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Part III

gauge anomalies in EFTs



Effective Field Theories
and gauge anomalies  



gauge invariance and anomalies

gauge invariance ↔ quantization of spin 1 particles

DILEMMA

Lorentz-covariant 
description correct number of DOF

2 (massless case)
𝐴#

choosing 𝐴# we should eliminate extra DOFs

unitarity

massive case

ℒ%&''()* = −
1
4𝐹#0𝐹

#0 +
1
2 𝜇

4𝐴#𝐴#

𝜕0𝜕0	𝐴# −𝜕#𝜕0𝐴0 + 𝜇4𝐴# = 0 𝜇4𝜕#𝐴# = 0

the theory is NOT gauge invariant



𝜕0𝜕0	𝐴# + 𝜇4𝐴# = 0
𝜕#𝐴# = 0

Klein-Gordon equations 
plus a constraint

look for plane wave solutions 𝐴# ≈ 𝜖#𝑒;<=

when 𝑘# = (𝜔, 0,0,𝑘) 𝜖#C = (0,1,0,0) 𝜖#4 = (0,0,1,0)

𝜖#D = (
𝑘
𝜇 , 0,0,

𝑘
𝜇)

−𝑘4 + 𝜇4 = 0 𝜖#𝑘# = 0

3 independent
polarizations

exercise: consider

ℒ%&''()* = −
1
2𝜕#𝐴0𝜕

#𝐴0 +
𝑎
2 𝜕#𝐴0𝜕

0𝐴# +
1
2 𝜇

4𝐴#𝐴#

derive the equations of motion and plane wave solutions 𝐴# ≈ 𝜖#𝑒;<=

distinguish two cases: 𝜖#𝑘# = 0 and 𝜖# ∝ 𝑘#	
discuss the mass spectrum and the limit 𝑎 → 1



massless case

ℒ%&''H*'' = −
1
4 𝐹#0𝐹

#0

𝜕0𝜕0	𝐴# − 1− C
I 𝜕#𝜕0𝐴0 = 0 𝜕0𝜕0 𝜕#𝐴# = 0

the theory is GAUGE INVARIANT

not the trivial limit 𝜇 → 0:
- constraint 𝜇4𝜕#𝐴# = 0 is lost
- 2 extra DOF

𝐴#(𝑥) → 𝐴#(𝑥) + 𝜕#𝛼(𝑥)
this redundancy allows 
to eliminate the extra DOF

ℒ%&''H*'' = −
1
4𝐹#0𝐹

#0 −
1
2𝜉 𝜕#𝐴#

4

𝜕#𝐴# = 𝜕#𝐴#
N + 𝜕#𝐴#

O 𝜕#𝐴#
N
|phys> 0

valid also in the interacting theory 𝐴#𝐽# , provided 𝜕#𝐽# = 0

gauge invariance mandatory to define the Hilbert space and a unitary theory



anomalies
classical, gauge invariant, action S

𝑆 = S𝑑U𝑥
�

�

	ℒ(𝜓, 𝜑,𝐴) 𝛿Z𝑆 = 0

𝜕#𝑗\
# = 0 𝑗\

# = −
1
𝑔

𝛿𝑆
𝛿𝐴\#

gauge invariance of effective, action W

𝑒;^[`,&] = S𝒟𝜓𝒟𝜓c	𝑒;	'
�

�
𝛿Z𝑊 ≠ 0
𝛿Z𝑊 = 0

Anomaly

𝛿Z𝑊 efficiently studied through differential operators 𝐿(𝑥)

for instance: 
abelian theory, 
one charged scalar

𝛿Z𝑊 = 0	 ↔ 𝐿\ 𝑥 𝑊 = 0𝛿Z𝑊 = S𝑑U𝑥	𝛼\ 𝑥 𝐿\ 𝑥 𝑊[
�

�

𝜑, 𝐴]



anomaly-free theories

standard criterion
about ℒU : 𝑡𝑟	 𝑡\ 𝑡i, 𝑡j = 0

𝑡\ fermion 
generators 
of gauge group 
in a Weyl basis 

1 well-known for renormalizable theories
valid also for EFT?

