quantum fluctuations on the curva-
ture of space. Expanding the density of the Lagrange func-
tion in a series in powers of the curvature, we have (4 and
B~1)

(R)=Z(O)+Afkdk-R+Bf%R2+... ) 2)

The first term corresponds to Einstein’s cosmological
constant.

The second term, according to our hypothesis, corre-
sponds to the action (1), i.e.,

1
G= - {eramar A~ 1 (3

The third term in the expansion, written here in a provi-
sional form, leads to corrections, nonlinear in R, to Ein-
stein’s equations.?

The divergent integrals over the momenta of the virtual
particles in (2) and (3) are constructed from dimensional
considerations. Knowing the numerical value of the gravita-
tional constant G, we find that the effective integration limit
in (3) is

ko ~10% eV ~10*3cm™1

In a gravitational system of units, G=fi=c=1. In
this case k, ~ 1. According to the suggestion of M. A. Mar-
kov, the quantity k, determines the mass of the heaviest par-

394 Sov. Phys. Usp. 34 (5), May 1991

ticles existing in nature, and which he calls ““maximons.” It
is natural to suppose also that the quantity k, determines the
limit of applicability of present-day notions of space and cau-
sality.

Consideration of the density of the vacuum Lagrange
function in a simplified “model” of the theory for noninter-
acting free fields with particles M ~ k, shows that for fixed
ratios of the masses of real particles and “ghost” particles
(i.e., hypothetical particles which give an opposite contribu-
tion from that of the real particles to the R-dependent ac-
tion), a finite change of action arises that is proportional to
M?R and which we identify with R /G. Thus, the magnitude
of the gravitational interaction is determined by the masses
and equations of motion of free particles, and also, probably,
by the ‘“momentum cutoff.”

This approach to the theory of gravitation is analogous
to the discussion of quantum electrodynamics in Refs. 4 to 6,
where the possibility is mentioned of neglecting the Lagran-
gian of the free electromagnetic field for the calculation of
the renormalization of the elementary electric charge. In the
paper of L. D. Landau and I. Ya. Pomeranchuk the magni-
tude of the elementary charge is expressed in terms of the
masses of the particles and the momentum cutoff. For a
further development of these ideas see Ref. 7, in which the
possibility is established of formulating the equations of
quantum electrodynamics without the “bare’” Lagrangian of
the free electromagnetic field.

The author expresses his gratitude to Ya. B. Zel’dovich
for the discussion which acted as a spur for the present pa-
per, for acquainting him with Refs. 3 and 7 before their pub-
lication, and for helpful advice.

> Here the molecular attraction of condensed bodies is calculated as the
result of changes in the spectrum of electromagnetic fluctuations. As
was pointed out by the author, the particular case of the attraction of
metallic bodies was studied earlier by Casimir.?

A more accurate form of this term is f(dk/k) (BR?
+ CR*R, + DR™"R,,,. + ER ™™ R, ) where 4, B, C, D, E~1.
According to Refs. 4 to 7, fdk /k ~ 137, so that the third term is impor-
tant for R 2 1/137 (in gravitational units), i.e., in the neighborhood of
the singular point in Friedman’s model of the universe.

'E. M. Lifshits, ZhETF 29:94 (1954); Sov. Phys. JETP 2:73 (1954),
trans.

2H. B. G. Casimir, Proc. Nederl. Akad. Wetensch. 51:793 (1948).

3Ya. B. Zel’dovich, ZhETF Pis’ma 6:922 (1967); JETP Lett. 6:345
(1967), trans.

*E. S. Fradkin, Dokl. Akad. Nauk SSSR 98:47 (1954).

3E. S. Fradkin, Dokl. Akad. Nauk SSSR 100:897 (1955).

SL. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR
102:489 (1955), trans. in Landau’s Collected Papers (D. ter Haar, ed.),
Pergamon Press, 1965.

