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I have always been more interested in experiment,  
than in accomplishment.  

Orson Welles
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Analogies at work for solving problems… 
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Use numerical  methods! 

Ask others to join!

Use approximations! 
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Suppose you succeed, did you really understand the problem?   

Standard model
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Take a different perspective: use analogies

We do not have to reinvent the wheel… 

Using the wheel in different ways we better understand how it works
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In a recent note' it was shown that the Gold-
stone theorem, ' that Lorentz-covaria. nt field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson' has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.
The simplest theory which exhibits this be-

havior is a gauge-invariant version of a model
used by Goldstone' himself: Two real' scalar
fields y„y, and a real vector field A interact
through the Lagrangian density

2 2
L =-&(&v ) -@'7v )1 2

2 2 ~ JL(,V—V(rp + y ) -P'
1 2 P,v

where

V p =~ p -eA
1 jL(, 1 p, 2'

p2 +eA {p1'

F =8 A -BA
PV P, V V

e is a dimensionless coupling constant, and the
metric is taken as -+++. I. is invariant under
simultaneous gauge transformations of the first
kind on y, + iy, and of the second kind on A
Let us suppose that V'(cpa') = 0, V"(&p,') ) 0; then
spontaneous breakdown of U(1) symmetry occurs.
Consider the equations [derived from (1) by
treating ~y„ay„and A & as small quantities]
governing the propagation of small oscillations

about the "vacuum" solution y, (x) =0, y, (x) = y, :
s "(s (np )-ep A )=0,1 0 (2a)

(&'-4e,'V"(y,')f(&y, ) = 0, (2b)

s r"'=eq (s"(c,p, ) ep A-t.
V 0 1 0 p,

(2c)

Pv 2 2
8 B =0, 8 t" +e y 8 =0.

v 0 (4)

Equation (4) describes vector waves whose quanta
have (bare) mass ey, . In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2c) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2c) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term. '
When one considers theoretical models in

which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion. ' The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y=0,
I3=0 members of the octet. There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

Equation (2b) describes waves whose quanta have
(bare) mass 2po(V"(yo'))'"; Eqs. (2a) and (2c)
may be transformed, by the introduction of new
var iables

fl =A -(ey ) '8 (n, (p ),
p. 0 p, 1'

G =8 B -BB =F
IL(.V p. V V p, LL(V

into the form

508 6
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One gets
k 0k.o-=m'

or

We have also
4&„(+A) =-,' Tr(a "Aa,At).

(k.a)"' is the Hermitian square root of k a.
The relation between the unimodular matrices and

the restricted Lorentz transformations is given by

Acr„A~=A„"fr„,

~ Tr(a "o.r) =g,",
O.„~=CO.„C ' or 0„=Co.„~C '.

For any 2 by 2 matrix M the relation CM~C '
=M ' detM is an identity.

PH YSI CAL REVIEW VOLUME 130, NUMBER 1 1 A P R IL 1963

Plasmons, Gauge Invariance, and Mass
p. W. ANDERsoN

BdI TelePhoee Laboratories, MNrray IIN, ¹mJersey
(Received 8 November 1962)

Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. %'e show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m&0 implies that the matter
spectrum before including the Yang-Mills interaction contains m=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difhculty in theories with broken symmetries are given.

ECKXTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge

transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces. ' The
problem of the mass of the bosons represents the major
stumbling block in Sakurai's attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. ' (We use the term "Yang-
Mills" in Sakurai's sense, to denote any generalized
gauge field accompanying a local conservation law. )
The purpose of this article is to point out that the
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of Schwinger's theory. In spite of the absence of
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In fact, one can draw a direct parallel between the
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Schwinger's argument. Schwinger comments that the
commutation relations for the gauge 6eld A give us
one sum rule for the vacuum fluctuations of A, while
those for the matter field give a completely independent
value for the Auctuations of matter current j. Since j
is the source for A and the two are connected by 6eld
equations, the two sum rules are normally incompatible
unless there is a contribution to the A rule from a free,
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the 6eld equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.
The usual theory of the plasmon does not treat the

electromagnetic field quantum-mechanically or discuss
vacuum Quctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:
The equation for the electromagnetic 6eld is
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' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).



7

CROSSI NG SYMMETRY IN S—MATRIX THEORY 439

One gets
k 0k.o-=m'

or

We have also
4&„(+A) =-,' Tr(a "Aa,At).

(k.a)"' is the Hermitian square root of k a.
The relation between the unimodular matrices and

the restricted Lorentz transformations is given by

Acr„A~=A„"fr„,

~ Tr(a "o.r) =g,",
O.„~=CO.„C ' or 0„=Co.„~C '.

For any 2 by 2 matrix M the relation CM~C '
=M ' detM is an identity.

PH YSI CAL REVIEW VOLUME 130, NUMBER 1 1 A P R IL 1963

Plasmons, Gauge Invariance, and Mass
p. W. ANDERsoN

BdI TelePhoee Laboratories, MNrray IIN, ¹mJersey
(Received 8 November 1962)

Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. %'e show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m&0 implies that the matter
spectrum before including the Yang-Mills interaction contains m=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difhculty in theories with broken symmetries are given.

ECKXTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge

transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces. ' The
problem of the mass of the bosons represents the major
stumbling block in Sakurai's attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. ' (We use the term "Yang-
Mills" in Sakurai's sense, to denote any generalized
gauge field accompanying a local conservation law. )
The purpose of this article is to point out that the

familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger's theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the "plasma frequency, "
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
' J. Schwinger, Phys. Rev. 125, 397 (1962).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961}.

is equivalent to the mass, while the 6nite density of
electrons leading to divergent "vacuum" current
fluctuations resembles the strong renormalized coupling
of Schwinger's theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
conservation are clearly satisfied in the plasma.
In fact, one can draw a direct parallel between the

dielectric constant treatment of plasmon theory4 and
Schwinger's argument. Schwinger comments that the
commutation relations for the gauge 6eld A give us
one sum rule for the vacuum fluctuations of A, while
those for the matter field give a completely independent
value for the Auctuations of matter current j. Since j
is the source for A and the two are connected by 6eld
equations, the two sum rules are normally incompatible
unless there is a contribution to the A rule from a free,
homogeneous, weakly interacting, massless solution of
the 6eld equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.
The usual theory of the plasmon does not treat the

electromagnetic field quantum-mechanically or discuss
vacuum Quctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:
The equation for the electromagnetic 6eld is

p'A„= (k'—(o')A„(k,ai) = 4~j„(k,~d).
' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

General problem: 
Gauge invariance and mass



7

CROSSI NG SYMMETRY IN S—MATRIX THEORY 439

One gets
k 0k.o-=m'

or

We have also
4&„(+A) =-,' Tr(a "Aa,At).

