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invariance at

. gauge invariance < quantization of spin 1 particles

DILEMMA al
/ \ uni‘rarify

Lorentz-covariant A correct number of DOF

description U 2 (massless case)

choosing A, we should eliminate extra DOFs

. massive case

1 1
Lyassive = — 7 r it > ueA, A*

the theory is NOT gauge invariant

9vo, A* — 99V A, + At =0 » | @



0V, A* + p*A* = 0 Klein-Gordon equations
n _ plus a constraint LB
d,A" =0

look for plane wave solutions Al ikx

—k? +p* =0 €kt =0
when k* = (0,0,0,k) € = (0,1,0,0)

3 (k ook)
€, = —, UV, —
s

1 a 1 .
LMASSIVE = —EBMAVO“AV S EBMAVOVA“ 18 E'U'ZAIJ' ‘.

distinguish two cases: €,k* = 0 and €, o« k,
discuss the mass spectrum and the limit a — 1



. massless case

y not the trivial

LMASSLESS i Z F[,LVFM - constraint [12 .
- 2 extra DOF

the theory is GAUGE INVARIANT '

this redundan
Au(x) B Aﬂ(x) + aﬂa(x) to eliminate 1

1 1 2
LyassiLess = — ZF‘”’F Y 28 (9,4%)

0V, AF — (1 - %) I*avA, = 0

+ i
0 Ak = (9,4")" + (9,4%)
valid also in the interacting theory ALJH' provided 0,

gauge invariance mandatory to define the Hilbert space and a unitary theory



classical, gauge invariant, action S

= jd4x L, p,A) 5,5=0

» au'5= jo = -

. gauge invariance of effective, action W

eWleAl = .[Dwﬂwe

_—
S ,W=01

o, W #0
. O0,W efficiently studied through diff

S, W = J d*x a,(x)L,(x)W ][, A] S, W =0 o Ly(x)W =0

1 0 )
—Op——— +ip(z)

B 1 L(x):[‘g “5A,() So(w)
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standard criterion

b _0'q
about Ly : tr (ta{t ’tc}) =0

well-known for renormalizable theories
valid also for EFT?

1O 5. 1
Lppr =Ly + Kz e 0P + FZ e 0 + -
I

. assume now a classical gauge-invariant theory with tr (t{t?,t¢}

can we give sense to this theory as a QFT?

o




o ()

. regularization W — W,
L)W, # 0 » is the theory anomalous ?

inspect the entire class {W} = W,. + f d4y P(y)

P(y) local polynomial in the bosonic fields.

if P.(y) exists such that
L) W, + [ d*y R0)] =0

L(x)W =20



Consequences of anomalous ward
identities

Physics Letters B

Volume 37, Issue 1, 1 November 1971, Pages 95-97

). Wess * °, B. Zumino
The anomalies of Ward identities are shown to satisfy

consistency or integrability relations, which restrict their
possible form. For the case of SU(3) x SU(3) we verify that

La(x)Lo(y)Wr — Ly(y) La(2)W; = 6% (x — y) fo, Le(x)Ws

. we can regard the class {L(x)W} as the unkr
the general solution is known from cohomoloc




B Sprsr W =0 Sgrst = 0
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Consequences of anomalous ward
identities

). Wess * °, B. Zumino

The anomalies of Ward identities are shown to satisfy
consistency or integrability relations, which restrict their
possible form. For the case of SU(3) x SU(3) we verify that

La(x)Lo(y)Wr — Ly(y) La(2)W; = 6% (x — y) fo, Le(x)Ws

we can regard the class {L(x)W} as the unkne
the general solution is known from cohomolog

by quantizing (¢, A,) gauge invariance is rep

WZ consistency condition reads

OBRST (5BRSTWr) =0



Consequences of anomalous ward
identities

Physics Letters B

Volume 37, Issue 1, 1 November 1971, Pages 95-97 |

). Wess * ° B, Zumino

The anomalies of Ward identities are shown to satisfy
consistency or integrability relations, which restrict their =~
possible form. For the case of SU(3) x SU(3) we verify that =

L () Ly(y)We — Ly(y) Lo (2) Wy =

. we can regard the class {L(x)W} as the u
the general solution is known from cohomt