7Ya. B. Zel’dovich, ZhETF Pis’ma 6:1233 (1967).
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Starting from Euler equations

Description of the fluid
Lo . dp
Continuity equation 57 + V- (pv) =0
ov
Fuler equation J9, < 5 - (v - V)V> =1

Characteristics of the fluid

e barotropic p = p(p)
e inviscid f=—Vp

® irrotational v=V¢



Small perturbations

Fluctuations around a background conﬁguration
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Small perturbations

Fluctuations around a background conﬁguration

p = potepr+O()
P = Po T €P1 0(62)
¢ = ¢+ epr + O(%) vo=V¢, v, =V,
Bulk J L Perturbation

% + V- (pv) =0 general

0

Ly, (povy) = O bulk

ot

ap;

— + V- (pvp) + V- (p;vy) =0 perturbation
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Small perturbations

Combining linearized Euler and continuity equations:

o o B o
o (032P0 (% + vp - V¢1)> - V- (POV¢1 — ¢, % povo (% + Vo - V¢1>) =0

op
where CS2 =—
dp
(check . A
vo=0, py=const, c,=const b _ Vi, =0
oz
N Y

The non uniform medium changes the propagation
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Solving this equation... i.
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Gravity emerges

0 <C§2po (% + Vo - V¢1)) - V- (poWbl — ¢35 povo (% + v - Wﬁl)) =0

ot ot ot
Solving this equation... i.
GR bike We can rewrite the above equation as
4 . ™
—— 0, (V—99""0vp1) =0
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Schwarzschild acoustic metric?

Acoustic metric

p
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Painleve’—Gullstrand representation of Schwarzschid metric
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Schwarzschild acoustic metric?

Acoustic metric

(

\_

ds?

(- (-

Cs

v2)dt? 4+ 2v - dx dt + dr® + r*(d8* + sin? Hdng))

\

J

Painleve’—Gullstrand representation of Schwarzschid metric

4 A
2GM 2GM
ds® = — (1 G ) a2 £ ) 2™ gy + dr? 4+ r%(d6? + sin? 0d¢?)
(A (A
. y
I .
v &« — divergent flow at the origin

r

Abandon the 3D spherical geometry



Hawking radiation

S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975)

W. Unruh, Experimental black hole evaporation, Phys.Rev.Lett. 46, 1351 (1981).
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Black Hole (BH) v g Hawking emission
|‘ \@‘
' 3
inside outside
quantum
tunneling
®
vacuum
fluctuation

See for instance
Parikh, Wilczek Phys.Rev.Lett. 85 (2000) 5042



BH thermodynamics
A particle/nuclear physics perspective

WKB tunneling amplitude 1" ~ o—2ImS



BH thermodynamics
A particle/nuclear physics perspective

WKB tunneling amplitude 1" ~ o—2ImS

using the geodesic equation Im S =4z M



BH thermodynamics
A particle/nuclear physics perspective

WKB tunneling amplitude 1" ~ o—2ImS

using the geodesic equation Im S =4z M

[ I ~ e—SnMa) — e—a)/T T —




BH thermodynamics
A particle/nuclear physics perspective

WKB tunneling amplitude 1" ~ o—2ImS

using the geodesic equation Im S =4z M

I ~ e—SﬂMa) — e—a)/T T — 1 _ i
StM 2«
. 1 d|c,—V]
By analogy, the temperature of an acoustichole 7T = ; p
n n

T~ mc?~ 107°K
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Quantum effects

Quantum effects in the analog picture

fluid velocity gradient I

v < Cg V = Cg V > Cg
outside inside
o °‘
Horizon

The phonon escapes by quantum tunneling



Setup: trapped BEC condensate

horizon
region =0,

CS=C1>V CS=C2<V

Carusotto et al New J. Phys. 10 103001 (2008)

Instead of changing the velocity, change the speed of sound
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Experimental observation

experiment numeric

0.20

10.15

10.10

0.05

0.00

-0.05

-0.10

-0.15

black hole position effect of phonon emission on the density

Image obtained by 4600 repetitions of the experiment

Fitted Hawking temperature ~ 107K

Steinhauer, Nature Phys. 12 (2016) 959



Kinetic theory

From GR

R. W. Lindquist, Annals of Physics 37, 487 (1966).
J. Stewart, Lecture Notes in Physics, Lecture Notes in Physics No. v. 10 (Springer-Verlag, 1969).

To the analog model

MM and C. Manuel, Phys.Rev.D 77 (2008) 103014
MM, D. Grasso, S. Trabucco and L. Chiofalo Phys.Rev.D 103 (2021) 7, 076001
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Phonon distribution

Phonons emitted at a temperature T have a Bose-Einstein distribution f

of

ox“

of
op?

