INFN Looking for Dark Photons with the ATLAS experiment elena.pompapacchi@uniroma1.it

Outline

- The ATLAS experiment at LHC
- Dark matter evidences and the Dark Sector
- Prompt, displaced and very displaced dark photons searches at the ATLAS experiment
- Conclusions

Argentina Armenia Australia Austria Azerbaijan Belarus Brazil Canada Chile China Colombia Czech Republic South Africa Denmark France Georgia Germany Greece Israel Italy Japan Mongolia Morocco

Netherlands Norway Philippines Poland Portugal Romania Russia Serbia Slovakia Slovenia Spain Sweden Switzerland Taiwan Turkey UAE UK USA CERN JINR

ATLAS Collaboration 182 institutions (243 institutes) from 41 countries

Getting to know LHC (Large Hadron Collider)

LHC is a 27km pp synchrotron collider ($f_{rev} = 11$ kHz), sited 100m underground near Geneva.

Around each of the four Interaction Points (IPs) there is an experiment: ALICE, ATLAS, CMS and LHCb.

Three fundamental machine parameters for LHC discovery potential:

- The luminosity $L \sim$ total number of pp collision has to be maximised
- The center of mass energy $\sqrt{s} = 2E_f$ (E_f beam energy)
- **Pile-Up** (PU) (multiple interactions occurring "at the same time" in the IP) has to be minimised.

Important to maximise \mathscr{L} without increasing PU too much!!

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

The collision takes place among partons thus p_{τ}^{ι} is unknown! \rightarrow variables invariant under boost over the z axis are used

$$\bullet \quad p_{\rm T} = \sqrt{p_x^2 + p_y^2}$$

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

Main purpose for its construction?

The discovery of the **Higgs boson!**

The collision takes place among partons thus p_z^i is unknown! \rightarrow variables invariant under boost over the z axis are used

$$p_{\rm T} = \sqrt{p_x^2 + p_y^2}$$

 φ •

• $E_{\mathrm{T}}^{\mathrm{miss}}$

ATLAS: multi-purpose barrel-shaped detector with a backward-forward cylindrical symmetry with respect to the IP.

It is 44 m long, 25 m high and weights more than 7000 tons.

Main purpose for its construction?

The discovery of the **Higgs boson!**

- And they did it (in 2012)!

The collision takes place among partons thus p_z^i is unknown! \rightarrow variables invariant under boost over the z axis are used

$$p_{\rm T} = \sqrt{p_x^2 + p_y^2}$$

- φ \bullet
- $E_{\mathrm{T}}^{\mathrm{miss}}$

A detector that detects almost everything?

Set of sub-detectors devoted to a precise kind of particles, distinguished according to their interaction with the detectors.

Naive examples:

An electron interacts mostly with the ID and with the ECAL \rightarrow a particle that interacts mostly with the ID and with the ECAL is reconstructed as an electron!

Attention: **jets** := groups of highly collimated hadrons and other particles (reconstructed as energy deposits in the calorimeters).

What do we do in ATLAS?

5500 members (1200 PhD students!)

We don't work all on the same search. ATLAS is a multi-purpose detector \rightarrow various searches are carried out. Two macro-categories:

- lacksquare
- <u>New Physics searches</u> \rightarrow it is looked for events that could be interpreted in terms of BSM

- Collect data
- 2. How the desired event will look (what signature) in ATLAS? \rightarrow knowing the background processes
- 3. MC simulation both for background and signal
- Find discriminating variables between signal and background

<u>Precision measurement</u> \rightarrow it is looked for deviations on SM predicted values (such as $\Gamma_{\rm H}$)

What do we do in ATLAS?

5500 members (1200 PhD students!)

We don't work all on the same search. ATLAS is a multi-purpose detector \rightarrow various searches are carried out. Two macro-categories:

lacksquare

- Collect data
- 2. How the desired event will look (what signature) in ATLAS? \rightarrow knowing the background processes
- 3. MC simulation both for background and signal
- Find discriminating variables between signal and background

<u>Precision measurement</u> \rightarrow it is looked for deviations on SM predicted values (such as $\Gamma_{\rm H}$)

<u>New Physics</u>:

5. Look in data for excess of events wrt to SM MC prediction that can be interpreted in terms of new physics

Dark matter evidence in a nutshell

Evidence that "something is not working" ranges from the galactic to the cosmological scale.

hopefully "weakly") with ordinary matter $\rightarrow 81\%$ of matter is Dark Matter!!!

All this evidence points to the existence of a Dark Matter that interacts gravitationally (and

Accessing the Dark Sector through portals

Investigated possibility: Dark Matter could constitute a whole new **Dark Sector** of particles.

