Outcomes of repeated measurements

on non-replicable Unruh-DeWitt detectors
N. Pranzini, G. García-Pérez, E. Keski-Vakkuri, S. Maniscalco

27th October 2022 - QFC 2022

Univeristy of Helsinki - QTF Centre of Excellence
InstituteQ - The Finnish Quantum Institute
Università degli studi di Pisa

Table of contents

AIMS:

1. extend the Born rule to non-replicable systems
2. provide an example of this procedure
3. Born rule and the necessity for replicas
4. Non-replicable systems and Repeated Measurements (RM)
5. RM on Unruh-DeWitt detectors
6. Results and conclusions

What is the Born rule?

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\left\{\hat{E}_{m}\right\}$;

What is the Born rule?

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\left\{\hat{E}_{m}\right\}$;

Born rule: the probability finding the outcome m is

$$
p_{m}=\langle\psi| \hat{E}_{m}|\psi\rangle
$$

What is the Born rule?

Given

- a quantum system in the state $|\psi\rangle$;
- a measurement described by a POVM $\left\{\hat{E}_{m}\right\}$;

Born rule: the probability finding the outcome m is

$$
\begin{gathered}
\qquad p_{m}=\langle\psi| \hat{E}_{m}|\psi\rangle \\
\Rightarrow \text { intrinsic probabilistic \& frequentist meaning }
\end{gathered}
$$

What is domain of validity of the Born rule?

What is domain of validity of the Born rule?

Basic assumption: we can replicate without error any number of times \Rightarrow i.i.d.

What is domain of validity of the Born rule?

Basic assumption: we can replicate without error any number of times \Rightarrow i.i.d.
Let us rephrase this procedure in a slightly different way

A different take on the Born rule

A different take on the Born rule

A different take on the Born rule

Identical distribution but with one system (i.i.d.) It can be a non-replicable system

Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

- A system with parts we cannot control
(e.g. a qubit interacting with a large environment)

Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

- A system with parts we cannot control (e.g. a qubit interacting with a large environment)
- An evolving system we can observe only partially (e.g. a quantum universe)

Non-replicable systems

Non-replicable system cannot be copied.
The i.i.d. often fails:

- A system with parts we cannot control (e.g. a qubit interacting with a large environment)
- An evolving system we can observe only partially (e.g. a quantum universe)

> Can we extend the Born rule to these systems?
> \Rightarrow Repeated Measurement (RM) framework

RM scenario

RM scenario

RM scenario

RM scenario

Born case: $P\left(m_{i}\right) \quad \longrightarrow \quad$ RM case: $P\left(m_{i} \mid m_{1}, \ldots, m_{i-1}\right)$
Hard to evaluate!

RM scenario - Weak interaction

$$
\hat{U}_{k}=\hat{U} \otimes \mathbb{I}_{\mathcal{E}}+\epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k)+O\left(\epsilon^{2}\right)
$$

RM scenario - Weak interaction

$$
\hat{U}_{k}=\hat{U} \otimes \mathbb{I}_{\mathcal{E}}+\epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k)+O\left(\epsilon^{2}\right) \Rightarrow\left\{\begin{array}{l}
p_{m}(k)\left[e_{k-1}\right]=p_{m}+\epsilon Q_{m}^{(1)}(k)\left[e_{k-1}\right]+O\left(\epsilon^{2}\right) \\
p_{m}=\langle m| \hat{U}|0\rangle^{2}
\end{array}\right.
$$

RM scenario - Weak interaction

$\hat{U}_{k}=\hat{U} \otimes \mathbb{I}_{\mathcal{E}}+\epsilon \sum_{l} \hat{A}_{l} \otimes \hat{B}_{l}(k)+O\left(\epsilon^{2}\right) \Rightarrow\left\{\begin{array}{l}p_{m}(k)\left[e_{k-1}\right]=p_{m}+\epsilon Q_{m}^{(1)}(k)\left[e_{k-1}\right]+O\left(\epsilon^{2}\right) \\ p_{m}=\langle m| \hat{U}|0\rangle^{2}\end{array}\right.$