Solution of Llf]=p“ — T Zypﬂ p’ = Cl[f]

for C[f] = 0

Assuming fx,p) =
eXp(p'uﬁ,u) — 1

Pr,+ P, =0 solution pr=(p,0)
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Thermodynamics

Knowing the distribution function we can obtain the thermodynamics

distribution function

~

b= | pH
Phonon number e [P f(x,p)dP “—— integral measure

Energy momentum tensor TI’)’h” = J ptp* f(x,p)dP

Entropy sgh = — Jp“ [f Inf—(1+f)In(l +f)] dP

50



Transport of “phonon” number

Covariant conservation ~ O,nj, + 1, n5y, = / C|fldP

N

collision integral

1 Ocg
cs OV

1
Where I, = \/—_—g@u\/ —g =

We keep C[ f] =



Transport of “phonon” number

Covariant conservation 9,1y — / C|fldP

collision integral

1

V=9

1 Ocg
cs OV

az/\/j —

Where I, =

We keep C[f]=0

Change in the number of phonons due to the background non uniformity!
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The entropy lost by the horizon is gained by the phonon gas
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The entropy flux

The entropy lost by the horizon is gained by the phonon gas

ASph —_ ASH

The actual entropy flux

From the Fluid ﬁ To the Phonon gas

by means of the horizon

Dissipative processes localized at the horizon
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Dissipative processes

M.L. Chiofalo, D. Grasso, MM and S. Trabucco, e-Print: 2202.13790 [gr-qc]



Viscosity of an acoustic hole

fluid velocity gradient I

S

Horizon
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Viscosity of an acoustic hole

fluid velocity gradient I

V < Cg V = Cg V > Cg

Horizon
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Viscosity of an acoustic hole

fluid velocity gradient I

V < Cg V = Cg V > Cg

Horizon
phonons

Energy conservation, the phonon emission results in a decrease of the fluid velocity
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More formally

horizon
A SUPERSONIC | SUBSONIC
y REGION REGION

v =(v,0,0)
v=c,—Cx+ky
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horizon
A SUPERSONIC | SUBSONIC
y REGION REGION

v=(v,0,0)
v=c,—Cx+ky

l

Viscous stress-tensor c; =1 (aivk + Gkvl-) + (0,0, V - V
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More formally

horizon
A SUPERSONIC | SUBSONIC
y REGION REGION

v=(v,0,0)
v=c,—Cx+ky

Viscous stress-tensor c; =1 (aivk + 0kvl-) + (0,0, V - V

l

Phonon stress-energy tensor 1! = [ pip, fph(x, p)AP

55
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Assuming that dissipation is only due to phonon emission

o
Iy = oy

l l

Yields

Saturation of the KSS bounds.

This is ideal: any phonon scattering would violate the bound.
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Conclusions

4 There is a large number of physical systems linked by
analogies

4 We can use them to solve/approach hard problems or to
reproduce unreachable systems

1) Color superconductors
4 Two examples have been discussed:

2) Shear viscosity

4 The dissipation at the horizon seems to saturate the KSS bound
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58


mailto:massimo@lngs.infn.it

Backup slide

59



Entropy balance

: 'H
Entropy loss of the fluid ASy = 27TEAFH

C

60



Entropy balance

Entropy loss of the fluid

Entropy gain of the phonon gas

"H
ASy = 27Z'EA7‘H

C

= 4nri d ¢ SphA Ty

PNy

number of degrees of freedom *ph = ¢ L2Cx
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Entropy balance

: "H
Entropy loss of the fluid ASy = 27rL—gArH
Entropy gain of the phonon gas = dnrg d, s, Ary
/ \ .
number of degrees of freedom Sph = 612Cx

| c,— | v|
-5 e 7= ({0
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Hawking temperature

radius variation
due to phonon
emission
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Hawking temperature
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Hawking temperature

Associate an entropy to the sonic hole S =

A

412

radius variation
due to phonon
emission

r
Entropy variation due to horizon shrinking AS, = 2n—+Ary
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Hawking temperature

radius variation
due to phonon
emission

A

Associate an entropy to the sonic hole S = 22
C

. : C 1 Fu
Entropy variation due to horizon shrinking AS, = 2JZ'EA7‘H

C

The phonon emission results in an entropy loss of the horizon
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The KSS bound

Increasing the temperature the shear viscosity should increase.
Increasing the interaction strength the shear viscosity should decrease

Y
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Not only fluids

10.
11.

12.

Dielectric media: A refractive index can be reinterpreted as an effective metric, the Gordon metric. (Gordon [2],
Skrotskii [3], Balazs [4], Plebanski [5], de Felice [6], and many others.)