(k.a)"' is the Hermitian square root of k a.
The relation between the unimodular matrices and

the restricted Lorentz transformations is given by

Acr„A~=A„"fr„,

~ Tr(a "o.r) =g,",
O.„~=CO.„C ' or 0„=Co.„~C '.

For any 2 by 2 matrix M the relation CM~C '
=M ' detM is an identity.

PH YSI CAL REVIEW VOLUME 130, NUMBER 1 1 A P R IL 1963

Plasmons, Gauge Invariance, and Mass
p. W. ANDERsoN

BdI TelePhoee Laboratories, MNrray IIN, ¹mJersey
(Received 8 November 1962)

Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. %'e show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m&0 implies that the matter
spectrum before including the Yang-Mills interaction contains m=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difhculty in theories with broken symmetries are given.

ECKXTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge

transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces. ' The
problem of the mass of the bosons represents the major
stumbling block in Sakurai's attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. ' (We use the term "Yang-
Mills" in Sakurai's sense, to denote any generalized
gauge field accompanying a local conservation law. )
The purpose of this article is to point out that the

familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger's theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the "plasma frequency, "
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
' J. Schwinger, Phys. Rev. 125, 397 (1962).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961}.

is equivalent to the mass, while the 6nite density of
electrons leading to divergent "vacuum" current
fluctuations resembles the strong renormalized coupling
of Schwinger's theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
conservation are clearly satisfied in the plasma.
In fact, one can draw a direct parallel between the

dielectric constant treatment of plasmon theory4 and
Schwinger's argument. Schwinger comments that the
commutation relations for the gauge 6eld A give us
one sum rule for the vacuum fluctuations of A, while
those for the matter field give a completely independent
value for the Auctuations of matter current j. Since j
is the source for A and the two are connected by 6eld
equations, the two sum rules are normally incompatible
unless there is a contribution to the A rule from a free,
homogeneous, weakly interacting, massless solution of
the 6eld equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.
The usual theory of the plasmon does not treat the

electromagnetic field quantum-mechanically or discuss
vacuum Quctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:
The equation for the electromagnetic 6eld is

p'A„= (k'—(o')A„(k,ai) = 4~j„(k,~d).
' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

General problem: 
Gauge invariance and mass

Analog models



7

CROSSI NG SYMMETRY IN S—MATRIX THEORY 439

One gets
k 0k.o-=m'

or

We have also
4&„(+A) =-,' Tr(a "Aa,At).

(k.a)"' is the Hermitian square root of k a.
The relation between the unimodular matrices and

the restricted Lorentz transformations is given by

Acr„A~=A„"fr„,

~ Tr(a "o.r) =g,",
O.„~=CO.„C ' or 0„=Co.„~C '.

For any 2 by 2 matrix M the relation CM~C '
=M ' detM is an identity.

PH YSI CAL REVIEW VOLUME 130, NUMBER 1 1 A P R IL 1963

Plasmons, Gauge Invariance, and Mass
p. W. ANDERsoN

BdI TelePhoee Laboratories, MNrray IIN, ¹mJersey
(Received 8 November 1962)

Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. %'e show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m&0 implies that the matter
spectrum before including the Yang-Mills interaction contains m=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difhculty in theories with broken symmetries are given.

ECKXTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge

transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces. ' The
problem of the mass of the bosons represents the major
stumbling block in Sakurai's attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. ' (We use the term "Yang-
Mills" in Sakurai's sense, to denote any generalized
gauge field accompanying a local conservation law. )
The purpose of this article is to point out that the

familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger's theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the "plasma frequency, "
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
' J. Schwinger, Phys. Rev. 125, 397 (1962).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961}.

is equivalent to the mass, while the 6nite density of
electrons leading to divergent "vacuum" current
fluctuations resembles the strong renormalized coupling
of Schwinger's theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
conservation are clearly satisfied in the plasma.
In fact, one can draw a direct parallel between the

dielectric constant treatment of plasmon theory4 and
Schwinger's argument. Schwinger comments that the
commutation relations for the gauge 6eld A give us
one sum rule for the vacuum fluctuations of A, while
those for the matter field give a completely independent
value for the Auctuations of matter current j. Since j
is the source for A and the two are connected by 6eld
equations, the two sum rules are normally incompatible
unless there is a contribution to the A rule from a free,
homogeneous, weakly interacting, massless solution of
the 6eld equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.
The usual theory of the plasmon does not treat the

electromagnetic field quantum-mechanically or discuss
vacuum Quctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:
The equation for the electromagnetic 6eld is

p'A„= (k'—(o')A„(k,ai) = 4~j„(k,~d).
' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

General problem: 
Gauge invariance and mass

Analog models



8

PLASMONS, GAUGE INVARIANCE, AND MASS

product expectation value of the current as

K'(p)=
dm'ePBg(m')

Lplupv gled]&P'—m'

limZ'(P)=(P„P„—g„„p) dm B,(yg)

Thus, (aside from a factor 4x which Schwinger has not
used in his 6eld equation) his criterion is also that the
polarizability n, here expressed in terms of a dispersion
integral, have its maximum possible value, 1.
The polarizability of the vacuum is not generally

considered tobe observable'except in its p dependence
(terms of order p' or higher in E) In fact, we can
remove (11) entirely by the conventional renormaliza-
tion of the field and charge

