
Nuclear Physics Mid Term Plan in Italy

LNS – Session Catania, April 4th-5th 2022

Laser-driven applications

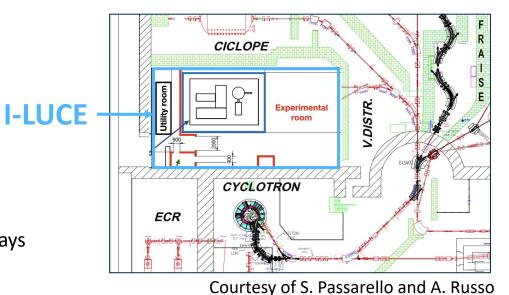
G A Pablo Cirrone and Giuliana Milluzzo Laboratori Nazionali del Sud, INFN, Catania, Italy

Laser beam-lines and secondary laser-driven beams @ LNS

First phase (BCT project)

- Two laser beamlines: Low Energy (LE) and High Energy (HE)
 - Proton beams: max energy 5 MeV; Fluence: 10⁹ cm⁻² @ 1 MeV
 - Electron beams up to 200 MeV
 - X-Rays, neutrons

Second phase

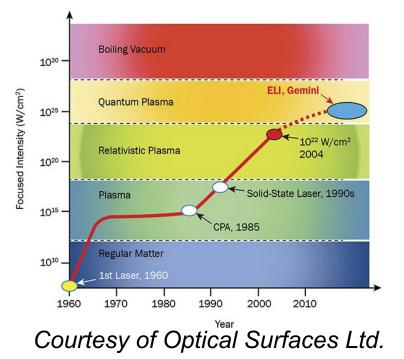

- High energy laser beamline will reach a laser power of 250 TW
 - Proton beams: max energy 30 MeV; Fluence: 10⁹ @ 15 MeV
 - Electron beams up to 500 MeV and corresponding bremsstrahlung x-Rays
 - X rays and neutrons

Low-Energy (LE) laser beamline

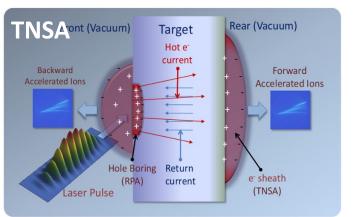
Laser Power	~ 1 TW
Energy per pulse	>25 mJ
Pulse duration	≤ 30 fs
Contrast ratio ns	< 1*10 ⁻⁸
Contrast ratio @5 ps	> 10 ⁶
Contrast ratio @100 ps (ASE)	> 10 ¹⁰
Repetition rate	10 Hz

High-Energy (HE) laser beamline

45-50 TW
≥1J
≤ 25 fs
< 1*10 ⁻⁸
> 10 ⁶
> 10 ¹⁰
5 Hz



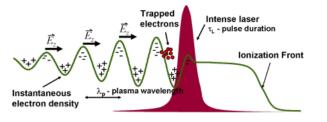
uclear Physics


2

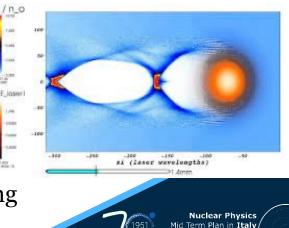
Laser-matter interaction mechanisms

Laser classes	нigh energy CPA systems	Ultrashort CPA systems
Technology	Nd: Glass	Ti:Sa
Energy	100's J	10's J
Pulse duration	>100's fs	10s fs
Intensity [W/cm2]	10 ²¹ Wcm2	10 ²¹ Wcm2
Rep rate	1 shot/hours	1-10 Hz

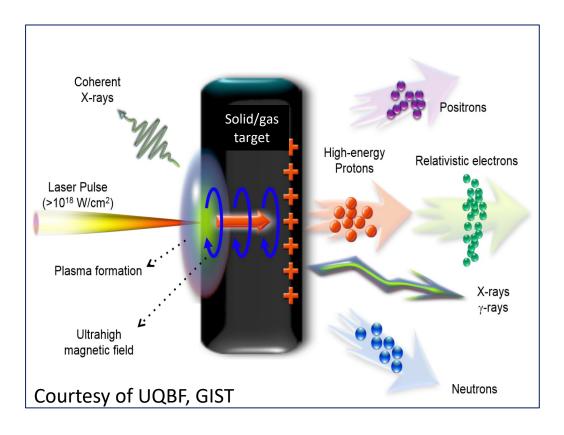
Laser-solid target interaction for protons, ions acceleration



- Multi species production: g, e-, p, ions
- E_{max} ~ 10 TV/m
- Short distance (~µm)


Proton characteristics

High energy: up to ~ **98 MeV Articolo** Pulse duration \approx 10s fs - 100s ps ppb \approx 10⁸-10¹¹ Broad energy spectra (100%) Wide angular divergence (\approx 10° -20°)


Laser Wake Field Acceleration (LWFA) for electrons

7.8 GeV have been reached at th BELLA (Berkeley Lab) in 2019 using two lasers

Contributions outline

I Protons and electrons acceleration

- M. Borghesi, S.Kar, D. Margarone Centre for Plasma Physics, Queen's University Belfast (UK)
- L. Labate, L. Gizzi CNR-INO, Pisa (I)

II Positron, photon and neutron beams

• G. Sarri

Centre for Plasma Physics, Queen's University Belfast (UK)

• S. Kar

Centre for Plasma Physics, Queen's University Belfast (UK)

III Fusion, fission, nuclear reaction schemes for applications

• D. Margarone

Centre for Plasma Physics, Queen's University Belfast

- D. Batani, CELIA Laboratory, University of Bordeaux, France
- L. Volpe CLPU, Salamanca (Spain)
- P. Thirolf LMU Univ, Munchen (Germany)
- Kierzkowska-Pawlak Lodz University of Technology, Lodz (PL)

