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Presentation of the Physical Problem



Hello Guys, I am a Glass

Macroscopically I look like a solid, but microscopically I am totally different from any
crystal you can imagine! Here some generalities

Crystal Glass
Structure Spatially Homogeneous | Spatially Heterogeneous
Relaxation to Equilibrium Fast Extremely Slow
I depend on preparation protocol No Yes

Supercooled liquid
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(a) Credits: Berthier and Ediger, Physics Today
(2016)



If you excite me a little, I will surprise you

At very low temperatures, I display anomalous thermodynamical properties (with
respect to the crystalline ones) in the low frequency part of the normal modes
spectrum! These are ascribable to the following!:

»> My DOS (Density of States) D(w)
is different from that of my
cousin Crystal:

not universal
4
D(w) ~ A w
w—0 ~~
universal
e di . ¢ (a) Credits: D.Richard, K. Gonzalez-Lopez, G.
OI'I'G.BSPOI‘.I Ing e1genvectors Kapteijns, R. Pater, T. Vaknin, E. Bouchbinder, and
localised in the glass structure E. Lerner. “Universality of the Nonphononic
n the right). Vibrational Spectrum across different classes of
e € rig ) Computer Glasses”. In: Physical Review Letters
125 (2020), p. 085502.
Crystal Glass
Low frequency spectrum | D(w) ~ w? T | D(w) ~ w?
Localisation No Yes

TLow energy phonon modes must be removed from the glass: this can be done by putting pinning nodes in the
glass that act as scatterers at fixed distance, so imposing an upper bound on the wavelengths of these modes.



Statistical Mechanics for disordered systems

Glasses are part of a more generic ensemble of thermodynamic systems called
disordered systems: here some tools useful for the following slides

H = Hiz; J] a configuration
B U J disorder parameters

Zy=X exp(=BH[z;J)), B=37,  Psl) = 5exp(—fHx;J])
T
) = (P, Average over the disorder
J
qs(xz,y) = %(z Y), Configurations overlap

N
Pyrp(x) = 1 Po(zk), Mean Field Approximation
k=1

Pyp(x) = >, wa Pa(x), Decomposition in pure states (MF)
Py(x) = % Py (x) + % P_(x), e.g.: the ferromagnet
Pure states a identified by magnetization profiles {m}q



What is a Spin Glass?



What is a Spin Glass?

Hpa=-3 3 Ji;SiS;

,]1’\1’1

Si==%1, i=1,...,N

» Quenched Disorder (typically
Gaussians):
J = Jo/VN
J2=J2/N, J1#0

Q TR\ Q 8
» Frustration: competing °
interactions.

> Historically, Spin Glasses were firstly modeled by Edwards and Anderson with
the purpose of studying disordered magnetic systems.

» They identify, for Jo < J1 and T' < J/kp a phase with non-trivial equilibrium
magnetization profiles m ;, and they propose as an order parameter the overlap

q= %|m‘]|2 = %szzg




Non-trivial Mean Field Approximation

The Mean Field approximation of the Edwards-Anderson model is the
Sherrington-Kirkpatric (S-K) Model

Hsx = —3>JijSi Sj —h3, Si
¥

Jij AN (0, JWZ)
where we have chosen Jy = 0 and J; = J and field h to break the global inversion

symmetry of the spins.

I 1 Z)" —1
f=— lim —InZ;, = — lim im )" =1

, Replica Trick

f = 7%711310 mQaX(A[Q§ B])

Qab = (SaSp)  Overlap Matrix

> S-K ansatz: Qqp = ¢, Replica Symmetric (RS).
» Stable at high temperatures, unstable for T' < J/kp.



Breaking the Replica Symmetry: the Parisi-Scheme

The correct solution of the S-K model in the glass phase was provided by Parisi
through the following replica symmetry breaking algorithm:
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Iterating the procedure an infinite amount of time and sending n — 0 in the end we
get a continuous distribution of overlaps P(q): the true order parameter of the Spin
Glass transition is a function!
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Physical Interpretation: Infinite Equilibrium States!

