Outcomes of repeated measurements

on non-replicable Unruh-DeWitt detectors

N. Pranzini, G. García-Pérez, E. Keski-Vakkuri, S. Maniscalco 27th October 2022 - QFC 2022

Univeristy of Helsinki - QTF Centre of Excellence InstituteQ - The Finnish Quantum Institute Università degli studi di Pisa

AIMS:

- 1. extend the Born rule to non-replicable systems
- 2. provide an example of this procedure
- 1. Born rule and the necessity for replicas
- 2. Non-replicable systems and Repeated Measurements (RM)
- 3. RM on Unruh-DeWitt detectors
- 4. Results and conclusions

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\{\hat{E}_m\}$;

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\{\hat{E}_m\}$;

Born rule: the probability finding the outcome *m* is

$$p_m = \langle \psi | \hat{E}_m | \psi \rangle$$
.

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\{\hat{E}_m\}$;

Born rule: the probability finding the outcome *m* is

$$p_m = \langle \psi | \hat{E}_m | \psi \rangle$$
.

\Rightarrow intrinsic probabilistic & frequentist meaning

What is domain of validity of the Born rule?

What is domain of validity of the Born rule?

Basic assumption: we can replicate without error any number of times \Rightarrow *i.i.d.*

What is domain of validity of the Born rule?

Basic assumption: we can replicate without error any number of times \Rightarrow *i.i.d.*

Let us rephrase this procedure in a slightly different way

A different take on the Born rule

A different take on the Born rule

A different take on the Born rule

Identical distribution but with **one** system (*i.i.d.*) It can be a non-replicable system

Non-replicable system cannot be copied. The *i.i.d.* often fails:

Non-replicable system cannot be copied.

The *i.i.d.* often fails:

• A system with parts we cannot control (e.g. a qubit interacting with a large environment)

Non-replicable system cannot be copied.

The *i.i.d.* often fails:

- A system with parts we cannot control (e.g. a qubit interacting with a large environment)
- An evolving system we can observe only partially (e.g. a *quantum* universe)

Non-replicable system cannot be copied.

The *i.i.d.* often fails:

- A system with parts we cannot control (e.g. a qubit interacting with a large environment)
- An evolving system we can observe only partially (e.g. a *quantum* universe)

Can we extend the Born rule to these systems?

 \Rightarrow Repeated Measurement (RM) framework

Born case: $P(m_i) \longrightarrow \text{RM case: } P(m_i|m_1, \dots, m_{i-1})$ Hard to evaluate!

RM scenario - Weak interaction

$$\hat{U}_{k} = \hat{U} \otimes \mathbb{I}_{\mathcal{E}} + \epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k) + O(\epsilon^{2})$$

RM scenario - Weak interaction

$$\hat{U}_{k} = \hat{U} \otimes \mathbb{I}_{\mathcal{E}} + \epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k) + O(\epsilon^{2}) \Rightarrow \begin{cases} p_{m}(k)[e_{k-1}] = p_{m} + \epsilon Q_{m}^{(1)}(k)[e_{k-1}] + O(\epsilon^{2}) \\ p_{m} = \langle m | \hat{U} | 0 \rangle^{2} \end{cases}$$

RM scenario - Weak interaction

$$\hat{U}_{k} = \hat{U} \otimes \mathbb{I}_{\mathcal{E}} + \epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k) + O(\epsilon^{2}) \implies \begin{cases} p_{m}(k)[e_{k-1}] = p_{m} + \epsilon Q_{m}^{(1)}(k)[e_{k-1}] + O(\epsilon^{2}) \\ p_{m} = \langle m | \hat{U} | 0 \rangle^{2} \end{cases}$$

How to decide between using Born and RM?