I Proton and electron acceleration: The BCT related activities

Contributions

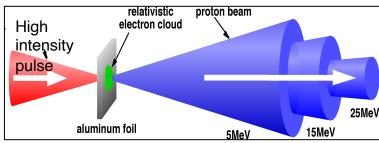
- M. Borghesi, S.Kar, D. Margarone Centre for Plasma Physics, Queen's University Belfast
- L. Labate, L. Gizzi CNR-INO

LNS contributions

G.A.P. Cirrone, G. Cuttone, R. Catalano, G. Milluzzo, G. Petringa, S. Tudisco, C. Guarrera, B. Cagni, A. Kurmanova

Ions laser-acceleration - state of the art

M. Borghesi, S.Kar, D. Margarone Centre for Plasma Physics, Queen's University Belfast



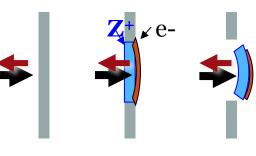
5

Proton acceleration : Target Normal Sheath Acceleration (TNSA)

Thin layers of Ponderomotive Target Normal electron contaminants Sheath Acceleration acceleration Preplasma Plasma Electron sh expansion μm

Divergent beam, broadband, exponential spectrum

	• Surface process,			
	• Mostly acting on			
heath	proton			
V/m	contaminants			
	Scaling: $E_{p'}$	$\sim I^{0.5-1}$		
	Indicative values:			
	Laser	Cut-off		
	power	energie		
		S		
	1 PW	40-70 MeV		

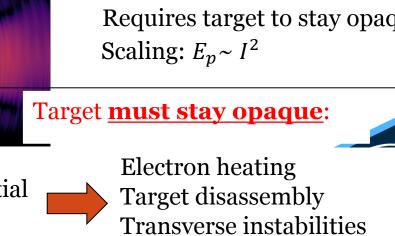

250 TW

50 TW

20-30

3-5 MeV

MeV

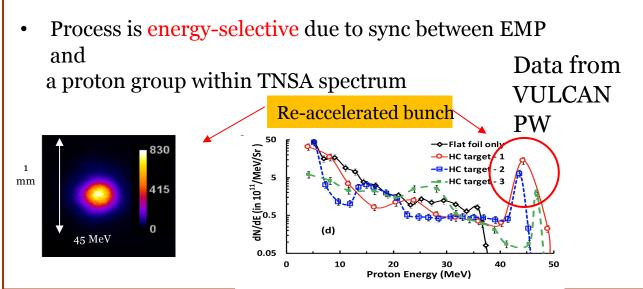

- Accelerating field sustained by light pressure
- Acts on target bulk

Carbon acceleration: Radiation Pressure Acceleration (RPA)

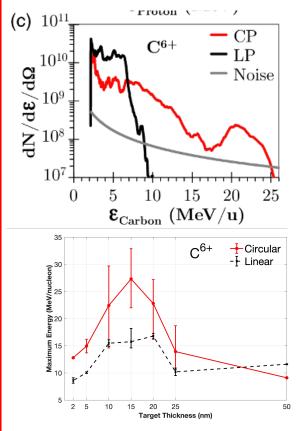
Requires ultrathin foils and high-contrast pulses


Requires target to stay opaque

Potential issues



Ions laser-acceleration - recent achievements

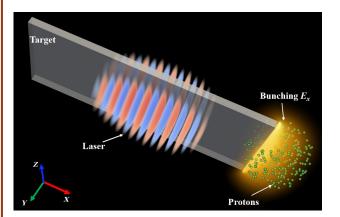

Production of collimated, narrow-band beamlets of high energy protons

- S. Kar *et al*, Nature Comm. (2016) H. Ahmed *et al*, Sci. Report (2021)
- Use of **miniature accelerating structures**
- **EM pulse** travelling along coil affects TNSA protons through radial confinement and reacceleration

Production of *proton-free* high-energy carbon beams from ultrathin foils

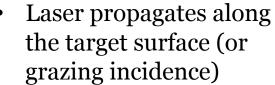
Efficient RPA carbon acceleration from 10 nm foils using Circularly Polarized (CP) pulses

Data from GEMINI (350TW)

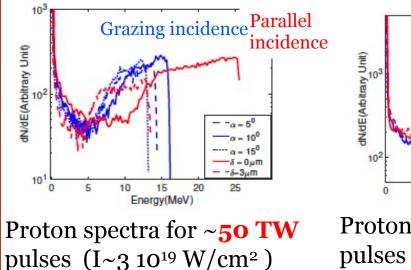

Optimum target thickness for Carbon acceleration

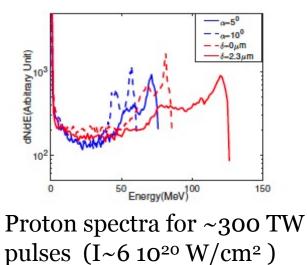
Proton-free carbon beams under optimized conditions