Effective Born rule from RM - Setup

$$
M_{L}=\left(m_{1}, \ldots, m_{L}\right)
$$

Effective Born rule from RM - Setup

$$
\begin{array}{r}
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \\
P\left(M_{L}\right)=P\left(m_{1}\right) P\left(m_{2}\right) \ldots P\left(m_{L}\right)
\end{array}
$$

Effective Born rule from RM - Setup

$$
\begin{gathered}
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \\
P\left(M_{L}\right)=P\left(m_{1}\right) P\left(m_{2}\right) \ldots P\left(m_{L}\right) \\
\tilde{P}\left(M_{L}\right)=P\left(m_{1}\right) P\left(m_{2}\right) \ldots P\left(m_{L}\right)+\epsilon \Delta P\left(M_{L}\right)
\end{gathered}
$$

Effective Born rule from RM - Setup

$$
\begin{gathered}
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \\
P\left(M_{L}\right)=P\left(m_{1}\right) P\left(m_{2}\right) \ldots P\left(m_{L}\right) \\
\tilde{P}\left(M_{L}\right)=P\left(m_{1}\right) P\left(m_{2}\right) \ldots P\left(m_{L}\right)+\epsilon \Delta P\left(M_{L}\right)
\end{gathered}
$$

Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

- \mathcal{H}_{1} : Born rule holds strictly: $p\left(m_{k}\right)=\left\langle m_{k}\right| \hat{U}|0\rangle^{2}$
- \mathcal{H}_{2} : Born rule holds approximately: $p\left(m_{k} \mid M_{k-1}\right)=p\left(m_{k}\right)+\epsilon \Delta p\left(m_{k} \mid M_{k-1}\right)$

Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

- \mathcal{H}_{1} : Born rule holds strictly: $p\left(m_{k}\right)=\left\langle m_{k}\right| \hat{U}|0\rangle^{2}$
- \mathcal{H}_{2} : Born rule holds approximately: $p\left(m_{k} \mid M_{k-1}\right)=p\left(m_{k}\right)+\epsilon \Delta p\left(m_{k} \mid M_{k-1}\right)$

To select \mathcal{H}_{2} (or vice-versa) it must be

$$
\frac{P\left(\mathcal{H}_{2} \mid M_{L}\right)}{P\left(\mathcal{H}_{1} \mid M_{L}\right)} \gg 1
$$

Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

- \mathcal{H}_{1} : Born rule holds strictly: $p\left(m_{k}\right)=\left\langle m_{k}\right| \hat{U}|0\rangle^{2}$
- \mathcal{H}_{2} : Born rule holds approximately: $p\left(m_{k} \mid M_{k-1}\right)=p\left(m_{k}\right)+\epsilon \Delta p\left(m_{k} \mid M_{k-1}\right)$

To select \mathcal{H}_{2} (or vice-versa) it must be

$$
\frac{P\left(\mathcal{H}_{2} \mid M_{L}\right)}{P\left(\mathcal{H}_{1} \mid M_{L}\right)} \gg 1 \Rightarrow \frac{\Delta P\left(M_{L}\right)}{P\left(M_{L}\right)} \gg \frac{1}{\epsilon}
$$

Effective Born rule from RM - Details in the general case

Alice formulates two hypotheses:

- \mathcal{H}_{1} : Born rule holds strictly: $p\left(m_{k}\right)=\left\langle m_{k}\right| \hat{U}|0\rangle^{2}$
- \mathcal{H}_{2} : Born rule holds approximately: $p\left(m_{k} \mid M_{k-1}\right)=p\left(m_{k}\right)+\epsilon \Delta p\left(m_{k} \mid M_{k-1}\right)$

To select \mathcal{H}_{2} (or vice-versa) it must be

$$
\frac{P\left(\mathcal{H}_{2} \mid M_{L}\right)}{P\left(\mathcal{H}_{1} \mid M_{L}\right)} \gg 1 \Rightarrow \frac{\Delta P\left(M_{L}\right)}{P\left(M_{L}\right)} \gg \frac{1}{\epsilon}
$$

