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Presentation of the Physical Problem
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Hello Guys, I am a Glass
Macroscopically I look like a solid, but microscopically I am totally different from any
crystal you can imagine! Here some generalities

Crystal Glass
Structure Spatially Homogeneous Spatially Heterogeneous

Relaxation to Equilibrium Fast Extremely Slow
I depend on preparation protocol No Yes

Here’s how I am created =⇒

(a) Credits: Berthier and Ediger, Physics Today
(2016)
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If you excite me a little, I will surprise you
At very low temperatures, I display anomalous thermodynamical properties (with
respect to the crystalline ones) in the low frequency part of the normal modes
spectrum! These are ascribable to the following1:

▶ My DOS (Density of States) D(ω)
is different from that of my
cousin Crystal:

D(ω) ∼
ω→0

not universal︷︸︸︷
A ω4︸︷︷︸

universal

▶ Corresponding eigenvectors
localised in the glass structure
(see on the right).

(a) Credits: D.Richard, K. Gonzalez-Lopez, G.
Kapteijns, R. Pater, T. Vaknin, E. Bouchbinder, and
E. Lerner. “Universality of the Nonphononic
Vibrational Spectrum across different classes of
Computer Glasses”. In: Physical Review Letters
125 (2020), p. 085502.

Crystal Glass
Low frequency spectrum D(ω) ∼ ωd−1 D(ω) ∼ ω4

Localisation No Yes

1Low energy phonon modes must be removed from the glass: this can be done by putting pinning nodes in the
glass that act as scatterers at fixed distance, so imposing an upper bound on the wavelengths of these modes.
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Statistical Mechanics for disordered systems

Glasses are part of a more generic ensemble of thermodynamic systems called
disordered systems: here some tools useful for the following slides

H = H[x;J ],

{
x configuration
J disorder parameters

ZJ =
∑
x

exp (−β H[x;J ]) , β = 1
kB T

, PJ (x) = 1
Z

exp (−β H[x;J ])

(·) =
∑
J

(·)P [J ], Average over the disorder

qJ (x,y) = 1
N
(x · y), Configurations overlap

PMF (x) =
N∏

k=1
Px(xk), Mean Field Approximation

PMF (x) =
∑

a wa Pa(x), Decomposition in pure states (MF)

Pf (x) = 1
2
P+(x) + 1

2
P−(x), e.g.: the ferromagnet

Pure states a identified by magnetization profiles {m}a
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What is a Spin Glass?
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What is a Spin Glass?

HEA = − 1
2

∑
i,j n.n.

JijSi Sj

Si = ±1, i = 1, . . . , N

▶ Quenched Disorder (typically
Gaussians):

J = J0/
√
N

J2 = J2
1/N, J1 ̸= 0

▶ Frustration: competing
interactions.

▶ Historically, Spin Glasses were firstly modeled by Edwards and Anderson with
the purpose of studying disordered magnetic systems.

▶ They identify, for J0 ≪ J1 and T ≪ J/kB a phase with non-trivial equilibrium
magnetization profiles mJ , and they propose as an order parameter the overlap
q = 1

N
|mJ |2 ≡ 1

N

∑
i mi

2.
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Non-trivial Mean Field Approximation

The Mean Field approximation of the Edwards-Anderson model is the
Sherrington-Kirkpatric (S-K) Model

HSK = − 1
2

∑
i,j

JijSi Sj − h
∑

i Si

Jij
d∼ N (0, J2

N
)

where we have chosen J0 = 0 and J1 = J and field h to break the global inversion
symmetry of the spins.

f = − lim
N→∞

1

N β
lnZJ = − lim

N→∞

1

N β
lim
n→0

(ZJ )n − 1

n
, Replica Trick

f = − 1
β
lim
n→0

max
Q

(A[Q;β])

Qab = ⟨SaSb⟩ Overlap Matrix

▶ S-K ansatz: Qab = q, Replica Symmetric (RS).
▶ Stable at high temperatures, unstable for T < J/kB .
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Breaking the Replica Symmetry: the Parisi-Scheme

The correct solution of the S-K model in the glass phase was provided by Parisi
through the following replica symmetry breaking algorithm:

Iterating the procedure an infinite amount of time and sending n → 0 in the end we
get a continuous distribution of overlaps P (q): the true order parameter of the Spin
Glass transition is a function!
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Physical Interpretation: Infinite Equilibrium States!