C. Scullion et al, PRL, **119**, 054801 (2018) A. McIlvenny et al, PRL, **127**, 194801 (2021) 6

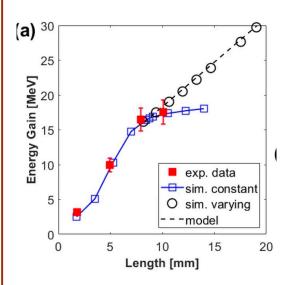

Ions laser-acceleration - proposed activities @ LNS

New acceleration processes through high-field plasmonics



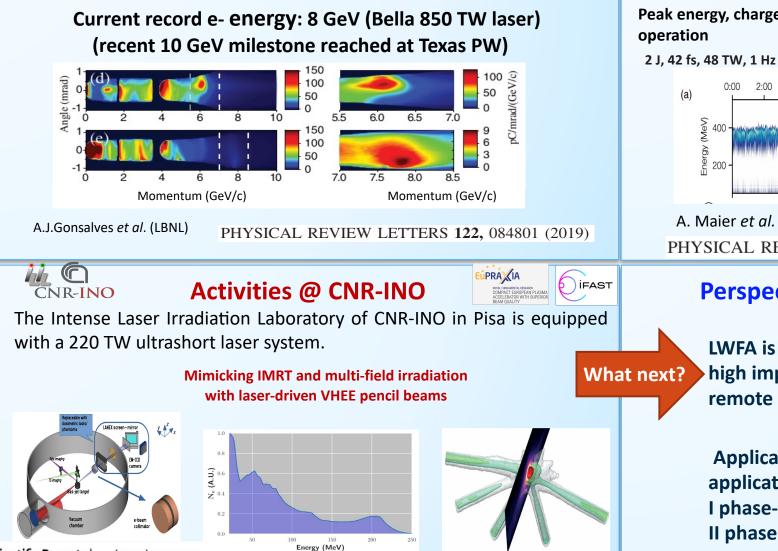

dN/dE(Arbitrary Unit)

10


- Drives a surface plasma wave, accelerating electrons
- Strong sheath field formed at target edge
- Proton energies >> TNSA

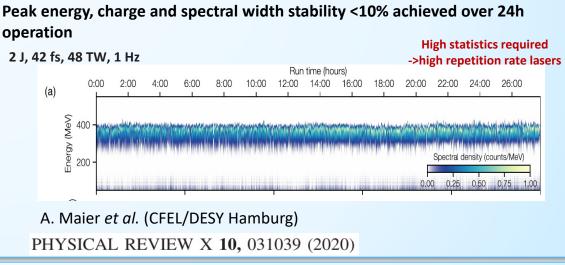
Provision of high flux, multi-MeV ions

Tuning coil to operate on 3-5 MeV protons, can deliver multi-Gy (up to 10s of Gy) proton fluxes at energies of 5-10 MeV protons (Phase 1), >30 MeV in Phase 2


To extend acceleration length at high energies and overcome proton-EMP phasing, we will test variable pitch coils, which will lead to higher energy gains

in Phase 2

INFN


State of the art of Laser WakeField Acceleration (LWFA) accelerators & perspectives @LNS

L. Gizzi, L. Labate CNR Istituto Nazionale di Ottica (CNR-INO)

Scientific Reports

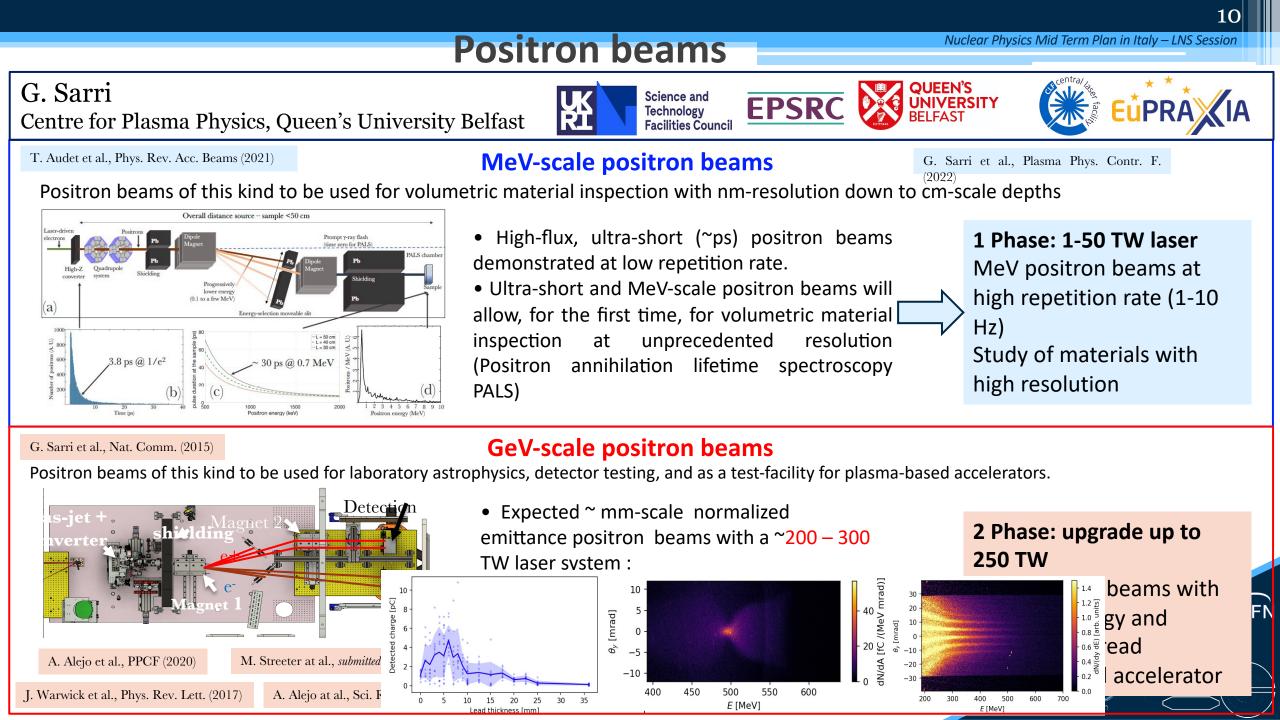
(2020) 10:17307

CNR-INO

Perspectives for electron acceleration @LNS

LWFA is reaching high TRL for societal applications of high impact (biomedical/radiotherapy and diagnostics, remote inspection, secondary nuclear sources.