A, =AZ '~', e„=eZ'", j,= jZ'".
Z, here, can be shown to be precisely

2=1—4n.a'=1— dm'B'(m')
0

Thus, the renormalization procedure is possible for any
merely polarizable "vacuum, " but not for the special
case of the conducting "plasma" type of vacuum. En
this case, no net true charge remains localized in the
region of the dressed particle; all of the charge is
carried "at in6nity" corresponding to the fact, well
known in the theory of metals, that all the charge
carried by a quasi-particle in a plasma is actually on
the surface. Nonetheless, conservation of particles, if
not of bare charge, is strictly maintained. Note that
the situation does not resemble the case of infinite"
charge renormalization because the infinity in the
vacuum polarizability need only occur at p'=0.
Either in the case of the polarizable vacuum or of

the "conducting" one, no low-energy experiment, and
even possibly no high-energy one, seems capable of
directly testing the value of the vacuum polarizability
prior to renormalization. Thus, we conclude that the
plasmon is a physical example demonstrating Schwing-
er's contention that under some circumstances the
Yang-Mills type of vector boson need not have zero
mass. In addition, aside from the short range of forces
and the 6nite mass, which we might interpret without
'We follow here, as elsewhere, the viewpoint of W. Thirring,

Priecip/es of Qeanlgm Electrodynamics (Academic Press Inc. ,
New York, 1958), Chap. 14.

(j (x)j (x'))= dm'epBg(ep) e'&&

(2x)'

xg+(p)g(p'+")(p„p. g;—P').
The Fourier transform of the corresponding retarded
Green's function is our response function:

resorting to Yang-Mills, it is not obvious how to
characterize such a case mathematically in terms of
observable, renormalized quantities.
We can, on the other hand, try to turn the problem

around and see what other conclusions we can draw
about possible Yang-Mills models of strong interactions
from the solid-state analogs. What properties of the
vacuum are needed for it to have the analog of a
conducting response to the Yang-Mills Geld?
Certainly the fact that the polarizability of the

"matter" system, without taking into account the
interaction with the gauge 6eld, is in6nite need not
bother us, since that is unobservable. In physical
conductors we can see it, but only because we can get
outside them and apply to them true electromagnetic
fields, not only internal test charges.
More serious is the implication —obviously physi-

cally from the fact that a has a pole at p'=0—that
the "matter" spectrum, at least for the "undressed"
matter system, must extend all the way to m'=0. In
the normal plasma even the 6nal spectrum extends to
zero frequency, the coupling rather than the spectrum
being a6'ected by the screening. Is this necessarily
always the case? The answer is no, obviously, since the
superconducting electron gas has no zero-mass excita-
tions whatever. In that case, the fermion mass is finite
because of the energy gap, while the boson which
appears as a result of the theorem of Goldstone~ ' and
has zero unrenormalized mass is converted into a
6nite-mass plasmon by interaction with the appropriate
gauge held, which is the electromagnetic held. The
same is true of the charged Bose gas.
It is likely, then, considering the superconducting

analog, that the way is now open for a degenerate-
vacuum theory of the Nambu type' without any
diS.culties involving either zero-mass Yang-Mills gauge
bosons or zero-mass Goldstone bosons. These two
types of bosons seem capable of "canceling each other
out" and leaving 6nite mass bosons only. It is not at
all clear that the way for a Sakurai' theory is equally
uncluttered. The only mechanism suggested by the
present work (of course, we have not discussed non-
Abelian gauge groups) for giving the gauge Geld mass
is the degenerate vacuum type of theory, in which the
original symmetry is not manifest in the observable
domain. Therefore, it needs to be demonstrated that
the necessary conservation laws can be maintained.
I should like to close with one 6nal remark on the

Goldstone theorem. This theorem was initially con-
jectured, one presumes, because of the solid-state
analogs, via the work of Nambu" and of Anderson. "
The theorem states, essentially, that if the Lagrangian

' J. Goldstone, Nuovo Cimento 19, 154 (1961).J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

9 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).' Y. Nambu, Phys. Rev. 117, 648 (1960).» P. W. Anderson, Phys. Rev. 110, 827 (1958).
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An analogy is a correspondence between phenomena, realized in two or more 
different physical systems, such that their descriptions, at least within some energy 
range, relies on the same physical process. 

Tentative definition of analogy in physics
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Analogies for quark matter
Mark G. Alford et al. “Color superconductivity in dense quark matter”,  Rev.Mod.Phys. 80 (2008) 1455-1515

MM, “Meson condensation”, MDPI-Particles 2 (2019) no.3, 411 

https://inspirehep.net/literature/762418
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Building blocks of 
hadrons are quarks

and gluons

neutron ��proton

u
d

u d
d
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�� = ūdn = “udd”p = “uud”

...

16

Q Quarks (mass in MeV)
+2/3 u (3) c (1300) t (170000)

�1/3 d (5) s (130) b (4000)

Open problems: Where does the proton mass come from? 
                             Does an analog of confinement exist? 
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Symmetries of QCD

SU(3)c ⇥ SU(3)L ⇥ SU(3)R ⇥ U(1)B

gauge color global chiral symmetry global baryonic number

Neglecting u, d and s quark masses 

A large symmetry group can be broken in a zoo of  possible phases

The analogy with “standard” fermionic systems may serve as guidance
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“Running” of the QCD interaction strength

Kaczmarek and Zantow
Physical Review D 71(11):114510 (2005)
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asymptotic freedom

J. C. Collins and M.J. Perry Phys.Rev.Lett. 34 (1975) 1353 

[sic]
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Color Flavor Locked phase

• Breaking of SU(3)c : 8 gauge bosons become massive. It is like having 8 (interacting) photons with 
a Meissner mass.

• χSB:   8 (pseudo) Nambu-Goldstone bosons (NGBs)

• U(1)B  breaking: 1 NGB. A genuine superfluid mode. 