2 assume now a classical gauge-invariant theory with 𝑡𝑟	 𝑡\ 𝑡i, 𝑡j ≠ 0
can we give sense to this theory as a QFT? 

ℒ*kl = ℒU +
1
Λn𝑐<

(p)
�

�

𝑂<
(p) +

1
Λ4n𝑐<

(r)
�

�

𝑂<
(r) + ⋯



regularization 𝑊	 →		𝑊t
𝐿(𝑥)𝑊t ≠ 0 is the theory anomalous ?

inspect the entire class 𝑊 =𝑊t + ∫𝑑U
�
� 𝑦	𝑃(𝑦)

𝐿 𝑥 	[𝑊t +S𝑑U
�

�

𝑦	𝑃j 𝑦 ] = 0 𝑊 ≡𝑊t +S𝑑U𝑦	𝑃j(𝑦)
�

�
𝐿(𝑥)𝑊 = 0

an anomaly is a non trivial equivalence class {𝐿 𝑥 𝑊}

if	𝑃j 𝑦 exists such that  

𝑃 𝑦 local polynomial in the bosonic fields. 

𝑃j 𝑦 	defined up to a 
gauge invariant contribution

𝑡𝑟	 𝑡\ 𝑡i, 𝑡j = 0 and EFTs



we can regard the class 𝐿 𝑥 𝑊 as the unknown in this equation
the general solution is known from cohomology



we can regard the class 𝐿 𝑥 𝑊 as the unknown in this equation
the general solution is known from cohomology

by quantizing 𝜑, 𝐴# gauge invariance is replaced by BRST invariance

𝛿{|'l	𝑊 = 0	 𝛿{|'l4 = 0

WZ consistency condition reads

𝛿{|'l 𝛿{|'l𝑊t = 0



we can regard the class 𝐿 𝑥 𝑊 as the unknown in this equation
the general solution is known from cohomology



{𝐿\ 𝑥 𝑊}=

semisimple gauge group: 
the anomaly is a polynomial of dimension 4 in the fields and derivatives

The anomaly does not depend on 𝑐< in semisimple gauge theories
[dependence on 𝑐<	only in d > 4 contributions]

abelian theory, one charged scalar       
non-trivial candidate anomalies 𝐿 𝑥 𝑊

these are solutions of 

dependence on 𝑐< not forbidden by BRST cohomology if
Ggauge is not semisimple





𝑡𝑟	 𝑡\ 𝑡i, 𝑡j ≠ 0	and EFT
assume now a classical gauge-invariant theory with 𝑡𝑟	 𝑡\ 𝑡i, 𝑡j ≠ 0
can we give sense to this theory as a QFT? 

Yes!

consider a world coinciding with ours but for the heaviness of (𝑡, 𝑏)
𝑚�,𝑚i ≫ 𝑣	(ew scale)

gauge theory 𝐺 = 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1)

gauge anomalies cancelled 
within each generation

consider the ℒ*kl Ψ�;��� at 𝐸 ≪ 𝑚�,𝑚i

[contribution to 𝑡𝑟	 𝑡\ 𝑡i, 𝑡j from 3rd generation do not cancel any more]

this is a consistent gauge theory with anomalous fermion content

ℒ'%(Ψ) equipped with
Higgs mechanism

Ψ = (Ψ�;���, 𝑡, 𝑏)