I-LUCE related activities

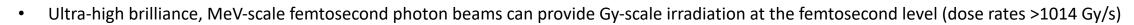

Applications with the VHEE in radiobiology and medical applications for flash radiotherapy studies I phase-> preliminary studies II phase -> VHEE flash radiotherapy preclinical studies

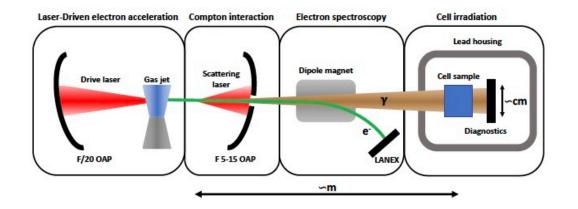
II Positron, photon and neutron beams

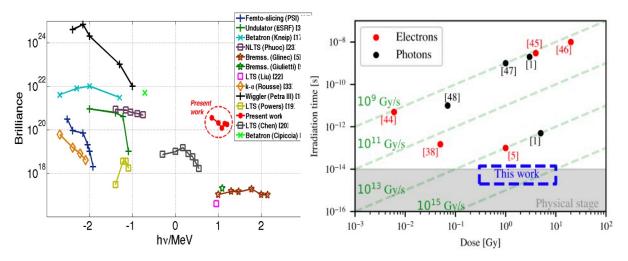
Contributions

- **G. Sarri** Centre for Plasma Physics, Queen's University Belfast
- S. Kar

Centre for Plasma Physics, Queen's University Belfast




Photon beams and applications- Inverse compton

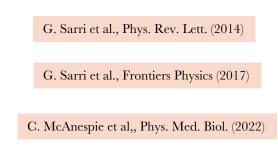

G. Sarri

Centre for Plasma Physics, Queen's University Belfast

Photon beam characteristics

EPSR

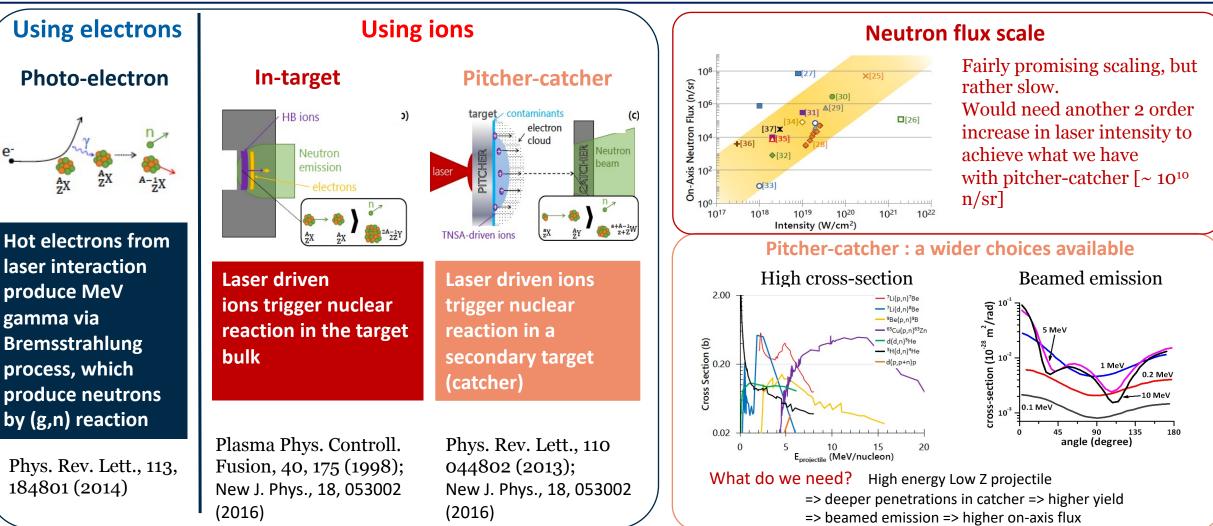
 Demonstrated peak brilliance > 10²⁰ s⁻¹ mm⁻² mrad⁻² 0.1 % BW


QUEEN'S

UNIVERSITY

- Highest brilliance ever achieved in the multi-MeV range
- Photon beam duration ~ 10 20 fs, allowing for time-resolved imaging and scanning
- Interest from industry and for bio-medical applications