Symmetry breaking { {SU(3)c ⇥ SU(3)L ⇥ SU(3)R ⇥ U(1)B ! SU(3)c+L+R ⇥ Z2

� U(1)Q � U(1)Q̃

Pairing of quarks of all flavors and colors
Alford, Rajagopal, Wilczek Nucl.Phys. B537 (1999) 443

The system is at the same time a (color) superconductor and a (baryonic) superfluid
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Supersolid quark matter 

See Giovanni Modugno’s talk on supersolids tomorrow
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u ! d+ ē+ ⌫e
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Crystalline structures

•  Complicated structures can be obtained 
combining more plane waves

•  “no-overlap” condition between ribbons

Rajagopal and Sharma Phys.Rev. D74 (2006) 094019
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NJL + GL expansion!!

Improved GL expansion S.Carignano, MM, O.Benhar and F.Anzuini Phys.Rev.D 97 (2018) 3, 036009
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ui = x0
i � xidisplacement vector

uij =
ui,j + uj,i

2

shear moduluscompressibility

Elastic deformation of a stressed crystal (Landau Lifsits, vol. 7)

• Crystalline structure given by the spatial modulation of the gap parameter

• It is this pattern of modulation that is rigid (and can oscillate)

MM, Rajagopal and Sharma Phys.Rev. D76 (2007) 074026

20 to 1000 times more rigid than the crust of neutron stars
⌫CCSC ⇠ 2.47MeV/fm3



Shear viscosity
P. Kovtun, D. T. Son, and A. O. Starinets,  Phys. Rev. Lett. 94 (2005) 111601 
Adams et al. New Journal of Physics 14 (2012) 115009  
L. Chiofalo,  D. Grasso, MM and S. Trabucco, e-Print: 2202.13790 [gr-qc] 
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Shear (laminar) flow

x

y

∂vx

∂y
≠ 0v = (vx, 0, 0)

In an ideal superfluid the laminar flow persists indefinitely
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Shear viscosity η

η ∼ npλ
  is mean free path 
  is the average momentum 
  is the number density

λ
p
n

In relativisic systems entropy works better. Entropy density s ∝ kBn

             
η
s

∼ pλ ≥
ℏ
kB

In an non-ideal fluids the friction tends to reduce the laminar flow

pλ ≥ ℏ
η
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≥ ℏit follows that from
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The KSS bound

It has been conjectured that in any physical system in 3+1 dimensions

η
s

≥
1

4π
ℏ
kB

shear viscosity coefficient

entropy density

P. Kovtun, D. T. Son, and A. O. Starinets, PRL 94, 111601 (2005)  

• Increasing the temperature the shear viscosity should increase. 
• Increasing the interaction strength the shear viscosity should decrease

Does the shear viscosity vanishes in some limit ? 
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Shear viscosity to entropy ratio
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Adams et al. New Journal of Physics 14 (2012) 115009 

 

numerical simulations

It does not exist any real physical system that saturates or violates the KSS bound



Gravity analogs
W. Unruh, Experimental black hole evaporation, Phys.Rev.Lett. 46 (1981) 1351–1353  
M. Visser, Acoustic black holes: Horizons, ergospheres, and Hawking radiation, Class. Quant. Grav. 15 (1998) 1767–1791  
C. Barcelo, S. Liberati, and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12,  
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Is gravity an emerging phenomenon?
Gravity as emerging theory has been proposed by many, including 
Sakharov



Vacuum quantum fluctuations in curved space and the theory of gravitation
A. D. Sakharov

Dokl.Akad.NaukSSSR 177,70-71 (1967) [Sov.Phys.Dokl. 12,1040-1041 (1968). AlsoS14,

pp. 167-169]

Usp. Fiz. Nauk 161,64-66 (May 1991)

In Einstein's theory of gravitation one postulates that

the action of space-time depends on the curvature (R is the

invariant of the Ricci tensor):

(D

The presence of the action (1) leads to a "metrical elas-

ticity" of space, i.e., to generalized forces which oppose the

curving of space.

Here we consider the hypothesis which identifies the

action (1) with the change in the action of quantum fluctu-

ations of the vacuum if space is curved. Thus, we consider

the metrical elasticity of space as a sort of level displacement

effect (cf. alsoRef. I).
11

In present-day quantum field theory it is assumed that

the energy-momentum tensor of the quantum fluctuations of

the vacuum T'k (0) and the corresponding action 5(0), for-

mally proportional to a divergent integral of the fourth pow-

er over the momenta of the virtual particles of the form $k3

dk, are actually equal to zero.

Recently Ya. B. Zel'dovich
3

 suggested that gravitation-

al interactions could lead to a "small" disturbance of this

equilibrium and thus to a finite value of Einstein's cosmolo-

gical constant, in agreement with the recent interpretation of

the astrophysical data. Here we are interested in the depend-

ence of the action of the quantum fluctuations on the curva-

ture of space. Expanding the density of the Lagrange func-

tion in a series in powers of the curvature, we have (A and

5-1)

dk i
(R)=Z(Q)+Ajkdk-R +Bj2fR2+... . (2)

The first term corresponds to Einstein's cosmological

constant.

The second term, according to our hypothesis, corre-

sponds to the action (1), i.e.,

1 , ,
G = - (3)

The third term in the expansion, written here in a provi-

sional form, leads to corrections, nonlinear in R, to Ein-

stein's equations.
2

'

The divergent integrals over the momenta of the virtual

particles in (2) and (3) are constructed from dimensional

considerations. Knowing the numerical value of the gravita-

tional constant G, we find that the effective integration limit

in (3) is

In a gravitational system of units, G = fi = c=\. In

this case k0 ~ 1. According to the suggestion of M. A. Mar-

kov, the quantity k0 determines the mass of the heaviest par-

ticles existing in nature, and which he calls "maximons." It

is natural to suppose also that the quantity k0 determines the

limit of applicability of present-day notions of space and cau-

sality.

Consideration of the density of the vacuum Lagrange

function in a simplified "model" of the theory for noninter-

acting free fields with particles M~k0 shows that for fixed

ratios of the masses of real particles and "ghost" particles

(i.e., hypothetical particles which give an opposite contribu-

tion from that of the real particles to the À-dependent ac-

tion), a finite change of action arises that is proportional to

M 2R and which we identify with R /G. Thus, the magnitude

of the gravitational interaction is determined by the masses

and equations of motion of free particles, and also, probably,

by the "momentum cutoff."

