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What is the Born rule?

Given

• a quantum system in the state |ψ〉;
• a measurement described by a POVM {Êm};

Born rule: the probability finding the outcome m is

pm = 〈ψ| Êm |ψ〉 .

⇒ intrinsic probabilistic & frequentist meaning
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What is domain of validity of the Born rule?

Basic assumption: we can replicate without error any number of times ⇒ i.i.d.

Let us rephrase this procedure in a slightly different way
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A different take on the Born rule

Identical distribution but with one system (i.i.d.)
It can be a non-replicable system
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Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

• A system with parts we cannot control
(e.g. a qubit interacting with a large environment)

• An evolving system we can observe only partially
(e.g. a quantum universe)

Can we extend the Born rule to these systems?
⇒ Repeated Measurement (RM) framework
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RM scenario

Born case: P(mi) −→ RM case: P(mi|m1, . . . ,mi−1)

Hard to evaluate!
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RM scenario - Weak interaction

Ûk = Û⊗IE+ϵ
∑
l
Âl⊗B̂l(k)+O(ϵ2)

⇒

pm(k)[ek−1] = pm + ϵQ(1)
m (k)[ek−1] + O(ϵ2)

pm = 〈m| Û |0〉2

How to decide between using Born and RM?
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Effective Born rule from RM - Setup

ML = (m1, . . . ,mL)

P(ML) = P(m1)P(m2) . . .P(mL)

P̃(ML) = P(m1)P(m2) . . .P(mL) + ϵ∆P(ML)

Which one Alice must use to predict future outcomes?
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Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

• H1: Born rule holds strictly: p(mk) = 〈mk| Û |0〉2

• H2: Born rule holds approximately: p(mk|Mk−1) = p(mk) + ϵ∆p(mk|Mk−1)

To select H2 (or vice-versa) it must be
P(H2|ML)
P(H1|ML)

� 1

⇒ ∆P(ML)
P(ML)

� 1
ϵ

∆P(ML) � P(ML) ⇒ Inability to select ⇒ FAPP, RM ' Born
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• H2: Born rule holds approximately: p(mk|Mk−1) = p(mk) + ϵ∆p(mk|Mk−1)

To select H2 (or vice-versa) it must be
P(H2|ML)
P(H1|ML)

� 1 ⇒ ∆P(ML)
P(ML)

� 1
ϵ

∆P(ML) � P(ML) ⇒ Inability to select ⇒ FAPP, RM ' Born

9



Unruh-DeWitt detectors

W. G. Unruh (1976) & B. S. DeWitt (1980)

X(τ) = (t(τ), x(τ)) and ĤD = ω |1〉 〈1| initially in |0〉
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Unruh-DeWitt detectors

W. G. Unruh (1976) & B. S. DeWitt (1980)

Ĥϕ =
1
2

∫
∂µϕ(x)∂µϕ(x)d4x initially in |0M〉

10



Unruh-DeWitt detectors

W. G. Unruh (1976) & B. S. DeWitt (1980)

Ĥint(τ) = χ(τ)m̂(τ)⊗ ϕ̂(X(τ))
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Unruh-DeWitt detectors

W. G. Unruh (1976) & B. S. DeWitt (1980)

Ĥtot(τ) = ĤD + Ĥϕ + λĤint(τ)
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Unruh-DeWitt detectors - The switching function

Switching function χ(τ) describes interaction times

• must be smooth
• has compact support (at least FAPP)

Ĥtot(τ) = ĤD + Ĥϕ + λĤint(τ) −→ Ĥtot(τ) = ĤD + Ĥϕ + λ
∑
k=0

χk(τ)m̂(τ)⊗ ϕ̂(X(τ))
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RM on UDW detectors

J. Polo-Gómez, Et. Al., Phys. Rev. D 105 (2022)

We need P(bL+1 = 1|BL) and P(bL+1 = 0|BL)
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RM on UDW detectors

J. Polo-Gómez, Et. Al., Phys. Rev. D 105 (2022)
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History-dependent transition probabilities

P(bL+1 = 1|BL) =
λ2∏
Pj

∫∫
N1,...,Nn,L+1

W2(n+1)(XL+1, X′L+1, . . . , XN1 , X′N1)