toy model 𝒍𝑳 𝒍𝑹 𝒒𝑳 𝒒𝑹 𝝋
𝑄 −1 0 +1 0 −1
𝐵 0 0 +1 +1 0
𝐿 +1 +1 0 0 0

𝑡𝑟 𝑄D = 0

a closer look to ℒ*kl Ψ�;���

SB phase

anomaly free
UV theory



gauge transformation

𝑨𝝁 𝝈 𝒍 𝒒

𝑚𝑎𝑠𝑠 𝑔𝑣 2𝜆� 𝑣 𝑦�𝑣/ 2� 𝑦�𝑣/ 2�

𝜎� = 𝜎

consider now

define an EFT valid at 𝐸 < 𝑚�

𝑒; �̂�� [&,`,�] ≡ S𝒟𝑞	𝑒;'[&,̀ ,�,�]
�

�

	
the theory described by 
𝑊*kl 𝐴, 𝜑, 𝑙 is anomaly-free, 
despite 𝑡𝑟(𝑄�D) ≠ 0

𝑒;^[&,̀ ] = S𝒟𝑙	𝑒; �̂�� [&,`,�]

�

�

= S𝒟𝑙	𝒟𝑞	𝑒;'[&,̀ ,�,�]
�

�

one-line proof



= 𝑒;^[&,`]= S𝒟𝑙	𝑒; �̂�� [&,`,�]

�

�

𝑒 ;^[&¢,̀ ¢] = S𝒟𝑙	
�

�

𝑒 ; �̂��[&¢,`¢,�]

change of variables 𝑙 → 𝑙Z

𝐴Z = 𝐴 + 𝜕𝛼
𝜑Z = 𝑒;Z𝜑

𝑙Z = £𝑒
;Z𝑙H	
𝑙|

𝒟𝑙Z = 𝒟𝑙 𝑒;	
¤¥

¦§¨¥ ∫ ©
¦=Z	kª«k¬ª«

�
�

= S𝒟𝑙	𝑒;	
�¥
U®¥ ∫ ©

¦=Zkª«k¬ª«
�
� 	

�

�

×	𝑒; �̂�� [&¢,`¢,�¢]

𝑊*kl[𝐴Z,𝜑Z, 𝑙Z]+	
�¥

U®¥ ∫ 𝑑
U𝑥	𝛼𝐹#0𝐹¬#0

�
� = 𝑊*kl[𝐴, 𝜑, 𝑙]

general structure of 𝑊*kl[𝐴,𝜑, 𝑙]
gauge transformation on 𝑊[𝐴, 𝜑]



loop expansion of 𝑊*kl[𝐴,𝜑, 𝑙]

𝑊*kl[𝐴, 𝜑, 𝑙] = 𝑆 𝐴, 𝜑, 𝑙, 0 +𝑊*kl
¯C [𝐴, 𝜑, 𝑙]

𝑊*kl[𝐴Z,𝜑Z, 𝑙Z] +	
�¥

U®¥ ∫ 𝑑
U𝑥𝛼𝐹#0𝐹¬#0

�
� = 𝑊*kl[𝐴, 𝜑, 𝑙]

satisfied by
𝑊*kl

¯C , since
𝑆 𝐴,𝜑, 𝑙, 0 is gauge
invariant 

general solution

𝑊*kl 𝐴, 𝜑, 𝑙 = 𝑆 𝐴,𝜑, 𝑙, 0 −
𝑔4

48𝜋4𝑣S 𝑑U𝑥	𝜉𝐹#0𝐹¬#0
�

�

+Δ𝑊*kl
¯C [𝐴, 𝜑, 𝑙]

gauge-invariant



Lorentz-invariant, unitary theory despite anomalous fermion content

�¥

U®¥³ ∫ 𝑑
U𝑥	𝜉	𝐹#0𝐹¬#0

�
� ≡ C

% ∫𝑑
U𝑥	𝜉𝐹#0𝐹¬#0

�
� Λ ≤ 4𝜋𝑀 =

192𝜋D𝑣	
𝑔4

𝑚&
Λ ≥

𝑔D

192𝜋D

massive spin-one particle in the spectrum
[𝑚& → 0 limit not allowed]

nonrenormalizable EFT
[Λ → ∞ limit not possible]

cut-off estimate



show the independence on 
the gauge-fixing parameter 
of the scattering amplitude 