$$M_L = (m_1, \ldots, m_L)$$

Ľ

$$M_L = (m_1, \dots, m_L)$$
$$P(M_L) = P(m_1)P(m_2) \dots P(m_L)$$

$$M_L = (m_1, \ldots, m_L)$$

$$P(M_L) = P(m_1)P(m_2)\dots P(m_L)$$

$$\tilde{P}(M_L) = P(m_1)P(m_2)\dots P(m_L) + \epsilon \Delta P(M_L)$$

$$M_L = (m_1, \ldots, m_L)$$

$$P(M_L) = P(m_1)P(m_2)\dots P(m_L)$$

$$\tilde{P}(M_L) = P(m_1)P(m_2)\dots P(m_L) + \epsilon \Delta P(M_L)$$

Which one Alice must use to predict future outcomes?

Alice formulates two hypotheses:

- \mathcal{H}_1 : Born rule holds strictly: $p(m_k) = \langle m_k | \hat{U} | 0 \rangle^2$
- \mathcal{H}_2 : Born rule holds approximately: $p(m_k|M_{k-1}) = p(m_k) + \epsilon \Delta p(m_k|M_{k-1})$

Alice formulates two hypotheses:

- \mathcal{H}_1 : Born rule holds strictly: $p(m_k) = \langle m_k | \hat{U} | 0 \rangle^2$
- \mathcal{H}_2 : Born rule holds approximately: $p(m_k|M_{k-1}) = p(m_k) + \epsilon \Delta p(m_k|M_{k-1})$

To select \mathcal{H}_2 (or vice-versa) it must be

$$\frac{P(\mathcal{H}_2|M_L)}{P(\mathcal{H}_1|M_L)} \gg 1$$

Alice formulates two hypotheses:

- \mathcal{H}_1 : Born rule holds strictly: $p(m_k) = \langle m_k | \hat{U} | 0 \rangle^2$
- \mathcal{H}_2 : Born rule holds approximately: $p(m_k|M_{k-1}) = p(m_k) + \epsilon \Delta p(m_k|M_{k-1})$

To select \mathcal{H}_2 (or vice-versa) it must be

$$\frac{P(\mathcal{H}_2|M_L)}{P(\mathcal{H}_1|M_L)} \gg 1 \; \Rightarrow \; \frac{\Delta P(M_L)}{P(M_L)} \gg \frac{1}{\epsilon}$$

Alice formulates two hypotheses:

- \mathcal{H}_1 : Born rule holds strictly: $p(m_k) = \langle m_k | \hat{U} | 0 \rangle^2$
- \mathcal{H}_2 : Born rule holds approximately: $p(m_k|M_{k-1}) = p(m_k) + \epsilon \Delta p(m_k|M_{k-1})$

To select \mathcal{H}_2 (or vice-versa) it must be

$$\frac{P(\mathcal{H}_2|M_L)}{P(\mathcal{H}_1|M_L)} \gg 1 \; \Rightarrow \; \frac{\Delta P(M_L)}{P(M_L)} \gg \frac{1}{\epsilon}$$

 $\Delta P(M_L) \ll P(M_L) \Rightarrow$ Inability to select \Rightarrow FAPP, RM \simeq Born

W. G. Unruh (1976) & B. S. DeWitt (1980)

$$X(\tau) = (t(\tau), \mathbf{x}(\tau)) \text{ and } \hat{H}_D = \omega |1\rangle \langle 1| \text{ initially in } |0\rangle$$

W. G. Unruh (1976) & B. S. DeWitt (1980)

$$\hat{H}_{\phi} = \frac{1}{2} \int \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) d^{4}x$$
 initially in $|O_{M}\rangle$

W. G. Unruh (1976) & B. S. DeWitt (1980)

 $\hat{H}_{int}(\tau) = \chi(\tau)\hat{m}(\tau)\otimes\hat{\phi}(X(\tau))$

W. G. Unruh (1976) & B. S. DeWitt (1980)

$$\hat{H}_{tot}(\tau) = \hat{H}_D + \hat{H}_{\phi} + \lambda \hat{H}_{int}(\tau)$$