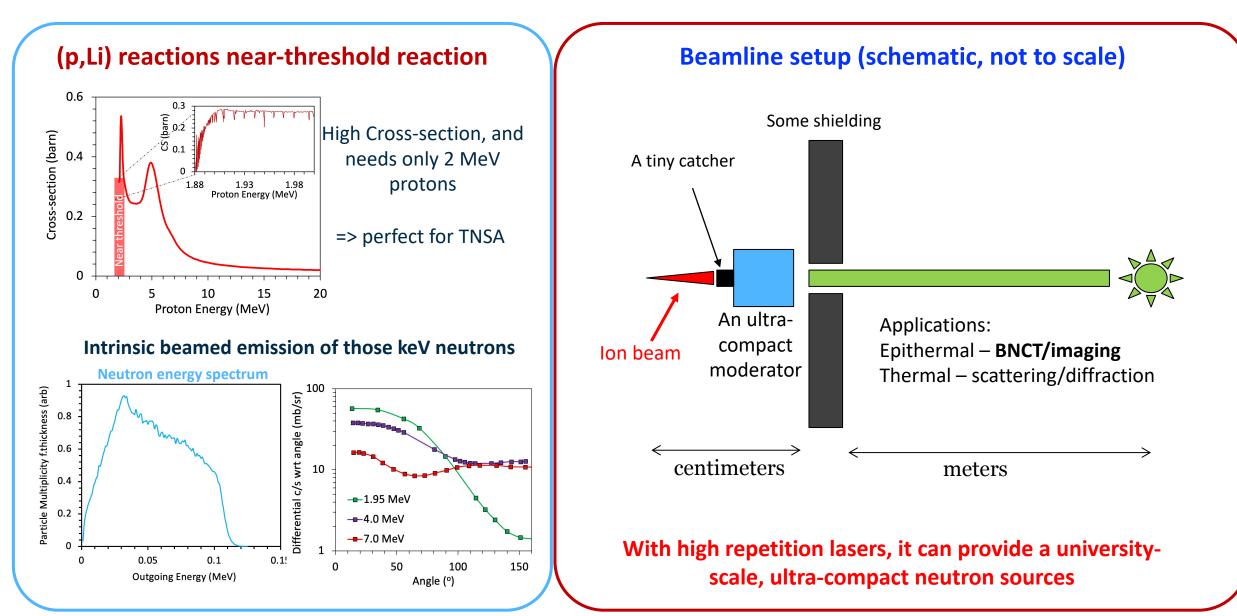
Bio-medical applications


- Numerical work demonstrates up to 2 – 3 Gy per irradiation on a timescale of 10 – 30 fs
- Plans to reach FLASH regime (> 10 Gy) to be tested at CLF in June 2022

Laser-driven neutrons: current state-of-art

S.Kar

Centre for Plasma Physics, Queen's University Belfast

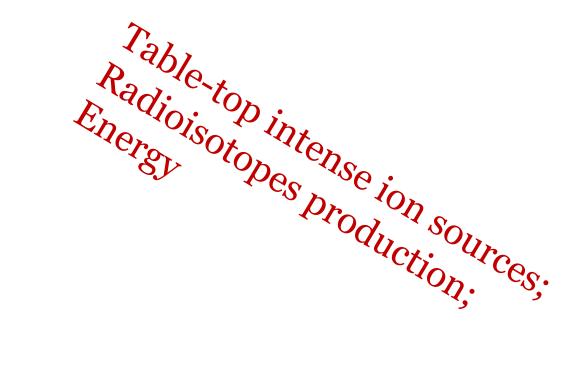


Efficient moderations to epithermal, (Appl. Phys. Lett. 111, 044101, 2017) thermal : (Appl. Phys. Lett. 116, 174102, 2020) and cold regimes : (Sci. Report, 10, 20157, 2020)

QUEEN'S UNIVERSITY

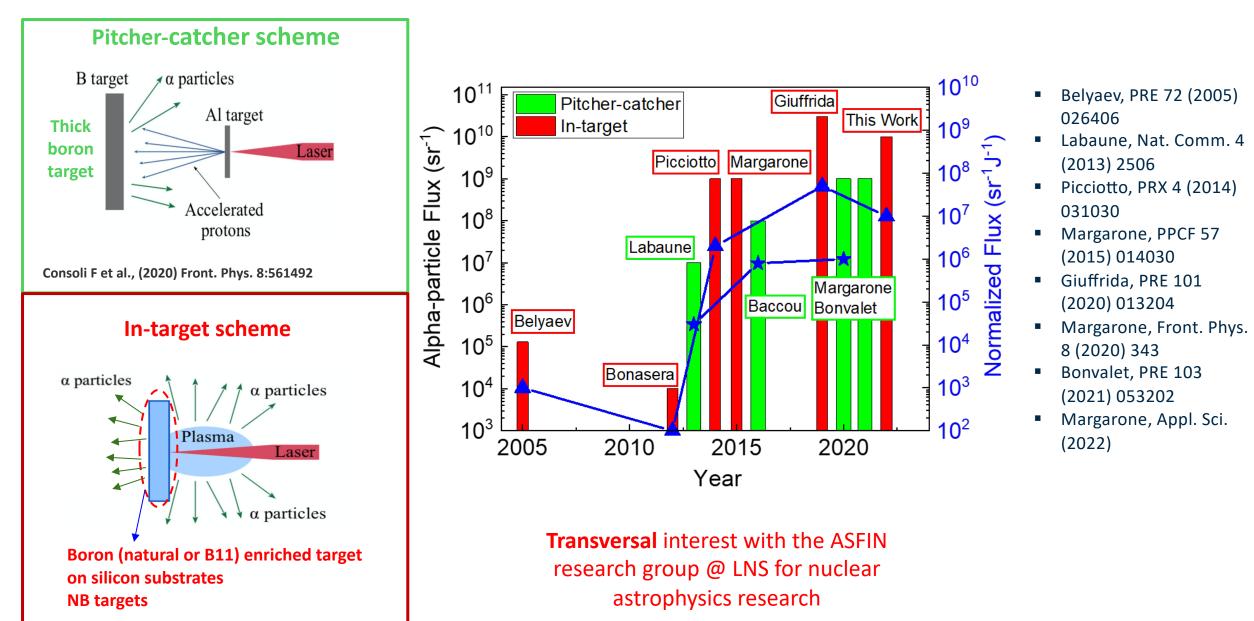
ELFAST

Efficient neutron generation using moderate power lasers@ LNS


III Fusion, fission, nuclear reaction schemes for applications

Contributions

D Batani, Philippe Nicolai, Didier Raffestin
CELIA Laboratory, University of Bordeaux, France
P.E. Masson-Laborde (CEA)
D. Margarone
Centre for Plasma Physics, Queen's University Belfast
L. Giuffrida
Eli-Beamlines (CZ)
A. Picciotto
Fondazione Bruno Kessler (FBK), Italy
P. Thirolf (LMU)
L Roso (CPLU)
L Volpe (CPLU)