𝑙𝑙 → 𝐴𝐴

Exercise: independence on gauge fixing 

ℒ*kl = −
1
4 𝐹#0𝐹

#0 + 𝑖	𝑙H̅𝛾# 𝜕# − 𝑖𝑔𝐴# 𝑙H

−
1
2𝜆 𝜕#𝐴# + 𝑔𝑣𝜉

4

+𝑖	𝑙|̅𝛾#𝜕#𝑙| +
1
2𝜕#𝜎𝜕

#𝜎 +
1
2 1 +

𝜎
𝑣

4
𝜕#𝜉 − 𝑔𝑣𝐴#

4

show that at the tree-level there is no 𝜆-dependence 

−
𝑔4

48𝜋4𝑣 𝜉𝐹#0𝐹
¬#0 +⋯

list the one-loop contributions depending on 𝜆

1.

2.



𝛼 𝛽

𝜇𝑘 = 𝑝C + 𝑝4

𝑝C 𝑝4

= Γ&
#Z¿ (𝑝C, 𝑝4)

= ΓI
Z¿ (𝑝C, 𝑝4)

= Γ̂ À
Z¿ (𝑝C, 𝑝4) = −𝑖	 �¥

C4®¥³ 𝜖
#0Z¿𝑝C#𝑝40

𝜉

𝜉

3. derive the Ward Identity

𝑖	𝑘#Γ&
#Z¿ 𝑝C,	𝑝4 = 	𝑚&ΓI

Z¿(𝑝C,	𝑝4) + 	𝑚& Γ̂ À
Z¿(𝑝C,	𝑝4)



= 𝑔	𝑣̅ 	𝛾#
(COÁÂ)
4 𝑢	 C

<¥OÄÅ
¥ Γ&

#Z¿(𝑝C,	𝑝4) +

𝑚�
𝑣 	𝑣Æ 	𝛾p𝑢

𝑖
𝑘4 − 𝜆𝑚&

4 ΓI
Z¿(𝑝C,	𝑝4)

𝑚�
𝑣 	𝑣Æ 	𝛾p𝑢

𝑖
𝑘4 − 𝜆𝑚&

4 Γ̂ À
Z¿(𝑝C,	𝑝4)

−𝑔	𝑚�	𝑣Æ 	𝛾p𝑢
C

<¥OÇÄÅ
¥ (1 − 𝜆)

C
<¥OÄÅ

¥ 	𝑘# Γ&
#Z¿(𝑝C,	𝑝4)

= 𝑔	�̅�	𝛾#
(1 − 𝛾p )

2 𝑢	
1

𝑘4 −𝑚&
4 Γ&

#Z¿(𝑝C ,	𝑝4) +

𝑚�
𝑣 	𝑣Æ 	𝛾p𝑢

𝑖
𝑘4 − 𝑚&

4 ΓI
Z¿ 𝑝C,	𝑝4 + Γ̂ À

Z¿(𝑝C,	𝑝4)



𝑡𝑟	 𝑡\ 𝑡i, 𝑡j ≠ 0	and EFT
so far: we started from an anomaly-free UV gauge theory and built ℒ*kl Ψ�;���
by integrating out an heavy chiral fermion

here: we start from a classical gauge theory ℒ 𝜓 	with anomalous fermion content 
and check under which conditions it gives rise to a consistent EFT

ℒ = −
1
4𝐹#0𝐹

#0 + 𝑖	𝜓cH𝛾# 𝜕# + 𝑖𝑔𝑄𝐴# 𝜓H + 𝑖	𝜓c|𝛾#𝜕#𝜓|

𝑄 ≠ 0

classically invariant under local transformations

𝐴# → 𝐴# + 𝜕#𝛼 𝜓H → 𝑒O;ÈZ𝜓H 𝜓| → 𝜓|

𝑡𝑟 𝑄D ≠ 0 anomalous fermion content

cannot describe a massless spin-1 particle: Hilbert space not defined

does it describe a massive 𝐴# ?