We need 3 necessary and 2 auxiliary assumptions...
...amongst the others on trajectory, and switching

A0: W(τ ′, τ) = W(τ ′ − τ), ok for Inertial and Accelerated

B2: Toff � Ton

To obtain result, we need a specific switching
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Gaussian switching and its consequences

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

• χ(τ) is collection of well spaces gaussian peaks as switching function

• Born probabilities for a single gaussian peak are known: qI and qA

Hence:

• Born case: Pqι(BL) = qnι (1− qι)(L−n)

• RM case: P̃qι(BL) = qnι (1− qι)(L−n) + corrections

In the Born case, what results should we expect?
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Interlude - Standard results from UDW theory

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

BL = (b1, . . . ,bL) ⇒ Rsampled =
n

L− n

For qI and qA:

Rsampled
I −→ pI

1− pI
= Rtheo

I

' R∞
I = 0

Rsampled
A −→ pA

1− pA
= Rtheo

A

' R∞
A = exp(−ω/TU)

Rsampled 7−→ R∞
I/A encoding the interesting results
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Results - RM on inertial UDW

X(τ) = (τ, x0)

ω = 0.2, σ = 1, Ton = Toff/10 = 8σ, and λ = 10−2

FAPP, RM gives same results as Born
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Results - RM on accelerated UDW

X(τ) = (cosh(τ/α)/α, x0, y0, sinh(τ/α)α)

ω = 0.2, σ = 1, Ton = Toff/10 = 8σ, λ = 10−2, and g = 0.1.

FAPP, RM gives same results as Born ⇒ Unruh effect seen via RM
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Summary

arxiv.org/2210.13347

In this work we:

• discussed limits of the Born rule
• defined non-replicable systems

• provided a way to test non-replicable systems via Repeated Measurements...
• ... and shown that the Born rule can hold FAPP
• gave an application to Unruh-DeWitt detectors...
• ...showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT
boundary

Thank you for your attention!
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History-dependent transition probabilities

P(bL+1 = 1|BL) =
λ2∏
Pj

∫∫
N1,...,Nn,L+1

W2(n+1)(XL+1, X′L+1, . . . , XN1 , X′N1)

We need 3 necessary and 2 auxiliary assumptions...
...amongst the others

A0: W(τ ′, τ) = W(τ ′ − τ)

A1: the 2-point Wightman function is definite negative, monotonously increasing
and such that lims→0W(s) = −∞.

A2: Tonω ≤ π/2.

B1: s� s′ ⇒ W(s) � W(s′).
B2: Toff � Ton, meaning that the detector rests long times between each

measurement.



Necessity of RM vs. Born

i.i.d. outcomes non i.i.d. outcomes
S replicable

{mi} {(m1, . . . ,mL)}

S non-replicable

{mi} Born, we need RM
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Field’s state update
At first order

|ψ0〉 = |0〉 ⊗ |0M〉
int−−−→|0〉 ⊗ |0M〉+ λ |1〉 ⊗ |ϕ1〉+ O(λ2)

M−−−→

{
|0〉 ⊗ |0M〉
|1〉 ⊗ |ϕ1〉

R−−−→

{
|0〉 ⊗ |0M〉
|0〉 ⊗ |ϕ1〉

- The field state is contextual to the observer
- The collapse in the future lightcone D+(M1)
- The detector never leaves D+(M1)
- We can take the collapsed state



Effective Born rule from RM - Details for bit strings

Suppose {m0,m1} = {0, 1} with p1 = q (and p0 = 1− q), then

ML = (m1, . . . ,mL) 7→ (L;N1, . . . ,Nn)

Pq(ML) =
∏

j=1,...,L
j̸=N1,...,Nn

P(0|Mj)
∏

j=N1,...,Nn

P(1|Mj) = qn(1− q)L−n .

P̃q(ML) = Pq(ML) + ϵPq(ML)

 ∑
j=N1,...,Nn

Q(1)
bj
(j)[fj]
q +

∑
j=1,...,L
j̸=N1,...,Nn

Q(1)
bj
(j)[fj]

1− q

 ,
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