. Acoustics in flowing fluids: Acoustic black holes, aka “dumb holes”. (Unruh [7], Jacobson [8], Visser [9], Liberati

et al [10], and many others.)

Phase perturbations in Bose—Einstein condensates: Formally similar to acoustic perturbations, and analyzed
using the nonlinear Schrodinger equation (Gross—Pitaevskii equation) and Landau—Ginzburg Lagrangian; typical
sound speeds are centimetres per second to millimetres per second. (Garay et al [11], Barceld [12] et al.)

. High-refractive-index dielectric fluids (“slow light”): In dielectric fluids with an extremely high group refractive

index it is experimentally possible to slow lightspeed to centimetres per second or less. (Leonhardt—Piwnicki [13],
Hau et al [14], Visser [15], and others.)

Quasi-particle excitations: Fermionic or bosonic quasi-particles in a heterogeneous superfluid environment.
(Volovik [16], Kopnin—Volovik [17], Jacobson—Volovik [18], and Fischer [19].)

Nonlinear electrodynamics: If the permittivity and permeability themselves depend on the background elec-
tromagnetic field, photon propagation can often be recast in terms of an effective metric. (Plebanski [20],
Dittrich—Gies [21], Novello et al [22].)

Linear electrodynamics: If you do not take the spacetime metric itself as being primitive, but instead view the
linear constitutive relationships of electromagnetism as the fundamental objects, one can nevertheless reconstruct
the metric from first principles. (Hehl, Obukhov, and Rubilar [23, 24, 25].)

Scharnhorst effect: Anomalous photon propagation in the Casimir vacuum can be interpreted in terms of an
effective metric. (Scharnhorst [26], Barton [27], Liberati et al [28], and many others.)

Thermal vacuum: Anomalous photon propagation in QED at nonzero temperature can be interpreted in terms
of an effective metric. (Gies [29].)

“Solid state” black holes. (Reznik [30], Corley and Jacobson [31], and others.)

Astrophysical fluid flows: Bondi—Hoyle accretion and the Parker wind [coronal outflow] both provide physical
examples where an effective acoustic metric is useful, and where there is good observational evidence that
acoustic horizons form in nature. (Bondi [32], Parker [33], Moncrief [34], Matarrese [35], and many others.)

Other condensed-matter approaches that don’t quite fit into the above classification [36, 37].
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Particle in a moving medium <%  Particle in gravity

To which extent does 1t hold?



Bending trajectories
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Bending trajectories

8

!

free-falling
elevator
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Bending trajectories
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Bending trajectories
5 free-falling

l elevator
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Bending trajectories v

5 free-falling

l elevator
- 9 Cs
(= =

«® =
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Bending trajectories
5 free-falling

l elevator

A bent trajectory
dy v

dx c
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Bending trajectories v
5 free-falling

l elevator

. C
= (B> =
@® =

o

&(¢
A bent trajectory ((‘e x

dy v :

A dx Cy l(i@é{

A velocity space gradient produces the analog of light bending
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Quick recap

To have an horizon we need a transonic flow

vV >cC

V=_c S

\)

It cannot be 3D

® We need to embed quantum effects
® Measure a dim phonon emission

® How to avoid turbulence? Use a Bose-Einstein condensate!
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Bose-Einstein condensate (BEC)

It 1s a coherent state of matter with a “thermodynamically” large number of particles
in the same quantum state

BOSONS@ low temperature in a potential well

— 0 0 @ A

00 0@ @

—-0—@ ®

—0-0—— @
o o
T >T. T ~T. "<

( )
Requirements:

1. Particles must be bosons
2. Cold system: A fight between thermal disorder and quantum coherence
3. Particles must be stable

\_ )
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Ultracold atoms in an optical trap

M. Matthews JILA

Velocity distribution of ’Rb atoms T. ~ 200 nK



Ultracold atoms in an optical trap

b
Yot § R
RO

%%
RO
RS O

(AN w""f \ &
\ 4.“'5

%95

M. Matthews JILA

Velocity distribution of ’Rb atoms T. ~ 200 nK

1. 8"Rb is bosonic

2. can be cooled

3. has a lifetime of about 1010 years (the experiment lasts ~ 10°s)
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Null geodesic gupdztdr” =0
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A simple geometrical picture

In medium dx R R
— =csn+V as cndt =dx —vdt
phonon  dt
Square it ngtz — (dx — th)z =0
Null geodesic Juvdztdz” =0
2 02| vt
acoustic metric Juv = ( : v 7 >

Note that {/—g =+/—detg = c,



Acoustic metric
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Acoustic metric

Promoting to special relativity we have that

8w =M, + (csz — 1) LA where v, = y(l, —v)

/ .

flat spacetime in-medium effects

Description of the motion of point particles in a moving medium.