𝑒;^[&] ≡ S𝒟𝜓	𝑒;'[&,É]
�

�

by proceeding as before

𝒟𝜓Z = 𝒟𝜓 𝑒O;	
¤¥ÊË

¦§¨¥ ∫ ©
¦=Z	kª«k¬ª«

�
�

𝑊 𝐴Z = 𝑊 𝐴 −
𝑔4𝑄D

48𝜋4 S𝑑
U𝑥𝛼	𝐹#0𝐹¬#0

�

�

1. introduce the dimensionless field 𝜗 𝜗 → 𝜗 + 𝛼

2. “repair” the anomaly by adding the new term

anomaly

𝛿ℒ[𝜗]= +�¥ÈË

U®¥ 𝜗	𝐹#0𝐹
¬#0 ℒÍ = ℒ + 𝛿ℒ[𝜗]

𝑒; Î̂[&,Í] ≡ S𝒟𝜓	𝑒;'Î[&,Í,É]
�

�

anomaly free

we have NOT modified the theory: ℒ is simply ℒÍ = ℒ + 𝛿ℒ[𝜗]
in the gauge 𝜗 = 0
inclusion of 𝜗 as a device to make perturbative expansion easier



a)

compute quantum corrections to the classical theory ℒÍ = ℒ + 𝛿ℒ[𝜗]
Feynman rules plus UV cutoff Λ as regulator 
[plus finite counterterms to maintain the induced gauge invariance]

≈
1

16𝜋4
𝑔4𝑄D

16𝜋4

4

Λ4	𝜕#𝜗𝜕#𝜗

3.

b) c)

𝑎) + 𝑏) + 𝑐) =
𝑣4

2 	𝜕#𝜗 − 𝑔	𝐴#
4 𝑣 ≈

𝑔4𝑄D

64𝜋D Λ

after rescaling 𝜗 = I
³=

1
2 	𝜕#𝜉 − 𝑔	𝑣𝐴#

4

gauge-invariant kinetic term for 𝜉
back to the unitary gauge 𝜗 = 0 𝑚& = 𝑔𝑣

massive
spin-1 
particle



can we remove the cutoff?

ℒÍ = ℒ +
𝑔4𝑄D

48𝜋4
𝜉
𝑣 𝐹#0𝐹

¬#0 +
1
2 	𝜕#𝜉 − 𝑔	𝑣𝐴#

4 Λ ≈
64𝜋D

𝑔4𝑄D 𝑣

𝑚&
Λ ≈

𝑔D𝑄D

64𝜋D

massive spin-one particle in the spectrum
[𝑚& → 0 limit not allowed]

nonrenormalizable EFT
[Λ → ∞ limit not possible]

the anomalous classical gauge theory ℒ 𝜓 describe a massive
spin-1 particle and has a finite energy domain of validity



𝐴# ≡ 𝑖𝑔𝑡|\𝐴\#

𝜓 → ΩOC𝜓 Ω ≡ 𝑒;ZÑ�Ò
Ñ

𝐴# → ΩOC𝐴#	Ω	 +ΩOC𝜕# Ω

ℒ = −
1
4𝐹\#0𝐹\

#0 + 𝑖𝜓c𝛾# 𝜕# + 𝐴# 𝜓

assume 𝑅 irreducible 
and 

𝑡𝑟	 𝑡\ 𝑡i, 𝑡j ≠ 0

introduce the dimensionless field 𝒰, “repair” the anomaly by adding a new term
compute quantum corrections to the classical theory

𝒰	 → ΩOC𝒰 𝒰 ≡ 𝑒;	
IÑ
Õ 	�Ò

Ñ

a mass term for the spin-1 particles is generated

unitary gauge: 𝒰 = 1

−
𝑚&
4

2𝑔4 𝑡𝑟 𝐴# + 𝜕#𝒰 Ö 𝒰OC 4

non-abelian gauge group 𝐺	



it contains a self-interaction for the scalar fields 𝜉\(𝑥)