The physical interpretation of the Parisi solution is understood by making the
connection between pure states and replicas explicit:

mα, Pure States identified by magnetization profiles

qαβ = 1
N
(mα ·mβ), Overlap between pure states

∑
α,β

wαwβδ(q − qαβ) ≡ P (q) = lim
n→0

2
n (n−1)

∑
a,b

δ(q −QSP
ab )

Infinite pure states ⇐⇒ Breaking of Replica Symmetry
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Modelling glassy excitations with Spin
Glasses
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Vector Spin-Glass models: the vector p-spin

H[S] = −
∑
(i),α

J
αi1

...αip

i1... ip
S
αi1
i1

. . . S
αip

ip

▶ i = 1, . . . , N

▶ S⃗i = (S1
i , . . . , S

m
i ), |S⃗i| = 1, ∀ i

▶ P (J
αi1

...αip

i1... ip
) = N (0, p!

2Np−1 ), i1 ̸= i2 ̸= . . . ̸= ip

▶ m > 2 and p > 2.

The p-spin is the simplest model of the glass transition.
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Phenomenology

The phenomenology of the p-spin is very reach:
▶ For T > Td we are in a paramagnetic phase: there is only one equilibrium state,

relaxation in equilibrium dynamics is exponentially fast after t ≫ τ .
▶ At T = Td there is a dynamical transition, τ ∼ |T − Td|−γ : relaxation becomes

very slow and the system remains correlated to the initial configuration C(t) ∼ q. The
equilibrium free-energy is regular, so there is no thermodynamical transition.

▶ For TK < T < Td there is a complexity Σ of the equilibrium states: N ∼ eNΣ

states with fixed free-energy contribute equally to equilibrium

Z ∼
∑
α

Zα =

∫ fmax

fmin

df Ω(f)e−Nβf ∼ e−N [βf∗−Σ(f∗)]

where Ω ∼ eNΣ and Zα ∼ e−Nβfa .
▶ At T = TK the equilibrium complexity vanishes, and equilibrium is determined

by a finite number of states with minimal free-energy. Here, the specific heat has a
jump, so there is a thermodynamical phase transition.
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A model for glass formation
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Energy landscape at T = 0: Stable Minima
There is a One-Step Replica Symmetry Broken (1RSB) energy landscape with
exponential many minima:

N (E) ∼ e−NΣ(E), Egs ≤ E ≤ Emg

Σ(E) ̸= 0, E > Egs

▶ A level E represents a class of glasses formed with a certain protocol of cooling, the
optimal glass is the one at E = Egs.

▶ A given state at a level E represents a particular glass.

Egs ≤ E < Emg :
We call such a glass a Stable Glass:
the system in this state is stable against
small perturbations. This is due to the
structure of the energy landscapes: in-
deed, states are far from each other

1
N
|Sα − Sβ |2 = 2(1− qαβ)

qαβ = qm < 1 ifα ̸= β
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Energy landscape at T = 0: Marginal Minima

At E = Emg , the landscape changes and becomes as the Parisi or Full RSB landscape:

We talk about Marginal Glasses: in
this context
▶ Minima are arbitrary close and

have flat directions, a continuous
variety of overlap is populated
until the qmax.

▶ Thus an infinitesimal
perturbation induces a change of
energy minimum: ’if I move a bit,
I can change valley’.

For E > Emg there are other marginal energy minima: however, I
did not study this region .
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Mean field stable glasses have localised low-energy excitations

In order to study fluctuations around an energy minimum
▶ Compute the Hessian matrix of H and diagonalise it, in order to get the

distribution of the eigenvalues, ρ(λ).
▶ The connection between the eigenvalues and the normal modes of vibration is :

λ = ω2 and D(ω) = 2ωρ(ω2).

Result (N → ∞):

ρ(λ) ∝


λm−1, Egs ≤ E < Emg

’few small frequencies’︷ ︸︸ ︷
Stable Glasses

√
λ E = Emg

’a lot of small frequencies’︷ ︸︸ ︷
Marginal Glasses

v(λ) = (v⃗1(λ), . . . , v⃗N (λ))

|v⃗i(λ)|2
N→∞∝
λ→0

{
Emg − E, i = M

o(1), i ̸= M

Stable glassy minima display localisation in their softest
eigenvectors!
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Summary

Mean field models of Spin Glasses can exhibit localised
eigenvectors!
▶ Physical Problem: low energy excitations of glasses.
▶ Glasses: disordered system, use spin glasses to model them.
▶ Vector p-spin: used to model localised soft normal modes.

Glasses Mean-Field Vector p-spin
D(ω) ω4 ω2m−1

Localisation Yes Yes
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Perspectives

▶ In a recent work it was shown that in sparse graphs (an
approximately tree-like structure where each node-i.e.
spin- is linked -i.e. interacts- with a finite number of other
nodes) the m = 2 Spin Glass can exhibit localised
excitations with D(ω) ∼ ω4: I would like to check it this
holds for any m.

▶ In a marginal Spin Glass one can study non-linear
excitations, jumps in energy related to the fall in a new
energy minimum: the statistics of this jumps can provide
information on the T = 0 distribution of the overlaps
between states.



20/20

Thank you!