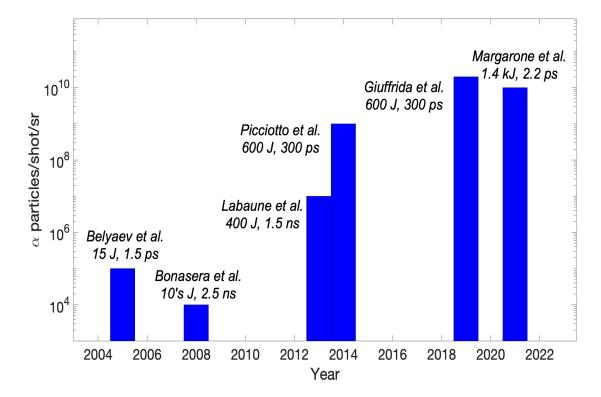

LNS contributions

P. Cirrone, G. Milluzzo, G. Petringa, S. Tudisco, L. Guardo, S. Romano

Nuclear Physics Mid Term Plan in Italy – LNS Session p-B Nuclear Fusion in laser-plasma for energy and health D Batani, Philippe Nicolai, Didier Raffestin. CELIA Laboratory, University of Bordeaux, université L. Giuffrida Eli-Beamlines (CZ) RORDEAUX A. Picciotto Fondazione Bruno Kessler (FBK), Italy QUEEN'S UNIVERSITY FONDAZIONE D. Margarone Centre for Plasma Physics, Queen's University Belfast W. Buck (1983) 10³ $p + {}^{11}B \rightarrow 3\alpha + 8.7 \text{ MeV}$ H.W. Becker (1987) R.E. Segel (1965) Alpha [2.46 MeV] Alpha (3.76 Me) Cross Section (mb) 10² Oliphant & Rutherford (1933) Proton 10¹ 10⁰ resonance: 675 keV (p) Alpha (2.46 Me α energy: 2-6 MeV 10⁻¹ $p + 11B \rightarrow \alpha_0 + {}^8Be + 8.59 MeV \rightarrow \alpha_0 + \alpha_{01} + \alpha_{02}$ 10 0.1 Centre of Mass Energy (MeV) $p + 11B \rightarrow \alpha_1 + {}^8Be * + 5.65 MeV \rightarrow \alpha_1 + \alpha_{11} + \alpha_{12}$ ✓ Low-energy nuclear resonances: **675 keV** (main); **160 keV** (secondary) INFŃ $p + 11B \rightarrow 12C * \rightarrow 3\alpha + 8.68 MeV$ ✓ Ultraclean: **no neutron** production Efficient particle production: **3 alpha**particles

Laser-induced p-¹¹B fusion reaction- PB experimental progress

Status of the art and recent achievements in alpha production


i)

Cyclotron ARRONAX for radioisotopes

10 μ A of α -particles $\approx 10^{14} \alpha$ /s (for instance ARRONAX produces 2×375 μ A protons but only 70 μ A of a-particles)

α -yield from laser experiments

Laser experiments show a maximum of 10¹¹ a/shot. In order to be competitive, we need:

- use a new generation of 100 Hz laser systems
- ii) increase the α -yield of at least 1 order of magnitude

Perspectives to improve alpha particle yield

Table-top multi-MeV **a**-accelerator @ kHz

PERLA-B laser system

- ✓ central wavelength: 1.03
 µm
- ✓ pulse energy: 20 mJ
- ✓ pulse length: ~1 ps
- ✓ rep. rate: **1** kHz
- ✓ Beam quality (M²): <1.15

Target craters

- ✓ Intensity: ~2x10¹⁶ W/cm²
 ✓ Peak Power: 10 GW (only!)
- Rep. rate: 1, 10, 100, 1000 Hz

!!!Preliminary!!!

a-particle flux: ~10³/sr/shot (3-7 MeV)
 ~5x10⁶/sr/s (@kHz) using 10 GW laser

LaserLab Europe beamtime @**HiLASE**

I-LUCE laser @ LNS

Nuclear Physics N

I phase

LE Beamline: 1 TW, 25 mJ, 25 fs, **10 Hz** HE Beamline: 45-50 TW, 1.2 J, 25 fs, **5 Hz II phase** 250-300 TW, **1 Hz**

- The available high repetition rate (10 Hz) will allow exploring the parameters space and optimizing target and laser parameters, which is not possible with high-energy PW laser system which provides only a few shots per day.
- The high power will allow to accelerate protons up to the energy of interest and improve the alpha particle yield
- Possibility to investigate the p-11B with high rep-rate femtosecond laser at different laser powers
- New target structure enriched in hydrogen and boron and new diagnostics approaches

Submitted PRIN 2022 Next Project proposed in COM 5 Discussions on going INFN-E

n in Italy – LNS Session

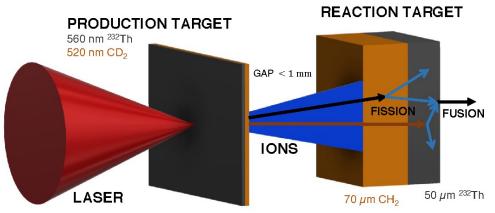
université

19

Perspectives for high power laser applications in Nuclear Physics

P.G. Thirolf, LMU Munich

Basic idea: Exploit the unique properties of dense laser-driven ion beams for nuclear astrophysics

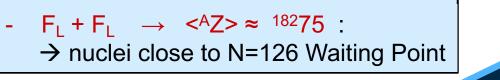

- \rightarrow Complement rather than compete with conventional accelerators
- \rightarrow Focus on unique properties of laser-driven ion bunches
- \rightarrow In particular: uniquely high density of ion bunches
- \rightarrow Exploit this property to establish novel nuclear reaction scheme to produce extremely neutron rich isotopes
- → Isotopic region in vicinity of r-process nuclei near Waiting Point at N=126 comes into reach
- → 'Fission-Fusion' scheme requires: laser-driven acceleration of (fissile) heavy ions to beyond fission barrier energies
 - \rightarrow demonstration of laser-accelerated ion induced nuclear fission
 - \rightarrow optimized (rep-rated) targetry for control of acceleration mechanism and optimum yield
 - \rightarrow separation and spectroscopic identification of fission fragments and potential fusion products