Unruh-DeWitt detectors - The switching function

Switching function $\chi(\tau)$ describes interaction times

- must be smooth
- has compact support (at least FAPP)

Unruh-DeWitt detectors - The switching function

Switching function $\chi(\tau)$ describes interaction times

- must be smooth
- has compact support (at least FAPP)

 $\hat{H}_{tot}(\tau) = \hat{H}_D + \hat{H}_{\phi} + \lambda \hat{H}_{int}(\tau) \longrightarrow \hat{H}_{tot}(\tau) = \hat{H}_D + \hat{H}_{\phi} + \lambda \sum_{k=0} \chi_k(\tau) \hat{m}(\tau) \otimes \hat{\phi}(X(\tau))$

RM on UDW detectors

RM on UDW detectors

J. Polo-Gómez, Et. Al., Phys. Rev. D 105 (2022)

$$\hat{M}_0 = \ket{0}ra{0} \ , \ \hat{M}_1 = \ket{1}ra{1}$$

 $\hat{R} \left| \psi \right\rangle \longmapsto \left| 0 \right\rangle$

RM on UDW detectors

$$\Rightarrow M_L = (m_1, \dots, m_L) \mapsto B_L = (b_1, \dots, b_L)$$

We need $P(b_{L+1} = 1|B_L)$ and $P(b_{L+1} = 0|B_L)$

History-dependent transition probabilities

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

History-dependent transition probabilities

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

We need **3** necessary and **2** auxiliary assumptions...

...amongst the others

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

We need **3** necessary and **2** auxiliary assumptions... ...amongst the others on trajectory,

A0: $W(\tau', \tau) = W(\tau' - \tau)$, ok for Inertial and Accelerated

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

We need **3** necessary and **2** auxiliary assumptions... ...amongst the others on trajectory, and switching

A0: $W(\tau', \tau) = W(\tau' - \tau)$, ok for Inertial and Accelerated

B2: $T_{off} \gg T_{on}$

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

We need **3** necessary and **2** auxiliary assumptions... ...amongst the others on trajectory,

A0: $W(\tau', \tau) = W(\tau' - \tau)$, ok for Inertial and Accelerated

B2: $T_{off} \gg T_{on}$

To obtain result, we need a specific switching

• $\chi(\tau)$ is collection of **well spaces** gaussian peaks as switching function

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of **well spaces** gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_1 and q_A

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of **well spaces** gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_1 and q_A

Hence:

• Born case: $P_{q_{\iota}}(B_L) = q_{\iota}^n (1 - q_{\iota})^{(L-n)}$

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of **well spaces** gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_1 and q_A

Hence:

- Born case: $P_{q_{\iota}}(B_{L}) = q_{\iota}^{n}(1 q_{\iota})^{(L-n)}$
- RM case: $\tilde{P}_{q_{\iota}}(B_L) = q_{\iota}^n (1 q_{\iota})^{(L-n)} + corrections$

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of **well spaces** gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_1 and q_A

Hence:

- Born case: $P_{q_{\iota}}(B_L) = q_{\iota}^n (1 q_{\iota})^{(L-n)}$
- RM case: $\tilde{P}_{q_{\iota}}(B_L) = q_{\iota}^n (1 q_{\iota})^{(L-n)} + corrections$

In the Born case, what results should we expect?

$$B_L = (b_1, \dots, b_L) \Rightarrow \mathcal{R}^{sampled} = \frac{n}{L-n}$$

$$B_L = (b_1, \dots, b_L) \Rightarrow \mathcal{R}^{sampled} = \frac{n}{L-n}$$

For q_I and q_A :

$$\mathcal{R}_{l}^{sampled} \longrightarrow \frac{p_{l}}{1 - p_{l}} = \mathcal{R}_{l}^{theo}$$
$$\mathcal{R}_{A}^{sampled} \longrightarrow \frac{p_{A}}{1 - p_{A}} = \mathcal{R}_{A}^{theo}$$