The gravity analog at work

R-mode instability of rotating stars

Gravitational

AVAVAVAVE

Radiation

71

Quick spin down of pulsars

Lindblom, astro-ph/0101136
Andersson, Kokkotas
Int.J.Mod.Phys.D10:381-442,2001

Dissipative processes damp this mode



The gravity analog at work

R-mode instability of rotating stars Quick spin down of pulsars

Lindblom, astro-ph/0101136
Andersson, Kokkotas

Gravitational Int.J.Mod.Phys.D10:381-442,2001
AVAVAVAV
z Radiation Dissipative processes damp this mode
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The gravity analog at work

R-mode instability of rotating stars Quick spin down of pulsars

Gravitational
AVAVAVAV e
N Radiation
elastic phonon-
vortex scattering ®

Analytic cross section

Lindblom, astro-ph/0101136
Andersson, Kokkotas
Int.J.Mod.Phys.D10:381-442,2001

Dissipative processes damp this mode

® @ ® o phonon
.

superﬂuid vortex

.o T
SIn“ —

A

do ¢ COS?
dd N 2T EH tan2

N D

MM, C. Manuel and B. A. Sa'd, Phys.Rev.Lett. 101 (2008) 241101
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wave propagation
in hydrodynamics

Propagation of

analo
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The realm of the analogy 11

® Particle-wave duality

Propagation of wave propagation

massless bosons analogy in hydrodynamics
62
atzj c?Viy =0

This analogy 1s valid in the absence of interactions.

Including interactions the particle behavior 1s different: scattering,
quantum corrections etc.
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Gravity analogs

If we can rephrase a given problem as a geometrical problem
we can look for a solution using the analogy with general

relativity (GR)
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When should we use/look for analogies?

e Dealing with difficult problems: they may be rephrased (mapped) as
different solvable problems.
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When should we use/look for analogies?

e Dealing with difficult problems: they may be rephrased (mapped) as
different solvable problems.

e When we have no direct access to the physical system

But we can realize the analog one in a lab

e When two processes are linked by common/similar mechanisms

e When we are lost in a forest of many different models analogies can provide a
guidance

74
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Acoustic vs GR

e Sound wave propagation as a scalar field propagation in an
emerging GR background

® The background does not obey the Einstein equations, it obeys
the Euler equations!

One can certainly calculate the Ricci and Einstein tensors of the fluid
using the acoustic metric.
However, they do not satisfy the Hilbert-Einstein equation.
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The phonon emission perturbs the system producing long-range density
correlations

Parametric plot of the density-density correlation function
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By analogy, the temperature of an acoustichole 7T = ; p
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If an acoustic hole is realizable and if it emits the Hawking radiation

is it detectable?

By analogy, the temperature of an acoustic hole

T ~

Boson isotope with a
large mass: °'Rb

mc? ~ 107°K

T =

1 d|c,— V]|

27 on

The speed of sound is small
c, ~ mms—1
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® Recap of the Higgs-Anderson mechanism

Physical process Phenomenon
Sponantenous breaking .
of a local symmetry * Gauge field acquires mass M

Range of the gauge field propagation ~ 1/M

Higgs mechanism Anderson effect
masses for W= and Z, analogy magnetic field screening in
bosons superconductors

The analogy 1s about kinematics not dynamics

The analogy works 1n restricted energy regions: at high energies one sees
the microphysics.
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Schwarzschild acoustic metric?

oM oM\ !
ds? = — (1 _ —> dr® + (1 _ —> dr? + r2(d6? sin2 0de?)

r

r

Schwarzschid radius R, = 2M

Fluid with
radial flow

Does the fluid analog exist?
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Lagrangian formulation

Consider the Lagrangian for a scalar hield & = Z(¢,0,¢)

background “phonon”
Scale separation o(x) = Po(x) + €p1(x)

long-wavelength “short-wavelength”

Expand the action

e [ 4 [ 0°L ( 0°L 0°L ) ]
Si = 510l + 5 | 40 | s avgataan ™ %0+ (Gagoan ~ G009 )

W_/

Phonon’s action S|¢1] = /d4$\/7( 70, 910,01 — M(§O¢1¢1)
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