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- a quantum system in the state |¢);

- a measurement described by a POVM {Ep};

Born rule: the probability finding the outcome m is

Pm = (Y| B %) -

= intrinsic probabilistic & frequentist meaning
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Basic assumption: we can replicate without error any number of times = i.i.d.

Let us rephrase this procedure in a slightly different way
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Identical distribution but with one system (i.i.d.)
It can be a non-replicable system
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Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

- A system with parts we cannot control
(e.g. a qubit interacting with a large environment)

- An evolving system we can observe only partially
(e.g. a quantum universe)

Can we extend the Born rule to these systems?
= Repeated Measurement (RM) framework
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RM scenario

Born case: P(m;) — RM case: P(mj|m,...,mi_4)
Hard to evaluate!
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RM scenario - Weak interaction

UI? = U@Hg—l—eZ/Z\[@B[(I?)—FO(ﬁZ) =

{pm(k)[ekﬂ = pm + QR (R)[ex_1] + O(¢2)
[

~ 2
pm = (M| U[0)

How to decide between using Born and RM? 7
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Effective Born rule from RM - Setup
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Which one Alice must use to predict future outcomes?
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Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

- H1: Born rule holds strictly: p(my) = (my| U]0)°
- Hy: Born rule holds approximately: p(mg|Mg_q) = p(my) + eAp(my|Mp_1)

To select #, (or vice-versa) it must be

P(H2|ML) AP(ML) 1
—>1 = > -
P(H1IML) P(ML) — e

AP(M,) < P(M) = Inability to select = FAPP, RM ~ Born




Unruh-DeWitt detectors

W. G. Unruh (1976) & B. S. DeWitt (1980)
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Unruh-DeWitt detectors - The switching function

Switching function x(7) describes interaction times

- must be smooth
- has compact support (at least FAPP)

ey o
1

Arot(7) = Ap + Ay + Mie(1) — Fior(7) = Ap + Ay + )\ZXfe(T)m(T) ® $(X(1))
k=0
1
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RM on UDW detectors

J. Polo-Gomez, Et. Al., Phys. Rev. D 105 (2022)
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RM on UDW detectors
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= M =(my,...,m)— B =(by,...,b1)
We need P(b.+1 = 1|B;) and P(b 41 = 0|B;) 12
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History-dependent transition probabilities

)\2
P(bL-H = 1|BL) = H_,P //[\[ o WZ(H+'|)(XL+'|7X,L+'I7 0o 7XN17 ;\/1)
J L EXXEETA V(K3

We need 3 necessary and 2 auxiliary assumptions...
..amongst the others on trajectory,

A0: W(r',7) = W(r' — 1), ok for Inertial and Accelerated

Bz: TOff >> Ton

To obtain result, we need a specific switching

13
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Gaussian switching and its consequences

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- x(7) is collection of well spaces gaussian peaks as switching function

- Born probabilities for a single gaussian peak are known: g, and gx
Hence:

« Born case: Pq, (BL) = q"(1—q,)t="
- RM case:  Pg,(BL) = q7'(1—q.,)t=" + corrections

In the Born case, what results should we expect?
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Interlude - Standard results from UDW theory

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

Bu=(br,...,b) = Reomed = T
For g; and ga:
Rlsampled _, b _ Rtheo ~ Roeo —
1—=pi
7ezampled . : BAPA _ Ri\heo ~ R = exp(—w/Ty)

Rsampled |, R;’;’A encoding the interesting results

15
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FAPP, RM gives same results as Born




Results - RM on accelerated UDW
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Results - RM on accelerated UDW

X(7) = (cosh(7/a)/a, X0, Yo, sinh(T/a) )
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w=0.20=1Ton = To/10 =80,A=10"2,and g = 0.1.

FAPP, RM gives same results as Born = Unruh effect seen via RM
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In this work we:

- discussed limits of the Born rule

- defined non-replicable systems

- provided a way to test non-replicable systems via Repeated Measurements...
- ... and shown that the Born rule can hold FAPP

- gave an application to Unruh-DeWitt detectors...

- ..showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT
boundary

Thank you for your attention! 18



History-dependent transition probabilities

P(brsr = 1[BL) = / / Wty Kt X -+ X X
N1,...,Np,L41

We need 3 necessary and 2 auxiliary assumptions...
..amongst the others

AO: W(r',7)=W(r"—7)

A1: the 2-point Wightman function is definite negative, monotonously increasing
and such that lims_,o W(S) = —oc.

A2 Topw < /2.

Bl: s>5 = W(s) > W().
B2: T.g > T,n, meaning that the detector rests long times between each
measurement.
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Necessity of RM vs. Born
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Necessity of RM vs. Born
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l.i.d. outcomes | non i.i.d. outcomes
S replicable {mi} {(m1,....,mp)}
S non-replicable {m;} Born, we need RM




Field’s state update
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- The field state is contextual to the observer
- The collapse in the future lightcone Dt (M)
- The detector never leaves D+ (M)

- We can take the collapsed state

\
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Effective Born rule from RM - Details for bit strings

Suppose {mg,m} = {0,1} with p; = g (and po = 1— @), then

ML:(m1,...,mL)*—)(L;N1,...,Nn)

/:1 »»»» L ]:N‘| ,,,,, Nn
j#NW ----- Nn
R0l QP G)Ir)
Po(ML) = Pg(ML) + ePg(ML) | > — . —— .
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