→ High ion density may also result in new collective effects modifying the stopping behavior in solid media

51 Mid Term Plan in Italy

Fission-fusion nuclear reaction scheme

- **2-stage process, requiring 2 closely spaced targets:**
- accelerate fissile ion species (e.g. ²³²Th from 'production target') to beyond its fission barrier energy (ca. 7 MeV/u) impinge onto fissile fission in both beam-like second target species ('reaction target') induce and target-like nuclei
- 2. high density enables re-fusion of, e.g., 2 light (neutron-rich) fragments fusion products will be extremely neutron rich

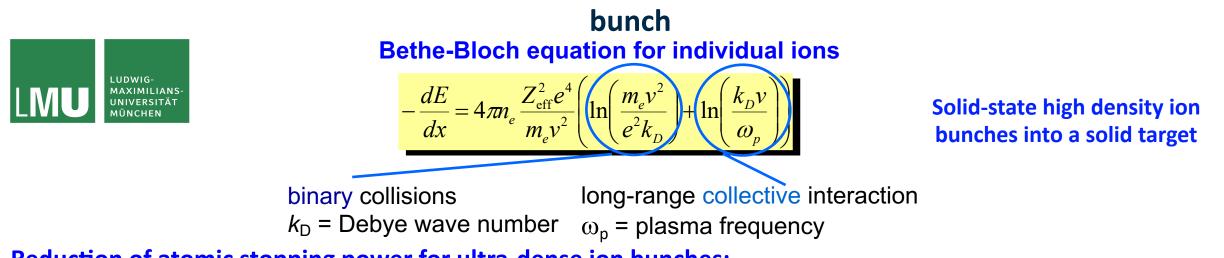


ON TARGET	1. Fission stage: Beam: (~ 7 MeV/u): d, C, 232Th target:p, C, 232Th
	²³² Th + p, C \rightarrow F _L + F _H : beam-like fission fragments
FUSION	d, C + 232 Th \rightarrow F _L + F _H : target-like fission fragments
	light an either in the should be to mate to the sufficient field of the

light species in sandwich-targets to optimize fission yield

2. Fusion stage: light fission fragments of beam + light fission fragments of target

D. Habs, PT et al., Appl. Phys. B 103, 471 (2011)



LUDWIG-MAXIMILIANS

Nuclear Physics

Potential collective effects on stopping power in solid and fluid media with high-dense ion

Reduction of atomic stopping power for ultra-dense ion bunches:

- plasma wavelength (~ 5 nm) << bunch length (< 1mm):

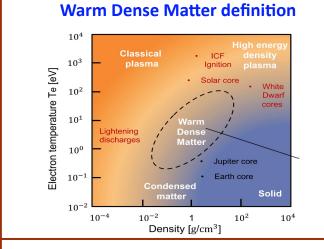
\rightarrow collective effects cancel: only binary collisions contribute

- Dense ion bunch consisting of ~103 atomic layers with a distance between the Th ions of about 3.2 Å as obtained from the bulk density of metallic thorium (11.7 g/cm3).

- "snowplough effect": first layers of ion bunch remove electrons of target foil
- predominant part of bunch: screened from electrons (n_e reduced)

Consequencies of reduction of dE/dx:

- \rightarrow would allow for thicker reaction targets for fusion reactions
- → theoretical calculations & experimental data needed: evaluate (counteracting) impact of plasma instabilities

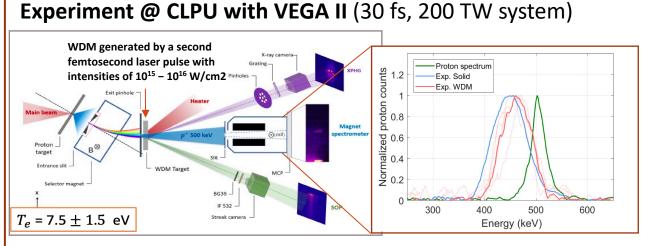


21

Ion Stopping Power in Warm Dense Matter (WDM) driven by laser

L. Volpe Centre de Laseres Pulsados (CLPU)

STATE OF THE ART

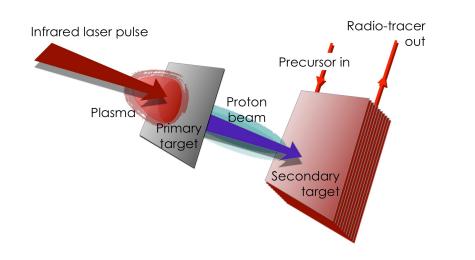


Stopping power models@ low energy 1.2 <u>×1</u>0⁻³ -SRIM power (MeV/(μ g/cm²)) -Bound Casas SC CLPU BPS -RPA -Zimmermar Li-Petrasso T-Matrix -SCAALP TD-DFT Stopping 1 0.4 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0 E_n (MeV)

Theoretical modelling is challenging!