$\Delta P\left(M_{L}\right) \ll P\left(M_{L}\right) \Rightarrow$ Inability to select \Rightarrow FAPP, RM \simeq Born

Unruh-DeWitt detectors

W. G. Unruh (1976) \& B. S. DeWitt (1980)

$$
X(\tau)=(t(\tau), x(\tau)) \text { and } \hat{H}_{D}=\omega|1\rangle\langle 1| \quad \text { initially in }|0\rangle
$$

Unruh-DeWitt detectors

W. G. Unruh (1976) \& B. S. DeWitt (1980)

$\hat{H}_{\phi}=\frac{1}{2} \int \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) d^{4} x$ initially in $\left|0_{M}\right\rangle$

Unruh-DeWitt detectors

W. G. Unruh (1976) \& B. S. DeWitt (1980)

$$
\hat{H}_{\text {int }}(\tau)=\chi(\tau) \hat{m}(\tau) \otimes \hat{\phi}(X(\tau))
$$

Unruh-DeWitt detectors

W. G. Unruh (1976) \& B. S. DeWitt (1980)

$$
\hat{H}_{\text {tot }}(\tau)=\hat{H}_{D}+\hat{H}_{\phi}+\lambda \hat{H}_{\text {int }}(\tau)
$$

Unruh-DeWitt detectors - The switching function

Switching function $\chi(\tau)$ describes interaction times

- must be smooth
- has compact support (at least FAPP)

Unruh-DeWitt detectors - The switching function

Switching function $\chi(\tau)$ describes interaction times

- must be smooth
- has compact support (at least FAPP)

$\hat{H}_{\text {tot }}(\tau)=\hat{H}_{D}+\hat{H}_{\phi}+\lambda \hat{H}_{\text {int }}(\tau) \longrightarrow \hat{H}_{\text {tot }}(\tau)=\hat{H}_{D}+\hat{H}_{\phi}+\lambda \sum_{k=0} \chi_{k}(\tau) \hat{m}(\tau) \otimes \hat{\phi}(X(\tau))$

RM on UDW detectors

RM on UDW detectors

J. Polo-Gómez, Et. Al., Phys. Rev. D 105 (2022)

$$
\hat{M}_{0}=|0\rangle\langle 0|, \quad \hat{M}_{1}=|1\rangle\langle 1|
$$

RM on UDW detectors

RM on UDW detectors

RM on UDW detectors

$$
\Rightarrow M_{L}=\left(m_{1}, \ldots, m_{L}\right) \mapsto B_{L}=\left(b_{1}, \ldots, b_{L}\right)
$$

We need $P\left(b_{L+1}=1 \mid B_{L}\right)$ and $P\left(b_{L+1}=0 \mid B_{L}\right)$

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

We need 3 necessary and 2 auxiliary assumptions... ...amongst the others

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

We need 3 necessary and 2 auxiliary assumptions... ...amongst the others on trajectory,

A0: $\mathcal{W}\left(\tau^{\prime}, \tau\right)=\mathcal{W}\left(\tau^{\prime}-\tau\right)$, ok for Inertial and Accelerated

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

We need 3 necessary and 2 auxiliary assumptions... ...amongst the others on trajectory, and switching

A0: $\mathcal{W}\left(\tau^{\prime}, \tau\right)=\mathcal{W}\left(\tau^{\prime}-\tau\right)$, ok for Inertial and Accelerated B2: $T_{\text {off }} \gg T_{\text {on }}$

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

We need 3 necessary and 2 auxiliary assumptions... ...amongst the others on trajectory,

A0: $\mathcal{W}\left(\tau^{\prime}, \tau\right)=\mathcal{W}\left(\tau^{\prime}-\tau\right)$, ok for Inertial and Accelerated
B2: $T_{\text {off }} \gg T_{\text {on }}$
To obtain result, we need a specific switching