This approach to the theory of gravitation is analogous

to the discussion of quantum electrodynamics in Refs. 4 to 6,

where the possibility is mentioned of neglecting the Lagran-

gian of the free electromagnetic field for the calculation of

the renormalization of the elementary electric charge. In the

paper of L. D. Landau and I. Ya. Pomeranchuk the magni-

tude of the elementary charge is expressed in terms of the

masses of the particles and the momentum cutoff. For a

further development of these ideas see Ref. 7, in which the

possibility is established of formulating the equations of

quantum electrodynamics without the "bare" Lagrangian of

the free electromagnetic field.

The author expresses his gratitude to Ya. B. Zel'dovich

for the discussion which acted as a spur for the present pa-

per, for acquainting him with Refs. 3 and 7 before their pub-

lication, and for helpful advice.

1

' Here the molecular attraction of condensed bodies is calculated as the

result of changes in the spectrum of electromagnetic fluctuations. As

was pointed out by the author, the particular case of the attraction of

metallic bodies was studied earlier by Casimir.
2

2 1

A more accurate form of this term is f(dk/k) (BR2

+ CR *Rlk + DR MmRMm + ER lklmRlklm ) where ¿, ¬, —, D, E~\.
According to Refs. 4 to 7, fdk /k~ 137, so that the third term is impor-

tant for R … 1/137 (in gravitational units), i.e., in the neighborhood of

the singular point in Friedman's model of the universe.

'E. M. Lifshits, ZhETF 29:94 (1954); Sov. Phys. JETP 2:73 (1954),

trans.
2

H. B. G. Casimir, Proc. Nederl. Akad. Wetensch. 51:793 (1948).
3

Ya. B. Zel'dovich, ZhETF Pis'ma 6:922 (1967); JETP Lett. 6:345

(1967), trans.
4

E. S. Fradkin, Dokl. Akad. Nauk SSSR 98:47 (1954).
5

E. S. Fradkin, Dokl. Akad. Nauk SSSR 100:897 (1955).
6

L. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR

102:489 (1955), trans, in Landau's Collected Papers (D. terHaar, ed.),

Pergamon Press, 1965.
7

 Ya. B. Zel'dovich, ZhETF Pis'ma 6:1233(1967).
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⇥t
+⇥ · (�v) = 0
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⇥v
⇥t

+ (v ·⇥)v
⇥

= fEuler equation

Description of the fluid

Characteristics of the fluid

•  barotropic           p ≡ p(ρ)

•  inviscid                 f = − ∇p

•  irrotational         v = ∇ϕ

Starting from Euler equations
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⇤ = ⇤0 + �⇤1 +O(�2)

Bulk Perturbation

v0 = ∇ϕ0 v1 = ∇ϕ1

Small perturbations

⇥�

⇥t
+⇥ · (�v) = 0 general

∂ρ0

∂t
+ ∇ ⋅ (ρ0v0) = 0 bulk

∂ρ1

∂t
+ ∇ ⋅ (ρ0v1) + ∇ ⋅ (ρ1v0) = 0 perturbation
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Combining linearized Euler and continuity equations:

The non uniform medium changes the propagation  
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s =
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∂ρ
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We can rewrite the above equation as

where

<latexit sha1_base64="RGqt7BxnQnuVLgGYXpknlNTF3cU="></latexit>

gµ⌫ = ⌦

✓
c2s � v2 vt

v �I

◆

Gravity emerges
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Solving this equation…
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Acoustic metric

ds2 =
⇥

cs

�
� (c2

s � v2)dt2 + 2v · dx dt + dr2 + r2(d�2 + sin2 �d⇤2)
⇥

Painleve’–Gullstrand representation of Schwarzschid metric

ds2 = �
�

1� 2GM

r

⇥
dt2 ±

⇤
2GM

r
drdt + dr2 + r2(d�2 + sin2 �d⇥2)

    divergent flow at the originv ∝
1

r

Abandon the 3D spherical geometry

Schwarzschild acoustic metric?



Hawking radiation

S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975)  

W. Unruh, Experimental black hole evaporation, Phys.Rev.Lett. 46, 1351 (1981).  
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Hawking emissionBlack Hole (BH)

See for instance 
Parikh, Wilczek Phys.Rev.Lett. 85 (2000) 5042 
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BH thermodynamics

WKB tunneling amplitude  Γ ∼ e−2 Im S

A particle/nuclear physics perspective

Im S = 4πω Musing the geodesic equation

Γ ∼ e−8πMω = e−ω/T T =
1

8πM
=

g
2π

By analogy, the temperature of an acoustic hole T =
1

2π
∂ |cs − v |

∂n
H

T ≃ mc2
s ≃ 10−9K
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Instead of changing the velocity, change the speed of sound

cs = c1 > v cs = c2 < v

Carusotto et al New J. Phys. 10 103001  (2008)

Setup: trapped BEC condensate
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experiment numeric

black hole position effect of phonon emission on the density

Fitted Hawking temperature ∼ 10−9K

Image obtained by 4600 repetitions of the experiment

Experimental observation

Steinhauer, Nature Phys. 12 (2016) 959



Kinetic theory

R. W. Lindquist, Annals of Physics 37, 487 (1966). 
J. Stewart, Lecture Notes in Physics, Lecture Notes in Physics  No. v. 10 (Springer-Verlag, 1969). 