- Free + Bound electron stopping [1,2,3,4]
- Density Functional Theory (DFT) TD OF DFT [5]
- Average atom approach [6,7]

Zimmerman, G. Report no. ucrl-jc-105616. LLNL.(1990)
 Gericke, D. O. et al., Physical Review E, 65 (2003)
 Zylstra A. et al., Physics of Plasmas 26, 122703 (2019)
 Casas D. et al., Phys. Review E 88, (2013)
 Ding Y. et al., Phys. Rev. Lett. 121, 145001 (2018)
 Faussurier G., et al., Physics of Plasmas 17, 052707 (2010)
 Wang P. et al., Phys. Rev. Lett. 114, 2015002 (2015)
 *alko S., PhD Thesis (2020)


S. Malko, W. Cayzac, V. Ospina-Bohorquez et al. in submission to Nature Communications (2021)

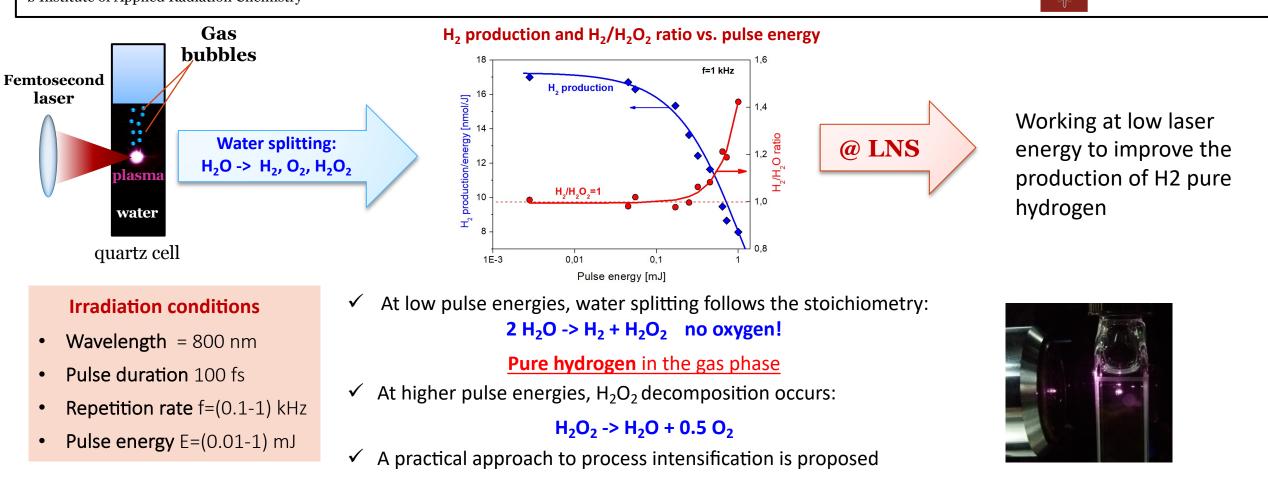
Possibility to measures
 Possibility to measures
 Nower using both protoms the stopping power in WDM is be.

JFN

New scheme for radioisotopes production

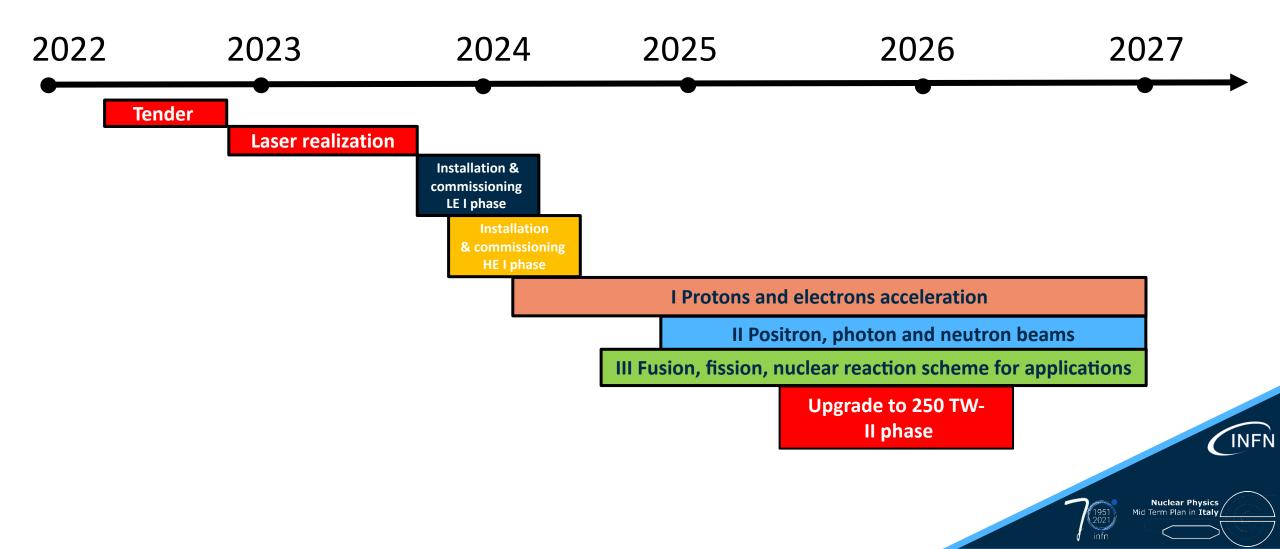
- Intense protons/ions beams 10E11 shot-1 (up to 100 Hz)
- Collective effects reduce the stopping powers increasing the interaction probability
- Ions heavier than protons available
- Nuclear reactions in plasma may:
 - Improve the reaction cross-sections (ex p(11B, a)2a)
 - Completely change the "target" philosophy

- Primary and secondary targets must be very close in space to optimize accelerated protons features. Even that could be the same eventually.
- Liquid water target (able for high rep rate) Substitute normal water by Oxigen- 18 water
 No need of secondary target


Luis Roso Centre de Laseres Pulsados (CLPU)

Discussion for future collaboration on going with the colleagues of LNL-INFN (Gaia Pupillo, Juan Esposito)

Water splitting by focused femtosecond laser pulses * - novel approach to hydrogen production


a Department of Molecular Engineering b Institute of Applied Radiation Chemistry

*) Kierzkowska-Pawlak, H., Tyczkowski, J., Jarota, A., & Abramczyk, H. (2019). Hydrogen production in liquid water by femtosecond laser-induced plasma. Applied Energy, 247, 24-31.

Lodz University of Technology

When? I-LUCE Timescale