Local BRST céhomology in gauge

5 Physics Reports .
theories

Volume 338, Issue 5, November 2000, Pages 439-
. 569

Glenn Barnich * ® 2 & Friedemann Brandt &, Marc Henneaux * 9 &
B |

We shall also consider “effective Yang-Mills theories” for

which the Lagrangian contains all possible terms

compatible with gauge invariance [118], [223| and thus

involves derivatives of arbitrarily high order.




semisimple gauge group:
the anomaly is a polynomial of dimension 4 in the fie

P

(LaCOW)=5 1

1 .
el Mty T, (A,,c‘?AAp - §A,,AAAP> |

» The anomaly does not depend on ¢, in semisimple gauge theories
[dependence on Cj, only in d > 4 contributions]

. abelian theory, one charged scalar

non-trivial candidate anomalies L(x)W u

ol e™P?9,A, 0,4, il e™?0,(0" Dy — Dyple) 0,4,
these are solutions of '

Lo(%) Ly(y)We — Ly(y) La(2)We = 6% (z — y) f

dependence on c, not forbidden by BRST coho
Ggauge iS Not semisimple |
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Spinor loop anomalies with very general local fermion Lagrangians

Jooha Minn, Jewan Kim, and Choonkyu Lee
Department of Physics, Seoul National University, Seoul, 151, Korea
(Received 27 October 1986)

fundamental level.] An effective local Lagrangian will
typically include renormalizable couplings®® which play a
dominant dynamical role, and nonrenormalizable cou-
plings** (involving operators of dimension larger than
four in the case of four spacetime dimensions) which may
be less important dynamically but still crucial for some
processes. There is a question which arises naturally in an
effective low-energy (chiral or nonchiral) gauge theory
with spinor fields. Will there not be certain restrictions to
the structure of allowed higher dimensional local spinor
couplings (besides naive gauge invariance of the forms)
because of possible gauge anomaly problems? We can
now give a definite answer to that—as long as the spinor
field contents are such that the usual gauge anomaly can-
cellation condition? is satisfied, the effective gauge theory
Lagrangian may include any gauge-invariant, renormaliz-
able or nonrenormalizable, local spinor couplings without
encountering gauge inconsistency by spinor loop effects.



assume how a classical gauge-invariant theory with tr ta{tb, t‘})+0
can we give sense to this theory as a QFT?

consider a world coinciding with ours but for the | '

=3

ms, My > VU (ew scale)

gauge theory G = SU(3)XSU(2)X U(l)' (ﬁL

BOG -0

consider the Lgpr (Lplight) at E < mg, my

this is a consistent gauge theory with anomalous fermion content

[contribution to tr (t%{t?, t°}) from 3rd generati

O
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gauge transformation

Y= V2 ev ¢'=¢&+ alr)
o' =0

--

consider now Yg > Y1, g, A

define an EFT valid at E < mq

the theory described by
e Werr 49,1 = j Dq eSAPLal  Weer|A, @,1] is anomaly-free,
despite tr(Q;) # 0

one-line proof

eWlAe] — J D] e WerT 40,1 — f])l Dq piSlA



structu

gauge transformation on W [A, @ |

eiW[Aa»QDa] — le eiWEFT[AaJQDa:l]

I
/

§ change of variables | — [,

. gz 4
” Dl, =Dl e'aenz ) ¢

i LV
xa Fy, F¥

\ 4 Y . 4
j@l e 48m ZId XabwET o e WerT [Aq,Pa

— e WIA Q] = f D] e WerT 49,1

\ g

2 _
WerrlAg Qo la ]+ ﬁf d*x “FquW = Wgprl4, ¢,1]



OOp expansion of WEFT [A, Q, l]

WEFT[A, Q, ] S[A (p,l O] + EFT[A , ] Jj!

2 ~
WerrlAg Qo la] + £7f d4xaFm,F”V = WEFT[A' ®,1]

‘u

WEFT[A' PV, l] — S[A' Q, l' 0] _

92

4812

f d*x &Ry FHY +AWgr [4, 9,1




Lorentz-invariant, unitary theory despite anomalous fermion content

cut-off estimate

19273 v

: ] j |
SNl x £ i = ifal‘*x EELFRY A < 4nM =
M — gz

4812V

3
m
A>g

A 19273

massive spin-one particle in the spectrum
[my4 — O limit not allowed]

nonrenormalizable EFT
[A — 00 limit not possible]