From GR

To the analog model
MM and C. Manuel, Phys.Rev.D 77 (2008) 103014
MM, D. Grasso, S. Trabucco and L. Chiofalo   Phys.Rev.D 103 (2021) 7, 076001  
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Phonons emitted at a temperature T have a Bose-Einstein distribution f

L[ f ] ≡ pα ∂f
∂xα

− Γα
βγ pβ pγ ∂f

∂pα
= C[ f ]Solution of 

for C[ f ] = 0

f (x, p) =
1

exp(pμβμ) − 1

βλ;ρ + βρ;λ = 0

Assuming

solution βμ = (β, 0)

Phonon distribution
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Energy momentum tensor  Tμν
ph = ∫ pμpν f(x, p) d𝒫

Knowing the distribution function we can obtain the thermodynamics

Phonon number nμ
ph = ∫ pμ f(x, p) d𝒫

distribution function

integral measure

Entropy sα
ph = − ∫ pα [f ln f − (1 + f )ln(1 + f )] d𝒫

Thermodynamics
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@x⌫Where 

@⌫n
⌫
ph + �µ

µ⌫n
⌫
ph =

Z
C[f ]dPCovariant conservation

collision integral

Transport of “phonon” number

C[ f ] = 0We keep 

Change in the number of phonons due to the background non uniformity! 
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ΔSph = − ΔSH

The entropy lost by the horizon is gained by the phonon gas

The actual entropy flux

From the Fluid To the Phonon gas

by means of the horizon

Dissipative processes localized at the horizon



Dissipative processes
M.L. Chiofalo,  D. Grasso, MM and S. Trabucco, e-Print: 2202.13790 [gr-qc] 
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Viscosity of an acoustic hole

v < cs v > cs

Horizon

v = cs

fluid velocity gradient

phonons

Energy conservation, the phonon emission results in a decrease of the fluid velocity
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<latexit sha1_base64="jNZvXG3QqG5B6XuwcH3kDff+uKI="></latexit>v

x

y

w1

w2
θ

SUPERSONIC 
REGION

SUBSONIC 
REGION

σ′ ik = η (∂ivk + ∂kvi) + ζδixδkx∇ ⋅ vViscous stress-tensor

 v = (v,0,0)
v = cs − Cx + ky

horizon

Phonon stress-energy tensor Tμ
ν = ∫ pμpν fph(x, p)d𝒫
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Tik = σ′ ik

Assuming that dissipation is only due to phonon emission 

ζeff
sph

=
η

sph
=

1
4π

Yields

Saturation of the KSS bounds.

This is ideal: any phonon scattering would violate the bound.



Conclusions

  There is a large number of physical systems linked by 
analogies  

  We can use them to solve/approach hard problems or to 
reproduce unreachable systems 

  Two examples have been discussed:   

The dissipation at the horizon seems to saturate the KSS bound

57

1) Color superconductors 

2) Shear viscosity
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Thanks for 
your attention!

massimo@lngs.infn.it

mailto:massimo@lngs.infn.it
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ΔSH = 2π
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c

ΔrHEntropy loss of the fluid

ΔSph = 4πr2
H dg sphΔrH

sph =
πT

6L2
c Cx

C = (v + cs)′ |H

Entropy gain of the phonon gas

with 

number of degrees of freedom

T =
1

2π ( cs − |v |
1 − cs |v | )

′ 

H

ΔSph = − ΔSH
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Hawking temperature

Associate an entropy to the sonic hole SH =
A

4L2
c

ΔSH = 2π
rH

L2
c

ΔrHEntropy variation due to horizon shrinking

The phonon emission results in an entropy loss of the horizon

rH

ΔrH radius variation 
due to phonon  
emission
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The KSS bound
Increasing the temperature the shear viscosity should increase. 
Increasing the interaction strength the shear viscosity should decrease

x

y
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4. High-refractive-index dielectric fluids (“slow light”): In dielectric fluids with an extremely high group refractive
index it is experimentally possible to slow lightspeed to centimetres per second or less. (Leonhardt–Piwnicki [13],
Hau et al [14], Visser [15], and others.)

5. Quasi-particle excitations: Fermionic or bosonic quasi-particles in a heterogeneous superfluid environment.
(Volovik [16], Kopnin–Volovik [17], Jacobson–Volovik [18], and Fischer [19].)

6. Nonlinear electrodynamics: If the permittivity and permeability themselves depend on the background elec-
tromagnetic field, photon propagation can often be recast in terms of an effective metric. (Plebanski [20],
Dittrich–Gies [21], Novello et al [22].)

7. Linear electrodynamics: If you do not take the spacetime metric itself as being primitive, but instead view the
linear constitutive relationships of electromagnetism as the fundamental objects, one can nevertheless reconstruct
the metric from first principles. (Hehl, Obukhov, and Rubilar [23, 24, 25].)

8. Scharnhorst effect: Anomalous photon propagation in the Casimir vacuum can be interpreted in terms of an
effective metric. (Scharnhorst [26], Barton [27], Liberati et al [28], and many others.)

9. Thermal vacuum: Anomalous photon propagation in QED at nonzero temperature can be interpreted in terms
of an effective metric. (Gies [29].)

10. “Solid state” black holes. (Reznik [30], Corley and Jacobson [31], and others.)

11. Astrophysical fluid flows: Bondi–Hoyle accretion and the Parker wind [coronal outflow] both provide physical
examples where an effective acoustic metric is useful, and where there is good observational evidence that
acoustic horizons form in nature. (Bondi [32], Parker [33], Moncrief [34], Matarrese [35], and many others.)

12. Other condensed-matter approaches that don’t quite fit into the above classification [36, 37].

A literature search as of April 2001 finds well over a hundred scientific articles devoted to one or another aspect of
analog gravity and effective metric techniques. The sheer number of different physical situations lending themselves to
an “effective metric” description strongly suggests that there is something deep and fundamental going on. Typically
these are models of general relativity, in the sense that they provide an effective metric and so generate the basic
kinematical background in which general relativity resides; in the absence of any dynamics for that effective metric
we cannot really speak about these systems as models for general relativity. However, as we will discuss more fully
bellow, quantum effects in these analog models might provide of some sort of dynamics resembling general relativity.

On a related front, (and we’ll see the connection soon enough), the particle physics and relativity communities have
also seen Lorentz symmetry emerge as a low-energy approximate symmetry in several physical situations:

1. As an infra-red fixed point of the renormalization group in certain non-Lorentz invariant quantum field theories;
(Nielsen et al [38]).

2. As a low-momentum approximation to acoustic propagation in the presence of viscosity; (Visser [9]).

3. As a low-momentum approximation to quasi-particle propagation governed by the Bogolubov dispersion relation;
(Barceló et al [12]).