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

$$B_L = (b_1, \dots, b_L) \Rightarrow \mathcal{R}^{sampled} = \frac{n}{L-n}$$

For q_I and q_A :

$$\mathcal{R}_{I}^{sampled} \longrightarrow \frac{p_{I}}{1 - p_{I}} = \mathcal{R}_{I}^{theo} \simeq \mathcal{R}_{I}^{\infty} = 0$$
$$\mathcal{R}_{A}^{sampled} \longrightarrow \frac{p_{A}}{1 - p_{A}} = \mathcal{R}_{A}^{theo} \simeq \mathcal{R}_{A}^{\infty} = \exp(-\omega/T_{U})$$

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

$$B_L = (b_1, \dots, b_L) \Rightarrow \mathcal{R}^{sampled} = \frac{n}{L-n}$$

For q_I and q_A :

$$\mathcal{R}_{I}^{sampled} \longrightarrow \frac{p_{I}}{1 - p_{I}} = \mathcal{R}_{I}^{theo} \simeq \mathcal{R}_{I}^{\infty} = 0$$
$$\mathcal{R}_{A}^{sampled} \longrightarrow \frac{p_{A}}{1 - p_{A}} = \mathcal{R}_{A}^{theo} \simeq \mathcal{R}_{A}^{\infty} = \exp(-\omega/T_{U})$$

 $\mathcal{R}^{sampled} \longmapsto \mathcal{R}^{\infty}_{I/A}$ encoding the interesting results

Results - RM on inertial UDW

 $X(\tau) = (\tau, \mathbf{X}_0)$

 $\omega = 0.2$, $\sigma = 1$, $T_{on} = T_{off}/10 = 8\sigma$, and $\lambda = 10^{-2}$

16

Results - RM on inertial UDW

 $X(\tau) = (\tau, \mathbf{X}_0)$

 $\omega = 0.2$, $\sigma = 1$, $T_{on} = T_{off}/10 = 8\sigma$, and $\lambda = 10^{-2}$

FAPP, RM gives same results as Born

Results - RM on accelerated UDW

 $X(\tau) = (\cosh(\tau/\alpha)/\alpha, x_0, y_0, \sinh(\tau/\alpha)\alpha)$

ω = 0.2, σ = 1, $T_{on} = T_{off}/10 = 8σ$, $λ = 10^{-2}$, and g = 0.1.

Results - RM on accelerated UDW

 $X(\tau) = (\cosh(\tau/\alpha)/\alpha, x_0, y_0, \sinh(\tau/\alpha)\alpha)$

ω = 0.2, σ = 1, $T_{on} = T_{off}/10 = 8σ$, $λ = 10^{-2}$, and g = 0.1.

FAPP, RM gives same results as Born \Rightarrow Unruh effect seen via RM

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- \cdot ... and shown that the Born rule can hold FAPP

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- \cdot ... and shown that the Born rule can $hold \; F\!APP$
- gave an application to Unruh-DeWitt detectors...
- \cdot ...showing that the Unruh effect can be tested via RM

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- \cdot ... and shown that the Born rule can $hold \; FAPP$
- gave an application to Unruh-DeWitt detectors...
- \cdot ...showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT boundary

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- \cdot ... and shown that the Born rule can $hold \; FAPP$
- gave an application to Unruh-DeWitt detectors...
- \cdot ...showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT boundary

Thank you for your attention!