 Exercise: independen

show the independence on
the gauge-fixing parameter
of the scattering amplitude

Il - AA

1 - .
‘CEFT = _ZPI'“/F”V + 1 lL]/”'(aﬂ g lgAﬂ)lL
- . 1 3 1 o\ 2 i
+i gy ,lp + 50,0040 + = (1+=) (8.6 — gv

L (8,4 + gve): — 9" _ep Fov 4.
22 At + gvs) g St

K
A . il

. show that at the tree-level there is no A-dependence

. list the one-loop contributions depending on A |



P2

=14 (01, p2)
k=p, +p, S u

w . Fgaﬁ (D1, P2)
¢
%@ﬁ a4

oy (01, P2) = —i

- derive the Ward Identity
'k, THP = m, % ek
LKyly, (p1, P2) = My £ (p1,p2) + My WZ(PLPZ)

B T




_ (1-ys) 1 ’

_ 1 1
—gmv ysum(l — l)m ky, Fj‘“ﬁ(m, p2)

mp _ apf
7vy5uk2_/1 Elrf (p11p2) |
mp _ l a
» vYysu 12 /177131 sz(plr p2)

v yﬂ 2 u k2 _mi A (pli pZ) +

NN




(4", e} #0and EFT

so far: we started from an anomaly-free UV gauge theory and built Lgpr (qjlig ht)
by integrating out an heavy chiral fermion

here: we start from a classical gauge theory L(1)) with anomalous fermion content
and check under which conditions it gives rise to a consistent EFT

1 - . -
e —ZFWF”V 1 szyﬂ(aH + ngAﬂ)l/)L + l Yr

classically invariant under local transformations
—iQu

Au_’Au‘l'au“ Y, e Q1/)L

Q %0 » tr(Q3) = 0 anomalous fermion cot

cannot describe a massless spin-1 particle: Hilbert

does it describe a massive AM ?



W

by proceeding as before

o WIA] = j Dip o iStAYI -

DYy = DY e_lm
g2Q3
48772

W[A,] = W[A] j d*x Fpy F* | cnomaly

. introduce the dimensionless field 9

. “repair” the anomaly by adding the new term |

20 y
SLI9)= +L 59 F,, W g

gWsl4v] = J D eSolA0Y] anofnaly free

we have NOT modified the theory: L is simply Ly = L + § L[]
in the gauge ¥ = 0

inclusion of U as a device to make per"rur'b



. compute quantum corrections to the classical theory £

Feynman rules plus UV cutoff A as regulator
[plus finite counterterms to maintain the induced gauge invariance]

1 (geON
Bl oo w0 ~ (1
16w~ \ 161~

v? 2
a)-l—b)-l—c):?(a“ﬁ—g/lﬂ)

1 2 |
=§(au€_gv‘4u)
gauge-invariant kinetic term for &

back to the unitary gauge ¥ = 0 my = gv



e e
e

can we remove the cutoff?

203 i
gQ°¢ =, 1 2
1672 ;FMVF‘“’ W 5 (0,6 — gvA,)

L19=£+

303
my gl

‘A 64m3

massive spin-one particle in the spectrum
[m, — O limit not allowed]

nonrenormalizable EFT
[A — oo limit not possible]

the anomalous classical gauge theory L(1)) describe a massive
spin-1 particle and has a finite energy domain of validity



~ ron-abelian gauge group G

W - Q1Y 0 = ei%tr assume Ra:‘r('jreducible

y L b
Ay > Q1A Q0 + Q70,0 A, = igthAg, (¢t # 0

1 _
L=— ZF“”"F“W + iy (9, + Ay

introduce the dimensionless field U, “repair” the anomal
compute quantum corrections to the classical theory

.$a .a y
U - o u U=e' [ R unitary gc

a mass tferm for the spin-1 particles is generated

2

1
~ 247 = tr(4, +0,U-U" )?



' it contains a self-interaction for the scalar fields &4 (x)

2
1
~ 247 A r(@,U- U +.
- 2‘;712;1”2 a faa”fa 2f4 (af f af f) +
m2 g°
2A2 =1 m2
g°f A

this term describes, via the equivalence theorem,
the interaction of longitudinally polarized spin-Vp‘

my g same conclusion as in abelian case
= I » ¢
A 41 ratio is different since in the

no self-interaction




RG
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“Irreversibility” of the flux of the renormalization
2D field theory

A. B. Zomolodchikov
L. D. Landau Institute of Theoretical Physics, Academy of Sciences of th:

(Submitted 20 May 1986) i
Pis’ma Zh. Eksp. Teor. Fiz. 43, No. 12, 565-567 (25 June 1986) '/ | /

There exists a function c(g) of the coupling constant gina 2D renormalizable tield
theory which decreases monotonically under the influence of a renormalization-
group transformation. This function has constant values only at fixed points,
where c is the same as the central charge of a Virasoro algebra of the corresponding
conformal field theory.