The physical interpretation of the Parisi solution is understood by making the
connection between pure states and replicas explicit:

Ma, Pure States identified by magnetization profiles
Gap = (ma mg), Overlap between pure states
az% wawpd(q — qap) = P(q) = hmon (n— 1) 25(11 )

Infinite pure states <= Breaking of Rephca Symmetry
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Modelling glassy excitations with Spin
Glasses



Vector Spin-Glass models: the vector p-spin

D DI L S

(1), 0
>i=1,...,N
»5-—(31.. LSy, IS =1, Vi
>P(J lp) N, 7:B—), i1 # Q2 F . F
>m>2andp>2.

The p-spin is the simplest model of the glass transition.



Phenomenology

The phenomenology of the p-spin is very reach:

>

>

For T' > T we are in a paramagnetic phase: there is only one equilibrium state,
relaxation in equilibrium dynamics is exponentially fast after t > .

At T = T, there is a dynamical transition, 7 ~ |T" — T;|~7: relaxation becomes
very slow and the system remains correlated to the initial configuration C(t) ~ q. The
equilibrium free-energy is regular, so there is no thermodynamical transition.
For Ti < T < Ty there is a complexity ¥ of the equilibrium states: N ~ eV>
states with fixed free-energy contribute equally to equilibrium

fma/m
ZNZZa :/f dfﬂ(f)e_NBf ~ e~ NIBf«=2(f)]

min

where Q ~ eV= and Z, ~ e~ NBfa,

At T = Tk the equilibrium complexity vanishes, and equilibrium is determined
by a finite number of states with minimal free-energy. Here, the specific heat has a
jump, so there is a thermodynamical phase transition.



A model for glass formation
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Energy landscape at 7' = 0: Stable Minima

There is a One-Step Replica Symmetry Broken (1RSB) energy landscape with
exponential many minima:

N(E)~ e N2E) | By <E< Epyg
S(E)#0, E> Egs

> A level E represents a class of glasses formed with a certain protocol of cooling, the
optimal glass is the one at £ = Fgs.

> A given state at a level F represents a particular glass.

Egs < E < Eng: 1-RSB  LANDSHAPE

We call such a glass a Stable Glass: \cnGueATIN  SACE
the system in this state is stable against
small perturbations. This is due to the
structure of the energy landscapes: in-
deed, states are far from each other

%'Sa_sﬁIQ :2(1_‘1aﬁ)
Gap = qgm <1 ifa#p



Energy landscape at 7' = 0: Marginal Minima

At E = Ey,4, the landscape changes and becomes as the Parisi or Full RSB landscape:

F-RSB  LANDSAPE

We talk about Marginal Glasses: in
this context

» Minima are arbitrary close and
have flat directions, a continuous
variety of overlap is populated
until the gmaz-

» Thus an infinitesimal
perturbation induces a change of
energy minimum: 'if I move a bit,
I can change valley’.

Peq) = %, Sq) +E~z@ *XMS(“(‘%,\

For E > E,,, there are other marginal energy minima: however, I
did not study this region



Mean field stable glasses have localised low-energy excitations

In order to study fluctuations around an energy minimum

»> Compute the Hessian matrix of H and diagonalise it, in order to get the
distribution of the eigenvalues, p(}\).

» The connection between the eigenvalues and the normal modes of vibration is :
A = w? and D(w) = 2wp(w?).

Result (N — o0):

'few small frequencies’

——
A\ s Eys <E < Eng Stable Glasses
p( ) S “a lot of small frequencies’

——
VA E=En,; Marginal Glasses

v(A) = (T1(A),...,Tn(N))
= Nooo | Emg — E, i=M
()P 2 %0 {o(l)g, i# M

Stable glassy minima display localisation in their softest
eigenvectors!



Summary

Mean field models of Spin Glasses can exhibit localised

eigenvectors!

» Physical Problem: low energy excitations of glasses.

> Glasses: disordered system, use spin glasses to model them.

> Vector p-spin: used to model localised soft normal modes.

Glasses | Mean-Field Vector p-spin
D(w) w?
Localisation Yes Yes




Perspectives

» In a recent work it was shown that in sparse graphs (an
approximately tree-like structure where each node-i.e.
spin- is linked -i.e. interacts- with a finite number of other
nodes) the m = 2 Spin Glass can exhibit localised
excitations with D(w) ~ w*: I would like to check it this
holds for any m.

» In a marginal Spin Glass one can study non-linear
excitations, jumps in energy related to the fall in a new
energy minimum: the statistics of this jumps can provide
information on the 7" = 0 distribution of the overlaps
between states.



Thank you!