History-dependent transition probabilities

$$P(b_{L+1} = 1|B_L) = \frac{\lambda^2}{\prod \mathcal{P}_j} \iint_{N_1, \dots, N_n, L+1} \mathcal{W}_{2(n+1)}(X_{L+1}, X'_{L+1}, \dots, X_{N_1}, X'_{N_1})$$

We need **3** necessary and **2** auxiliary assumptions... ...amongst the others

A0: $\mathcal{W}(\tau',\tau) = \mathcal{W}(\tau'-\tau)$

- A1: the 2-point Wightman function is definite negative, monotonously increasing and such that $\lim_{s\to 0} \mathcal{W}(s) = -\infty$.
- A2: $T_{\rm on}\omega \leq \pi/2$.
- **B1:** $s \gg s' \Rightarrow \mathcal{W}(s) \gg \mathcal{W}(s')$.
- **B2:** $T_{\rm off} \gg T_{\rm on}$, meaning that the detector rests long times between each measurement.

	<i>i.i.d.</i> outcomes	non <i>i.i.d.</i> outcomes
${\cal S}$ replicable		
${\cal S}$ non-replicable		

	<i>i.i.d.</i> outcomes	non <i>i.i.d.</i> outcomes
${\cal S}$ replicable	$\{m_i\}$	
${\cal S}$ non-replicable		

	<i>i.i.d.</i> outcomes	non <i>i.i.d.</i> outcomes
${\cal S}$ replicable	$\{m_i\}$	
${\cal S}$ non-replicable	$\{m_i\}$	

	<i>i.i.d.</i> outcomes	non <i>i.i.d.</i> outcomes
${\cal S}$ replicable	$\{m_i\}$	$\{(m_1,\ldots,m_L)\}$
${\cal S}$ non-replicable	$\{m_i\}$	

	<i>i.i.d.</i> outcomes	non <i>i.i.d.</i> outcomes
${\cal S}$ replicable	$\{m_i\}$	$\{(m_1,\ldots,m_L)\}$
${\cal S}$ non-replicable	$\{m_i\}$	Born , we need RM

Field's state update

At first order

$$\begin{split} |\psi_{0}\rangle &= |0\rangle \otimes |0_{M}\rangle \\ \xrightarrow{\text{int}} |0\rangle \otimes |0_{M}\rangle + \lambda |1\rangle \otimes |\phi_{1}\rangle + O(\lambda^{2}) \\ \xrightarrow{\text{M}} \begin{cases} |0\rangle \otimes |0_{M}\rangle \\ |1\rangle \otimes |\phi_{1}\rangle \\ \xrightarrow{R} \end{cases} \begin{cases} |0\rangle \otimes |0_{M}\rangle \\ |0\rangle \otimes |\phi_{1}\rangle \end{cases} \end{split}$$

- The field state is contextual to the observer
- The collapse in the future lightcone $\mathcal{D}^+(M_1)$
- The detector never leaves $\mathcal{D}^+(M_1)$
- We can take the collapsed state

$$M_L = (m_1, \ldots, m_L) \mapsto (L; N_1, \ldots, N_n)$$

$$M_L = (m_1, \ldots, m_L) \mapsto (L; N_1, \ldots, N_n)$$

$$P_q(M_L) = \prod_{\substack{j=1,...,L\\ j \neq N_1,...,N_n}} P(0|M_j) \prod_{j=N_1,...,N_n} P(1|M_j) = q^n (1-q)^{L-n} .$$

$$M_L = (m_1, \ldots, m_L) \mapsto (L; N_1, \ldots, N_n)$$

$$P_q(M_L) = \prod_{\substack{j=1,\dots,L\\j\neq N_1,\dots,N_n}} P(0|M_j) \prod_{j=N_1,\dots,N_n} P(1|M_j) = q^n (1-q)^{L-n} .$$

$$\tilde{P}_q(M_L) = P_q(M_L) + \epsilon P_q(M_L) \left(\sum_{\substack{j=N_1,\dots,N_n}} \frac{Q_{b_j}^{(1)}(j)[f_j]}{q} + \sum_{\substack{j=1,\dots,L\\j\neq N_1,\dots,N_n}} \frac{Q_{b_j}^{(1)}(j)[f_j]}{1-q} \right) ,$$

demo