Gaussian switching and its consequences

- $\chi(\tau)$ is collection of well spaces gaussian peaks as switching function

Gaussian switching and its consequences

> L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of well spaces gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_{l} and q_{A}

Gaussian switching and its consequences

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of well spaces gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_{l} and q_{A}

Hence:

- Born case: $P_{q_{l}}\left(B_{L}\right)=q_{l}^{n}\left(1-q_{l}\right)^{(L-n)}$

Gaussian switching and its consequences

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of well spaces gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_{l} and q_{A}

Hence:

- Born case: $P_{q_{l}}\left(B_{L}\right)=q_{l}^{n}\left(1-q_{l}\right)^{(L-n)}$
- RM case: $\quad \tilde{P}_{q_{l}}\left(B_{L}\right)=q_{l}^{n}\left(1-q_{l}\right)^{(L-n)}+$ corrections

Gaussian switching and its consequences

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

- $\chi(\tau)$ is collection of well spaces gaussian peaks as switching function
- Born probabilities for a single gaussian peak are known: q_{I} and q_{A}

Hence:

- Born case: $P_{q_{\iota}}\left(B_{L}\right)=q_{\iota}^{n}\left(1-q_{\iota}\right)^{(L-n)}$
- RM case: $\quad \tilde{P}_{q_{l}}\left(B_{L}\right)=q_{l}^{n}\left(1-q_{l}\right)^{(L-n)}+$ corrections

> In the Born case, what results should we expect?

Interlude - Standard results from UDW theory

$$
B_{L}=\left(b_{1}, \ldots, b_{L}\right) \Rightarrow \mathcal{R}^{\text {sampled }}=\frac{n}{L-n}
$$

Interlude - Standard results from UDW theory

$$
B_{L}=\left(b_{1}, \ldots, b_{L}\right) \Rightarrow \mathcal{R}^{\text {sampled }}=\frac{n}{L-n}
$$

For q_{1} and q_{A} :

$$
\begin{aligned}
\mathcal{R}_{I}^{\text {sampled }} \longrightarrow \frac{p_{I}}{1-p_{I}} & =\mathcal{R}_{l}^{\text {theo }} \\
\mathcal{R}_{A}^{\text {sampled }} \longrightarrow \frac{p_{A}}{1-p_{A}} & =\mathcal{R}_{A}^{\text {theo }}
\end{aligned}
$$

Interlude - Standard results from UDW theory

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

$$
B_{L}=\left(b_{1}, \ldots, b_{L}\right) \Rightarrow \mathcal{R}^{\text {sampled }}=\frac{n}{L-n}
$$

For q_{1} and q_{A} :

$$
\begin{aligned}
& \mathcal{R}_{l}^{\text {sampled }} \longrightarrow \frac{p_{I}}{1-p_{I}}=\mathcal{R}_{I}^{\text {theo }} \simeq \mathcal{R}_{I}^{\infty}=0 \\
& \mathcal{R}_{A}^{\text {sampled }} \longrightarrow \frac{p_{A}}{1-p_{A}}=\mathcal{R}_{A}^{\text {theo }} \simeq \mathcal{R}_{A}^{\infty}=\exp \left(-\omega / T_{U}\right)
\end{aligned}
$$

Interlude - Standard results from UDW theory

L. Sriramkumar and T. Padmanabhan, Class Quantum Gravity 13, (1996)

$$
B_{L}=\left(b_{1}, \ldots, b_{L}\right) \Rightarrow \mathcal{R}^{\text {sampled }}=\frac{n}{L-n}
$$

For q_{1} and q_{A} :

$$
\begin{aligned}
& \mathcal{R}_{l}^{\text {sampled }} \longrightarrow \frac{p_{I}}{1-p_{I}}=\mathcal{R}_{l}^{\text {theo }} \simeq \mathcal{R}_{l}^{\infty}=0 \\
& \mathcal{R}_{A}^{\text {sampled }} \longrightarrow \frac{p_{A}}{1-p_{A}}=\mathcal{R}_{A}^{\text {theo }} \simeq \mathcal{R}_{A}^{\infty}=\exp \left(-\omega / T_{U}\right)
\end{aligned}
$$