4. In certain other quasi-particle dispersion relations (Volovik [39]).

On a third front, the last few years have seen an increasing number of indications that Einstein gravity (and even
quantum field theory) may not be as “fundamental” as was once supposed:

1. Induced gravity: In “induced-gravity” models a la Sakharov [40] the dynamics of gravity is an emergent low-
energy phenomenon that is not fundamental physics. In those models the dynamics of gravity (the approximate
Einstein equations) is a consequence of the quantum fluctuations of the other fields in the theory. (In induced
gravity models gravitation is not fundamental in exactly the same sense that phonons are not fundamental:
phonons are collective excitations of condensed matter systems. Phonons are not fundamental particles in the
sense of, say, photons. But this should not stop you from quantizing the phonon field as long as you realise you
should not take phonons seriously at arbitrarily high momenta.)

2. Effective field theory for gravity: Donoghue [41] has strongly argued that quantum gravity itself should simply
be viewed as an effective field theory, in the same sense that the Fermi theory of the weak interactions is an
effective field theory — it still makes sense to quantize in terms of gravitons [42], but the high-energy physics
is likely to be rather different from what could be guessed based only on observing low-energy excitations, and
you should not necessarily take the gravitons seriously at arbitrarily high momenta.
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Analog gravity from field theory normal modes?

Carlos Barceló∗

Physics Department, Washington University, Saint Louis, MO 63130-4899, USA

Stefano Liberati†

Physics Department, University of Maryland, College Park, MD 20742-4111, USA

Matt Visser‡

Physics Department, Washington University, Saint Louis MO 63130-4899, USA
(Dated: 2 April 2001; LATEX-ed February 3, 2008)

We demonstrate that the emergence of a curved spacetime “effective Lorentzian geometry” is
a common and generic result of linearizing a classical scalar field theory around some non-trivial
background configuration. This investigation is motivated by considering the large number of “ana-
log models” of general relativity that have recently been developed based on condensed matter
physics, and asking whether there is something more fundamental going on. Indeed, linearization
of a classical field theory (that is, a field theoretic “normal mode analysis”) results in fluctuations
whose propagation is governed by a Lorentzian-signature curved spacetime “effective metric”. In the
simple situation considered in this paper, (a single classical scalar field), this procedure results in a
unique effective metric, which is quite sufficient for simulating kinematic aspects of general relativity
(up to and including Hawking radiation). Upon quantizing the linearized fluctuations around this
background geometry, the one-loop effective action is guaranteed to contain a term proportional to
the Einstein–Hilbert action of general relativity, suggesting that while classical physics is responsi-
ble for generating an “effective geometry”, quantum physics can be argued to induce an “effective
dynamics”. The situation is strongly reminiscent of, though not identical to, Sakharov’s “induced
gravity” scenario, and suggests that Einstein gravity is an emergent low-energy long-distance phe-
nomenon that is insensitive to the details of the high-energy short-distance physics. (We mean this
in the same sense that hydrodynamics is a long-distance emergent phenomenon, many of whose
predictions are insensitive to the short-distance cutoff implicit in molecular dynamics.)

PACS numbers: 04.40.-b; 04.60.-m; 11.10.-z; 45.20.-d; gr-qc/0104001
Keywords: Analog gravity, field theory, normal modes, emergent phenomena

I. INTRODUCTION

The idea of building analog models of, and possibly for, general relativity is currently attracting considerable
attention [1]. Because of the extreme difficulty (and inadvisability) of working with intense gravitational fields in a
laboratory setting, interest has now turned to investigating the possibility of simulating aspects of general relativity
— though it is not a priori expected that all features of Einstein gravity can successfully be carried over to the
condensed matter realm. Numerous rather different physical systems have now been seen to be useful for developing
analog models of general relativity:

1. Dielectric media: A refractive index can be reinterpreted as an effective metric, the Gordon metric. (Gordon [2],
Skrotskii [3], Balazs [4], Plebanski [5], de Felice [6], and many others.)

2. Acoustics in flowing fluids: Acoustic black holes, aka “dumb holes”. (Unruh [7], Jacobson [8], Visser [9], Liberati
et al [10], and many others.)

3. Phase perturbations in Bose–Einstein condensates: Formally similar to acoustic perturbations, and analyzed
using the nonlinear Schrodinger equation (Gross–Pitaevskii equation) and Landau–Ginzburg Lagrangian; typical
sound speeds are centimetres per second to millimetres per second. (Garay et al [11], Barceló [12] et al .)

∗carlos@hbar.wustl.edu; http://www.physics.wustl.edu/~carlos; Supported by the Spanish MEC
†liberati@physics.umd.edu; http://www2.physics.umd.edu/~liberati; Supported by the US NSF
‡visser@kiwi.wustl.edu; http://www.physics.wustl.edu/~visser; Supported by the US DOE

63

Not only fluids
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Particle in a moving medium Particle in gravity

?

To which extent does it hold?
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A velocity space gradient produces the analog of light bending
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Quick recap

•We need to embed quantum effects

To have an horizon we need a transonic flow

It cannot be 3D 

v < cs v = cs v > cs

• Measure a dim phonon emission

•How to avoid turbulence? Use a Bose-Einstein condensate!
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It  is a coherent state of matter with a “thermodynamically” large number of particles 
in the same quantum state

1. Particles must be bosons  
2. Cold system: A fight between thermal disorder and quantum coherence 
3. Particles must be stable   

Requirements:

BOSONS@ low temperature in a potential well

T < TcT ' TcT > Tc

Bose-Einstein condensate (BEC)
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T < TcT ' Tc

T > Tc

Tc ' 200 nK

Ultracold atoms in an optical trap

1. 87Rb is bosonic

2. can be cooled

3. has a lifetime of about 1010 years (the experiment lasts ⇠ 103s)

Velocity distribution of  atoms87Rb
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⇥
acoustic metric

A simple geometrical picture

csn̂ dt = dx − v dtIn medium
phonon

Square it

gµ⇥dxµdx⇥ = 0Null geodesic

Note that −g = − det g = cs

dx
dt

= csn̂ + v as
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Acoustic metric

gμν = ημν + (c2
s − 1) vμvν vμ = γ(1, − v)

Promoting to special relativity we have that 

where

flat spacetime in-medium effects

Description of the motion of point particles in a moving medium. 
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Dissipative processes  damp this mode

The gravity analog at work
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superfluid vortex

elastic phonon-
vortex scattering 
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MM, C. Manuel and B. A. Sa'd,  Phys.Rev.Lett. 101 (2008) 241101
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The realm of the analogy II 

•Particle-wave duality           

wave propagation  
in hydrodynamics

∂2ψ
∂t2

− c2 ∇2ψ = 0

This analogy is valid in the absence of interactions.  