−
𝑚&
4

2𝑔4 𝑡𝑟 𝜕#𝒰 Ö 𝒰OC 4 +⋯

= ÄÅ
¥

4�¥Õ¥ 𝜕# 𝜉\𝜕
#𝜉\ +

ÄÅ
¥

4�¥Õ¦ (𝜕𝜉 Ö 𝜉 𝜕𝜉 Ö 𝜉) +⋯

𝑚&
4

𝑔4𝑓4 = 1
𝑔4

2𝑚&
4 Λ ≤ 4𝜋	

𝑚&
𝑔

𝑚&
Λ ≥

𝑔
4𝜋

same conclusion as in abelian case

this term describes, via the equivalence theorem,
the interaction of longitudinally polarized spin-1 particles, 

ratio is different since in the abelian case there is
no self-interaction



RGE flow



RGE flow in 2d
d=2

𝑐(𝑔)	decreases along the RG flow

𝑐Ø) > 𝑐(|

[Zamolodchicov 1986]

at fixed points of RG flow the theory is scale invariant and  𝑐 𝑔 = 𝑐

the RG flow is irreversible

− j
C4𝑅	is the anomaly of scale transformations

when the CFT is in curved space𝑇#
# = 0

a function 𝑐(𝑔)	 of the coupling constants 𝑔 exists such that 

(central charge of CFT)

for a CFT in flat space

trace of energy -
momentum tensor

scalar curvature



d=4

𝑇#
# = 𝑐	𝑊4 − 𝑎	𝐸

𝑊4 = 𝑅#0ÚÛ𝑅#0ÚÛ − 2𝑅#0𝑅#0 +
1
3𝑅

4

𝐸 = 𝑅#0ÚÛ𝑅#0ÚÛ − 4𝑅#0𝑅#0 + 𝑅4

in A and B the theory is CFT

𝑎Ø) > 𝑎(|then:

1. to induce the RG flow from A to B we perturb the UV theory
by adding a “mass term”

𝑆Ø) = 𝑆Ø)Ükl +
1
2S 𝑑U𝑥

�

�

	𝑚4	𝜑4 [flat space
classical theory]

breaks scale invariance and push the theory to IR

A CFT in curved space
has an anomaly depending on
(c,a)

fixed 
point A 
(UV)

fixed 
point B 
(IR)

*

*

a-theorem:



2. scale invariance 
in flat space 

rigid Weyl invariance 
in curved space

𝑥# → 𝑒Û𝑥#

𝜑 → 𝑒OÛ𝜑
𝑔#0 → 𝑒4Û𝑔#0
𝜑 → 𝑒OÛ𝜑

𝑆ÝØ) = 𝑆ÝØ)Ükl +
1
2S𝑑

U𝑥
�

�

	 −𝑔� 	𝑚4	𝜑4 [curved space
classical theory]

Weyl invariance recovered by adding a dilaton 𝜏

𝜏 → 𝜏 + 𝜎

𝑆ÝØ) = 𝑆ÝØ)Ükl +
1
2S𝑑

U𝑥
�

�

	 −𝑔� 	𝑚4	𝑒O4ß𝜑4

3.

[curved space
classical theory]