$\mathcal{R}^{\text {sampled }} \longmapsto \mathcal{R}_{l / A}^{\infty} \quad$ encoding the interesting results

Results - RM on inertial UDW

$$
X(\tau)=\left(\tau, x_{0}\right)
$$

Results - RM on inertial UDW

$$
X(\tau)=\left(\tau, x_{0}\right)
$$

Results - RM on accelerated UDW

$$
X(\tau)=\left(\cosh (\tau / \alpha) / \alpha, x_{0}, y_{0}, \sinh (\tau / \alpha) \alpha\right)
$$

Results - RM on accelerated UDW

$$
X(\tau)=\left(\cosh (\tau / \alpha) / \alpha, x_{0}, y_{0}, \sinh (\tau / \alpha) \alpha\right)
$$

FAPP, RM gives same results as Born \Rightarrow Unruh effect seen via RM

Summary

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems

Summary

arxiv.org/2210.13347

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- ... and shown that the Born rule can hold FAPP

Summary

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- ... and shown that the Born rule can hold FAPP
- gave an application to Unruh-DeWitt detectors...
- ...showing that the Unruh effect can be tested via RM

Summary

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- ... and shown that the Born rule can hold FAPP
- gave an application to Unruh-DeWitt detectors...
- ...showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT boundary

Summary

arxiv.org/2210.13347

In this work we:

- discussed limits of the Born rule
- defined non-replicable systems
- provided a way to test non-replicable systems via Repeated Measurements...
- ... and shown that the Born rule can hold FAPP
- gave an application to Unruh-DeWitt detectors...
- ...showing that the Unruh effect can be tested via RM

Prospects: backreaction, QC experiment, measurement as quench on CFT boundary

History-dependent transition probabilities

$$
P\left(b_{L+1}=1 \mid B_{L}\right)=\frac{\lambda^{2}}{\prod \mathcal{P}_{j}} \iint_{N_{1}, \ldots, N_{n}, L+1} \mathcal{W}_{2(n+1)}\left(X_{L+1}, X_{L+1}^{\prime}, \ldots, X_{N_{1}}, X_{N_{1}}^{\prime}\right)
$$

We need 3 necessary and 2 auxiliary assumptions...
...amongst the others
A0: $\mathcal{W}\left(\tau^{\prime}, \tau\right)=\mathcal{W}\left(\tau^{\prime}-\tau\right)$
A1: the 2-point Wightman function is definite negative, monotonously increasing and such that $\lim _{s \rightarrow 0} \mathcal{W}(s)=-\infty$.
A2: $\quad T_{\text {on }} \omega \leq \pi / 2$.
B1: $s \gg s^{\prime} \Rightarrow \mathcal{W}(s) \gg \mathcal{W}\left(s^{\prime}\right)$.
B2: $\quad T_{\text {off }} \gg T_{\text {on }}$, meaning that the detector rests long times between each measurement.

Necessity of RM vs. Born

	i.i.d. outcomes	non i.i.d. outcomes
\mathcal{S} replicable		
\mathcal{S} non-replicable		

Necessity of RM vs. Born

	i.i.d. outcomes	non i.i.d. outcomes
\mathcal{S} replicable	$\left\{m_{i}\right\}$	
\mathcal{S} non-replicable		

Necessity of RM vs. Born

	i.i.d. outcomes	non i.i.d. outcomes
\mathcal{S} replicable	$\left\{m_{i}\right\}$	
\mathcal{S} non-replicable	$\left\{m_{i}\right\}$	

Necessity of RM vs. Born

	i.i.d. outcomes	non i.i.d. outcomes
\mathcal{S} replicable	$\left\{m_{i}\right\}$	$\left\{\left(m_{1}, \ldots, m_{L}\right)\right\}$
\mathcal{S} non-replicable	$\left\{m_{i}\right\}$	