Some of the information on the ultraviolet behavior of the field theory is lost under
renormalization transformations with ¢ > 0, since in the field theory it is not legitimate
to examine correlations at scales smaller than the cutoff. We would therefore expect
that a motion of the space Q under the influence of the renormalization group would
become an “irreversible” process, similar to the time evolution of dissipative systems.

A s



BT RGEf

- a function c(g) of the coupling constants g exists such that

c(g) decreases along the RG flow

» Cyv -~ CIR the RG flow is irreversible |

1 |
(L, Ly] = (m —n)Lyq + cﬁ(m?’ — M) 0mn
for a CFT in flat space
—Z Ris the anM
Tﬂ =0 12
H\ Nhen the

trace of energy - scalar curva
momentum tensor \



A CFT in curved space
has an anomaly depending on

O kw2 qE

On renormalization group flows in four

fix e;i A% dimensions
poin
(UV) Zohar Komargodski & & Adam Schwimmer

Journal of High Energy Physics 2011, Article number: 99 (2011) | Cite this article

fixed in A an
*point B .
(IR) then: Ayy > 4R

to induce the RG flow from A to B we per
by adding a "mass term” ‘

1
Syv = SEET + ff d*x m? ¢?

br'eak‘s&gcale invariance and push the theor




scale invariance “ rigid Weyl invariance
in flat space in curved space

xH - e%xH 9uv i
¢ e g ¢ 2

1
Syy = SCFT_I_EdeLX =g m? 2

. Weyl invariance recovered by adding a dilaton -

T>T+O0
1
SUV _ SCFT + if d*x \/—_gmz e—2rg02

we require

T very weakly coupled, not to modify the RGE flow

T massless such that it survives till the IR



- low-energ,

at the classical level the IR theory is Weyl-invariant

Sir =Sz’ +ASiR(GwT) j

4 R
ASir(gu7) = fzf d*x —§g+ afd‘*x
in flat space _
A gIR(guv»T) — ASip(7) = f* J d4xe_zr(a

dilaton decay constant terms vanis
Ok T— (@ :



1
SUV _ SCFT n EJ d*x \/—_gmz e =27 (p?

Sir=SE" +ASiR(gu7)

both are classically Weyl-invariant

by including quantum corrections, the Weyl transformati

already seen for gauge theories |
absence of anomalies in UV » absence of anc

also true in rigid symmetries, e.g. 7° - yy decay @
UV and IR anomalies of U(1)s4 subgroup of chiral s



anomaly matching requires a Wess- Zumino term

Sir =S +ASk (guv»T) + Swz

5 SWZ_6 SCFT 6 SCFT

. f d*x =5 ol(cov — il RN

solution: A. Schwimmer (Weizmann Inst.), S. Theisen (Potsdam, Max Planck Inst.) (Nov, 2010)

Published in: Nucl.Phys.B 847 (2011) 590-611 « e-Print: 1011.0696 [hep-th]
Sty r d*x —gt W?
wz = (cyy — CIR)J X—gT
[
—(aUV—aIR) | d4x\/—g [TE+4‘(R

—(ayy — a;r) f' d*x /=g [—4(07)?0%T + 2(d7)*]

J



the flat limit:

§WZ = 2(ayy — a,R)fd‘Lx (01')4 + ...

causality,

unitarity, » agy > a;

crossing

RG flow is irreversible in d=4

in a free theory

1
c =mns+6ns+ 12n,, a = §(ns+11nf+62nv).

a counts the DOF of the theory. As we move do
znd more DOF are removed. |

A s



thanks to Yu Nakayama, Francesco Riva, for very



additional Weyl-invariant terms can be added to the theory

A\

» R
ASyy (9 T) =f2fd4x —§g+afd4x
guv = e_zrgﬂv

in flat space

dilaton decay constant terms var
0%t — (37)?
_ ! ¥
L f ASyy(T) = j d*x 6_27(61) +

very large f — very weak coupling