we require

𝜏 very weakly coupled, not to modify the RGE flow

𝜏 massless such that it survives till the IR



at the classical level the IR theory is Weyl-invariant

low-energy  EFT

𝑆Ý(| = 𝑆Ý(|Ükl + ∆	𝑆Ý(| 𝑔#0, 𝜏 𝑔á#0 ≡ 𝑒O4ß𝑔#0

∆	𝑆Ý(| 𝑔#0, 𝜏 = 𝑓4S 𝑑U𝑥
�

�

	 −𝑔á� 𝑅â
6 + 𝛼S𝑑U𝑥

�

�

	 −𝑔á� 𝑅â4 +⋯

in flat space

∆	𝑆Ý(| 𝑔#0, 𝜏 → ∆𝑆(| 𝜏 = 𝑓4S𝑑U𝑥
�

�

𝑒O4ß 𝜕𝜏 4 +⋯

terms vanishing along EOM

𝜕4𝜏 − 𝜕𝜏 4 = 0
dilaton decay constant

𝜏 →
𝜏
𝑓 ∆𝑆(| 𝜏 = S𝑑U𝑥

�

�

𝑒O4
ß
Õ 𝜕𝜏 4 +⋯



𝑆ÝØ) = 𝑆ÝØ)Ükl +
1
2S𝑑

U𝑥
�

�

	 −𝑔� 	𝑚4	𝑒O4ß𝜑4

𝑆Ý(| = 𝑆Ý(|Ükl + ∆	𝑆Ý(| 𝑔#0, 𝜏

[curved space
classical theory]

both are classically Weyl-invariant

by including quantum corrections, the Weyl transformation has an anomaly

𝛿Û𝑆Ý = S𝑑U𝑥
�

�

−𝑔� 	𝜎 𝑐	𝑊4 − 𝑎	𝐸	

we require that the overall anomaly is the same in UV and IR

already seen for gauge theories

absence of anomalies in UV absence of anomalies in IR 

also true  in rigid symmetries, e.g. 𝜋ã → 𝛾𝛾 decay determined by matching 
UV and IR anomalies of U(1)3A subgroup of chiral symmetry



𝑆Ý(| = 𝑆Ý(|Ükl + ∆	𝑆Ý(| 𝑔#0, 𝜏 +	𝑆Ý^À

anomaly matching requires a Wess- Zumino term

𝛿Û𝑆Ý^À = 𝛿Û𝑆ÝØ)Ükl − 𝛿Û𝑆Ý(|Ükl

= S𝑑U𝑥
�

�

−𝑔� 	𝜎 𝑐Ø) − 𝑐(| 	𝑊4 − 𝑎Ø) − 𝑎(| 	𝐸

solution:

𝑆Ý^À = 𝑐Ø) − 𝑐(| S𝑑U𝑥
�

�

−𝑔� 	𝜏	𝑊4

− 𝑎Ø) − 𝑎(| S 𝑑U𝑥
�

�

−𝑔� 	 𝜏	𝐸 + 4 𝑅#0 −
1
2 𝑔

#0𝑅 𝜕#𝜏𝜕0𝜏 	

− 𝑎Ø) − 𝑎(| S𝑑U𝑥
�

�

−𝑔� 	 −4 𝜕𝜏 4𝜕4𝜏 + 2 𝜕𝜏 U 	



in the flat limit:

𝑆Ý^À = 2 𝑎Ø) − 𝑎(| S𝑑U𝑥
�

�

𝜕𝜏 U +⋯

causality, 
unitarity, 
crossing

𝑎Ø) > 𝑎(|

RG flow is irreversible in d=4

a counts the DOF of the theory. As we move down in energy, more
znd more DOF are removed.

in a free theory



thanks to Yu Nakayama, Francesco Riva, for very helpful clarifications 



additional Weyl-invariant terms can be added to the theory 

∆	𝑆ÝØ) 𝑔#0, 𝜏 = 𝑓4S 𝑑U𝑥
�

�

	 −𝑔á� 𝑅â
6 + 𝛼S𝑑U𝑥

�

�

	 −𝑔á� 𝑅â4 + ⋯

𝑔á#0 ≡ 𝑒O4ß𝑔#0
[curved space
classical theory]

in flat space

∆	𝑆ÝØ) 𝑔#0, 𝜏 → ∆𝑆Ø) 𝜏 = 𝑓4S 𝑑U𝑥
�

�

𝑒O4ß 𝜕𝜏 4 + ⋯

terms vanishing along EOM

𝜕4𝜏 − 𝜕𝜏 4 = 0
dilaton decay constant

𝜏 →
𝜏
𝑓 ∆𝑆Ø) 𝜏 = S𝑑U𝑥

�

�

𝑒O4
ß
Õ 𝜕𝜏 4 + ⋯

very large 𝑓 →	very weak coupling