Necessity of RM vs. Born

	i.i.d. outcomes	non i.i.d. outcomes
\mathcal{S} replicable	$\left\{m_{i}\right\}$	$\left\{\left(m_{1}, \ldots, m_{L}\right)\right\}$
\mathcal{S} non-replicable	$\left\{m_{i}\right\}$	Born, we need RM

Field's state update

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=|0\rangle \otimes\left|0_{M}\right\rangle \\
& \xrightarrow{\text { int }}|0\rangle \otimes\left|0_{M}\right\rangle+\lambda|1\rangle \otimes\left|\phi_{1}\right\rangle+O\left(\lambda^{2}\right) \\
& \xrightarrow{\mathrm{M}}\left\{\begin{array}{l}
|0\rangle \otimes\left|0_{M}\right\rangle \\
|1\rangle \otimes\left|\phi_{1}\right\rangle
\end{array}\right. \\
& \xrightarrow{R}\left\{\begin{array}{l}
|0\rangle \otimes\left|0_{M}\right\rangle \\
|0\rangle \otimes\left|\phi_{1}\right\rangle
\end{array}\right.
\end{aligned}
$$

- The field state is contextual to the observer
- The collapse in the future lightcone $\mathcal{D}^{+}\left(M_{1}\right)$
- The detector never leaves $\mathcal{D}^{+}\left(M_{1}\right)$
- We can take the collapsed state

Effective Born rule from RM - Details for bit strings

Suppose $\left\{m_{0}, m_{1}\right\}=\{0,1\}$ with $p_{1}=q$ (and $\left.p_{0}=1-q\right)$, then

Effective Born rule from RM - Details for bit strings

Suppose $\left\{m_{0}, m_{1}\right\}=\{0,1\}$ with $p_{1}=q$ (and $\left.p_{0}=1-q\right)$, then

$$
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \mapsto\left(L ; N_{1}, \ldots, N_{n}\right)
$$

Effective Born rule from RM - Details for bit strings

Suppose $\left\{m_{0}, m_{1}\right\}=\{0,1\}$ with $p_{1}=q$ (and $\left.p_{0}=1-q\right)$, then

$$
\begin{gathered}
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \mapsto\left(L ; N_{1}, \ldots, N_{n}\right) \\
P_{q}\left(M_{L}\right)=\prod_{\substack{j=1, \ldots, L \\
j \neq N_{1}, \ldots, N_{n}}} P\left(0 \mid M_{j}\right) \prod_{j=N_{1}, \ldots, N_{n}} P\left(1 \mid M_{j}\right)=q^{n}(1-q)^{L-n} .
\end{gathered}
$$

Effective Born rule from RM - Details for bit strings

Suppose $\left\{m_{0}, m_{1}\right\}=\{0,1\}$ with $p_{1}=q$ (and $\left.p_{0}=1-q\right)$, then

$$
\begin{gathered}
M_{L}=\left(m_{1}, \ldots, m_{L}\right) \mapsto\left(L ; N_{1}, \ldots, N_{n}\right) \\
P_{q}\left(M_{L}\right)=\prod_{\substack{j=1, \ldots, L \\
j \neq N_{1}, \ldots, N_{n}}} P\left(0 \mid M_{j}\right) \prod_{j=N_{1}, \ldots, N_{n}} P\left(1 \mid M_{j}\right)=q^{n}(1-q)^{L-n} . \\
\tilde{P}_{q}\left(M_{L}\right)=P_{q}\left(M_{L}\right)+\epsilon P_{q}\left(M_{L}\right)\left(\sum_{j=N_{1}, \ldots, N_{n}} \frac{Q_{b_{j}}^{(1)}(j)\left[j_{j}\right]}{q}+\sum_{\substack{j=1, \ldots, L \\
j \neq N_{1}, \ldots, N_{n}}} \frac{Q_{b_{j}}^{(1)}(j)\left[j_{j}\right]}{1-q}\right),
\end{gathered}
$$

References i

demo