Minimal Dark Sector model: $U(1)_d$ symmetry spontaneously broken by a Dark Higgs (S) mechanism \rightarrow the interaction is short range, the γ_d is massive and decays.

Minimal assumption: "portal" between the dark and the visible sector is needed \rightarrow vector portal (mixing between γ_d and γ).

 ε mixing parameter

Accessing the Dark Sector through portals

Investigated possibility: Dark Matter could constitute a whole new **Dark Sector** of particles.

Minimal Dark Sector model: $U(1)_d$ symmetry spontaneously broken by a Dark Higgs (S) mechanism \rightarrow the interaction is short range, the γ_d is massive and decays.

Minimal assumption: "portal" between the dark and the visible sector is needed \rightarrow vector portal (mixing between γ_d and γ).

 ε mixing parameter

Can the Higgs decay into Dark Matter?

In ATLAS $B(H \rightarrow und) \le 19\%$ has been measured \rightarrow there is room for the Higgs boson to decay into Dark Matter!

Dark Sector Model with both a vector and an Higgs portal is studied in ATLAS.

$$S|S|^{2} - \mu^{2}|\phi|^{2} + \lambda|\phi|^{2} + k|\phi|^{2}|S|^{2}$$

Higgs mixing term $k \leftrightarrow B(H \rightarrow und)$ mixing parameter

The benchmark signature

The free parameters of the Dark Sector model that we want to probe are:

- $B(H \rightarrow und)$ (which is constrained by other measurements);
- ε $(\tau_{\gamma_d} \propto \varepsilon^{-2});$
- m_{γ_d} .

In ATLAS a benchmark signature (FRVZ) is studied to investigate this model.

If no evidence of Dark Photons is found this would translate in excluded regions in the 3D free parameters space.

$$\mathscr{L} = -\frac{1}{4} V_{d_{\mu\nu}} V_d^{\mu\nu} \left[-\frac{\varepsilon}{2} V_{d_{\mu\nu}} F_d^{\mu\nu} - \mu_S^2 |S|^2 + \lambda_S |S|^2 - \mu^2 |\phi|^2 + \lambda |\phi|^2 + k |\phi|^2 |S|^2 \right]$$

Interaction term ε mixing parameter

Higgs mixing term parameter

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Track **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

Tracke **ECA** HCAL **Muon System** ~10m

The values of the free parameters what influence what we would see:

Impact on the signatures in the ATLAS detector!

According to τ_{γ_d} completely different signatures arise! \rightarrow Searches are divided in:

- **Prompt** searches;
- **Displaced** searches; 0
- Very displaced searches.

Prompt Dark Photon searches

Electrons and muons reconstructed in the **conventional way** (electrons interact with ECAL and ID while muons with MS and ID)

- Only $\gamma_d \rightarrow \mu^+ \mu^-$ or $\gamma_d \rightarrow e^+ e^-$ considered;
- Results based on data collected in Run 1 L = 20.3 fb⁻¹;

S and B.

• <u>Signature</u>: at least **2 Dark Photon Jets** (μ DPJ, at least 2μ , and eDPJ, at least 1e);

<u>Main background</u>: multi-jets and $Z(\rightarrow l^+l^-) + jets \rightarrow variables$ (such as $f_{\rm EM}$, $E_{\rm T}^{had}$) to distinguish

Displaced Dark Photon searches

Electrons and muons reconstructed **NOT** in the conventional way (<u>electrons</u> interact with ECAL and **not** ID \rightarrow reconstructed as jets, while muons with MS and not ID)

- All γ_d decay modes are considered;

<u>Signature</u>: at least **2 Dark Photon Jets** (μ DPJ, at least 2μ , and hDPJ, at least 1 jet);

<u>Main background</u>: multi-jets (jets mistaken as hDPJ) Beam Induced Background (BIB) and cosmic Main background: multi-jets (jets mistaken as μ DPJ) \rightarrow variables (such as $\frac{E_{ECAL}}{E_{tot}}$, $\Delta t_{jet-collision}$) to distinguish S

from B.

• Results based on data collected in early Run 2 (2015-2016) $L = 36.1 \text{ fb}^{-1}$;

Very displaced Dark Photon searches

• All γ_d decay modes are considered;

• Results based on data collected in Run 2 L = 139fb^{-1} ;

only be evaluated through MC.

