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You snooze, you don’t loose: the 
role of dreaming in Neural 

Networks for associative memory



The most modern and successful strategies to build AI are inspired by the structure of the brain 
itself.

The building block of the brain is the 
neuron, composed by dendrites, soma and 

axon. The state of the neuron is 
characterized by it's firing rate. Neurons 

are connected by synapses... 

... and there is a lot of them in a human 
brain:


 ∼ 105 neurons
mm3

, ∼ 109 synapses
mm3

Cognitive abilities are an example of emergent property, very close to the subject of study if 
statistical mechanics. More specifically, Neural Networks are certainly complex systems.



One of the most important functions 
performed by the brain is associative 

memory:  inputs resembling memorized 
objects should be associated by the 
network to the objects themselves.

Information is represented in the brain in 
terms of neural activity patters: sequences of 
active and quiescent neurons specific to each 

input.



A popular framework to model this ability is that of 
attractor dynamics: the network is endowed with a 
specific dynamics, such as to build attractors in 

close proximity to the memorized neural 
activity patterns. There is convincing evidence 
that the attractor framework is indeed relevant 
describing mouse brain activity during Delayed 

Response Tasks.



One of the earliest successes in brain modeling is Hopfield's model. A system composed of N binary 
neurons  is used to store  patterns containing N binary symbols , 

,  . The dynamics is given by a Markov Process and the asymptotic 
probability distribution is , where
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Two words on how to tackle complex systems statistical mechanics

The richness of the free energy landscape of disordered systems poses great challenges to 
the statistical physicist. As ergodicity breaks, the Gibbs measure is shattered into an 

exponential number of probability lumps (pure states).

Each pure state is characterized by the average magnetization of each spin  (confront this 
with an Ising model, where each site has the same average magnetization). Traditional order 

parameters cannot aid us to sort this mess. On top of this, we must average over disorder (the 
different realizations of the memories)

{⟨σi⟩}

We can introduce “replicas”: we will study a system composed of n weakly coupled copies of 
the original system.  The alignment among those replicas can give us important 

information on the structure of the pure states. We don’t need to guess the appropriate 
local field.



The full phase space diagram can be computed with the tools of spin glass physics

Free energy



The performance of the network is measured in by the average overlap between stored 
memories  and the configuration  reached by the dynamics when starting from the exact 

memories: 
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A high value of  means that the 
random motion in configuration 
space is limited to a tight region 

centered on the memory, i.e. 
memories have finite basins of 

attraction (error correcting 
performance).

⟨ω⟩

⟨ω
⟩



And now some fun: should 
an artificial brain sleep?



In the same year Hopfield, Feinstein and Palmer independently come up with an inverse learning 
procedure mimicking the biological dreaming process, as seen by Crick and Mitchison.

•Initalize  according to Hebb’s learning rule 


•Pick at random a starting configuration for the dynamics


•Evolve the initial configuration following zero temperature dynamics 

until convergence


•Update the connectivity matrix
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Why does it work?

Memories 
become 

fixed points 

Spurious 
minima 

disappear



This kind of “perfect retrival” is more common among supervised algorithms. Gardner's algorithm is a 
famous example:

Guaranteed to converge whenever a 
solution exists!

Stability

Mask



A intuitive way to visualize the progress over “time” of the algorithm is studying the evolution 
of stabilities...



...and the attraction basins obtained.

The two algorithms perform 
indistinguishably in their 

respective optimal regimes 

Is there a theoretical framework 
explaining this surprising 
correspondence between 

supervised and unsupervised 
algorithms? If you know one, call 

me at 320 3141657



Take-home messages

• Even the crudest models of the brain can benefit in 
surprising ways from educated guesses based on 
biology.


• Statistical mechanics and in particular disordered 
systems physics provide a very successful toolbox to 
tackle analytically models of the brain. 