Including interactions the particle behavior is different: scattering, 
quantum corrections etc.

Propagation of  
massless bosons analogy
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Gravity analogs

If we can rephrase a given problem as a geometrical problem
we can look for a solution using the analogy with general 
relativity (GR)
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•    Dealing with difficult problems: they may be rephrased (mapped) as 
different solvable problems.

• When we have no direct access to the physical system 

But we can realize the analog one in a lab 

When should we use/look for analogies?

• When two processes are linked by common/similar mechanisms 

• When we are lost in a forest of  many different models analogies can provide a 
guidance 
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• Sound wave propagation as a scalar field propagation in an 
emerging GR background 

• The background does not obey the Einstein equations, it obeys 
the Euler equations! 

One can certainly calculate the Ricci and Einstein tensors of the fluid 
using the acoustic metric.  
However, they do not satisfy the Hilbert-Einstein equation.

Acoustic vs GR
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The phonon emission perturbs the system producing long-range density 
correlations

2

FIG. 1: Panel (a): scheme of the physical system under
investigation. Panels (b,c): dispersion of Bogoliubov excita-
tions on top of the flowing condensate in the regions of respec-
tively sub- (b) and super-sonic (c) flow. System parameters:
c2/c1 = 0.5, v0/c1 = 0.75.

The dynamics of the system following the formation
of the horizon has been numerically studied by means
of the so-called truncated Wigner method for the in-
teracting Bose field. Use of this technique to calculate
the time-evolution of generic observables of interacting
atomic gases was recently proposed and validated22: for
dilute gases such that n⇥ � 1 (the healing length being
defined as usual as ⇥ =

�
�2/mµ), this method is equiva-

lent to the more standard Bogoliubov approach. A brief
outlook of the method is given in the Methods section.

The recent advances in the experimental techniques
have led to the possibility of inferring physical informa-
tion on atomic gases from the correlation properties of
the observed experimental noise23,24,25. As the Hawk-
ing e�ect basically consists of the correlated emission of
pairs of quanta from the region around the horizon, calcu-
lations based on the gravitational analogy11 have shown
that a peculiar pattern should appear in the correlation
function for the density fluctuations of the condensate.
Its qualitatively unique properties suggest that it should
be easily distinguished from fluctuations of di�erent, e.g.
thermal origin.

In order to discard e�ects due to the back-action of
fluctuations on the condensate wavefunction we consider
the normalized, normal-order density-density correlation
function

G(2)(x, x�) =
⇥: n(x) n(x�) :⇤
⇥n(x)⇤ ⇥n(x�)⇤ (1)

A snapshot of G(2)(x, x�) at a time t � ⇤t well after the
horizon formation is shown in Fig.2. The main features
visible in the figure can be classified as follows:

FIG. 2: Panel (a): Density plot of the universal reduced
density correlation (n⇥1) ⇥ [G(2)(x, x�) � 1] at a time µ1t =
70 well after the switch-on of the horizon. The dashed lines
identify the main features discussed in the text. The black
and magenta lines indicate the directions along which the cuts
shown in panel (b) as solid lines are taken. The dotted line in
(b) corresponds to a later time µ1t = 100. Initial temperature
T = 0. The perturbation creating the horizon is switched on
in a time µ1 ⇤t = 0.5 and has a spatial width ⇤x/⇥1 = 0.5.
Although these values were chosen to maximize the signal
intensity, note that none of the qualitative features actually
depends on the specific choice made. System parameters as
in Fig.1.

(i) A strong, negative correlation strip along x = x� is
always present.

(ii) A system of fringes parallel to the main diagonal
(blue lines) appears inside the black hole after the
horizon is formed. As time goes on, the fringes
move away from the x = x� line at an approxi-
mately constant speed.

(iii) Symmetric pairs of negative correlation tongues ex-
tend from the horizon point almost orthogonally to
the main diagonal. While their maximum height is
constant in time, their length linearly grows with
time [see the cuts in panel (b)].

(iv) Another pair of symmetric tongues appears for
pairs of points located inside the black hole. Both

Parametric plot of the density-density correlation function

emitted phonons

Carusotto et al New J. Phys. 10 103001  (2008)

Detection strategy
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s

Boson isotope with a 
large mass: Rb87

The speed of sound is small
  cs ∼ mm s−1

≃ 10−9K

By analogy, the temperature of an acoustic hole T =
1

2π
∂ |cs − v |

∂n
H

If an acoustic hole is realizable and if it emits the Hawking radiation  
is it detectable? 
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Range of the gauge field propagation ∼ 1/M

• Recap of the Higgs-Anderson mechanism

Sponantenous breaking  
of a local symmetry Gauge field acquires mass   M
Physical process

Higgs mechanism  
masses for  and  
bosons

W± Z0 analogy
Anderson effect  
magnetic field screening in 
superconductors 

The analogy is about kinematics not dynamics 

The analogy works in  restricted energy regions: at high energies one sees 
the microphysics.

Phenomenon
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ds2 = − (1 −
2M
r ) dt2 + (1 −

2M
r )

−1

dr2 + r2(dθ2 sin2 θdϕ2)

Does the fluid analog exist?

Fluid with 
radial flow

v < cs

v = cs

v > cs

Rs = 2MSchwarzschid  radius 

Schwarzschild acoustic metric?
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