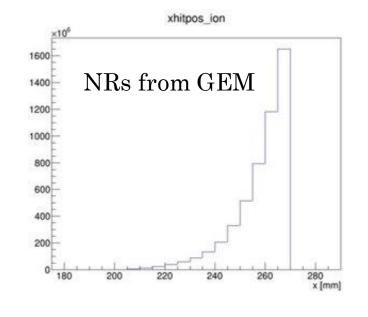
LIME background simulation

CYGNO simulation meeting – 21/10/2021


F. Di Giambattista

Simulation tasks – background

LIME internal background

- GEM done and analysed
- Acrylic box done and analysed
- Field cage done (to be analysed)
- Resistors to do ($\sim 200 \text{ hr}$)
- Cathode to do (\sim 200 hr)
- PMT, GEM supports, internal structure... to do (?)
- Copper and resistors activity is being measured by

M.Laubenstein

Contribution	$10^5 \mathrm{ER/yr} \ (0\text{-}20 \ \mathrm{keV})$	10 ⁵ ER/yr (all)	NR/yr (0-20 keV)	NR/yr (all)
GEMs	0.69129	3.83753	311.62	17573.0
Acrylic Box	0.5245	2.7054	0	0

Note: for the acrylic box Po212 is missing because the simulation stopped (alpha 8.8 MeV)

Simulation tasks

- For the camera body+lens simulation I need the CAD design of the shielding
- SRIM ion simulation
 - Carbon and fluorine ions simulation for 12, 14, 16, 18, 20, 22, 24, 26, 28, 35, 40, 45, 50, 55 keV (to match the simulated He energies) done
 - The computed ionization profiles are all uploaded on LNGS cluster
- **Digitization NR tracks** 1000 ions, random drift, random direction
 - Done for 1,3,6,10,30,60,100 keV for He, C and F + 12, 14, 16, 18, 20, 22, 24, 26, 28, 35, 40, 45, 50, 55 keV for He
 - Digitization of C and F at 12, 14, 16, 18, 20, 22, 24, 26, 28, 35, 40, 45, 50, 55 keV (ongoing)
 - I tried to run the reconstruction code on LNGS cluster but it gets stuck

Neutron simulation

- I got some interesting comments on my presentation for the admission to the 3rd year of PhD
- (a,n) reactions inside the shieldings can become significant, they must be taken into account
- GEANT4 is not the best program for neutron yield calculation (problems especially at low energy)
 - MCNP (Monte Carlo N-Particle) Transport Code, is usually used for neutron transport and interaction
 - SOURCES4C A Code for Calculating (α,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra
 - SaG4n GEANT4 tool for (a,xn) simulations http://win.ciemat.es/SaG4n/
 - MUSUN (MUon Simulations UNderground)
 - We could also do a simulation of the expected neutron spectrum underground to be compared with the future measurement