Monojet – Muonic channel Hadronic channel Mixed channel All channels EPJC 80 (2020) 450 Muonic channel Hadronic channel - - Mixed channel arXiv:2102.10874 H → inv (Monojet) ATLAS-CONF-2020-052 $H \rightarrow inv$ (Combination) 10³ 10⁵ 10⁴ Dark photon $c\tau$ [mm]

Signature: $E_{\rm T}^{\rm miss}$ as γ_d decay outside ATLAS (+ jet with high $p_{\rm T}$);

<u>Main background</u>: multi-jets (low E_{T}^{miss} , jets not properly reconstructed) $Z(\nu \bar{\nu}) + jets$ (ν is invisible for ATLAS, irreducible) \rightarrow low number of jets $+\Delta \varphi_{jet-E_{T}^{min}}^{min}$ required to reduce multi-jets, $Z(\nu \bar{\nu}) + jets$ can

> Look for excess in data wrt residual SM background \rightarrow no excess is found, results in terms of excluded region in the parameter space.

> > Assuming $B(H \rightarrow 2\gamma_d + X) = 50\%$ $c\tau_{v_{i}} > 100$ mm is excluded!

Previous results shown separately for the various searches and for $m_{\gamma_A} = 0.4 \text{GeV}$ can be seen altogether in the $(\varepsilon, m_{\gamma_d})$ plane, where assuming a $B(H \rightarrow 2\gamma_d + X)$ excluded regions are found.

Previous results shown separately for the various searches and for $m_{\gamma_{J}} = 0.4 \text{GeV}$ can be seen altogether in the $(\varepsilon, m_{\gamma_d})$ plane, where assuming a $B(H \rightarrow 2\gamma_d + X)$ excluded regions are found.

Remembering that $\tau_{\gamma_d} \propto \varepsilon^{-2}$ excluded area found by the searches which look for:

Previous results shown separately for the various searches and for $m_{\gamma_A} = 0.4 \text{GeV}$ can be seen altogether in the $(\varepsilon, m_{\gamma_d})$ plane, where assuming a $B(H \rightarrow 2\gamma_d + X)$ excluded regions are found.

Remembering that $\tau_{\gamma_d} \propto \varepsilon^{-2}$ excluded area found by the searches which look for:

• prompt decays of the γ_d

Previous results shown separately for the various searches and for $m_{\gamma_{J}} = 0.4 \text{GeV}$ can be seen altogether in the $(\varepsilon, m_{\gamma_d})$ plane, where assuming a $B(H \rightarrow 2\gamma_d + X)$ excluded regions are found.

Remembering that $\tau_{\gamma_{d}} \propto \epsilon^{-2}$ excluded area found by the searches which look for:

- prompt decays of the γ_d
- displaced decays of the γ_d

Previous results shown separately for the various searches and for $m_{\gamma_d} = 0.4 \text{GeV}$ can be seen altogether in the $(\varepsilon, m_{\gamma_d})$ plane, where assuming a $B(H \rightarrow 2\gamma_d + X)$ excluded regions are found.

Remembering that $\tau_{\gamma_A} \propto \varepsilon^{-2}$ excluded area found by the searches which look for:

- prompt decays of the γ_d
- displaced decays of the γ_d
- very displaced decays of the

Conclusions and outlook

The possibility that Dark Matter constitutes a new Dark Sector is investigated by various experiments, like ATLAS at the LHC.

The minimal model of the Dark Sector foresees an interaction similar to the EM one mediated by the γ_d which is massive and decays into SM particles.

In ATLAS γ_d could have been produced through Higgs boson decays as $B(H \rightarrow und) \leq 19\%$, so three searches for γ_d exist, according to its $\tau_{\gamma_{J}}$: prompt, displaced and very displaced searches.

No deviations of SM predictions are observed \rightarrow constraints on the free parameters of the model.

What is next?

New results from the displaced group are about to come (brace yourself!) and a new group has taken over the prompt searches (hopefully exciting news from my side ;))

To dig deeper: https://arxiv.org/abs/1511.05542 https://cds.cern.ch/record/2772627?ln=it https://arxiv.org/pdf/1909.01246.pdf

Thank you for your attention!

Backup slides

Is every event stored?

During Run 2 bunches injected every 25 ns \rightarrow bunches collisions rate was 40MHz rate $\rightarrow \sim 1.7$ billions proton-proton collisions per second \rightarrow 60 TB per second!

Not possible storing this amount of data + and often events are not physically interesting \rightarrow some data thrown away.

The decision about keeping/throwing events is made by the **trigger system (L1 + HLT)**.

Triggers are defined to select events with particular characteristics (for example HLT_mu50 requires at least one HLT muon with $p_{\rm T} > 50 {\rm GeV}$).

How much Dark Matter there is?

Cosmological scale

From the CMB power spectrum it is possible to derive the matter content of the Universe:

How much Dark Matter there is?

Cosmological scale

From the CMB power spectrum it is possible to derive the matter content of the Universe:

