# **ARCADIA**

... and Future Vertex Detector R&D



Manuel Rolo (INFN), on behalf of the ARCADIA Collaboration





## **ARCADIA (INFN CSNV Call Project)**

#### Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays



Creation of a novel platform for the implementation of innovative monolithic sensors compatible with standard CMOS fabrication processes

- ▶ Challenge: deployment of large-area system-grade CMOS sensors implementing scalable readout architectures with ultra-low power capability (O(10 mW/cm2))
- Technology: LFoundry 110nm CMOS node, quad-well, high-resistivity bulk
- $\triangleright$  Active sensor thickness in the range 50  $\mu$ m to 500  $\mu$ m
- Operation in full depletion with fast charge collection only by drift
- **▶** Small charge collecting electrode for optimal signal-to-noise ratio



## **ARCADIA-MD1: Main Demonstrator Chip**





- Pixel size 25 μm x 25 μm, Matrix core 512 x 512, 1.28 x 1.28 cm² silicon active area, "side-abuttable"
- Triggerless binary data readout, event rate up to 100 MHz/cm<sup>2</sup>
- First Engineering Run (SPW incl. MD1) tapeout 11/2020, silicon being tested
- **2<sup>nd</sup> full CMOS maskset** mid-2021 (incl. *MD2*) currently on last metal BEOL, fab out expected January 2022
- **3rd SPW mid-2022** with design fixes (incl. *MD3*), explorative sensor and CMOS designs, new architectures with higher data throughput, test chips for fast timing (R&D on sensors and electronics already started with 2nd SPW)

## **ARCADIA-MD1: Chip Floorplan**





## **Top Padframe**

Auxiliary supply, IR Drop Measure

#### **Matrix**

512x512 pixels, Double Column arrangement

## End of Sector (x16)

Reads and Configures 512x32 pixels

## Sector Biasing (x16)

Generates I/V biases for 512x32 pixels

## **Periphery**

SPI, Configuration, 8b10b enc, Serializers

#### **Bottom Padframe**

Stacked Power and Signal pads

# **ARCADIA-MD1: Integration**







- Digital-on-top integration, ICC2 flow developed by the Collaboration
- \* Each 2x512 Column is composed of 2x32-pixel Cores (the minimum synthesisable entity)
- \* ALPIDE/BULKDRIVEN front-ends on MD1a and MD1b
- \* Clock-less matrix integrated on a power-oriented flow

# **ARCADIA-MD1: Peripheral Dataflow**



- Each Column (32x512 pixels) has a dedicated readout link in High Rate Mode
- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs<sup>(\*)</sup> are powered off in order to reduce power consumption.



## ARCADIA-MD1: silicon from 1st run





- **▶** First samples of **ARCADIA-MD1 powered-on** this summer
- Later-than-tapeout simulations identified bug on pad frame connections, simple to solve with FIB
- First data looks good & sensor depletion OK



# Front-end FEB-MD1 and breakout boards (INFN)







- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Connection to external low jitter Clock (via SMA connectors)
- High voltage to the DMAPS backside or (wirebonded) to pads on top
- Independent LDOs for IO Buffers, Analog Core, Digital Core
- PCB through-hole for matrix BSI
- custom FMC-to-Firefly breakout board

G. Balbi [INFN-BO] M. Mignone [INFN-TO]

# DAQ Hardware for the MD1 E-Kit





#### oscilloscope







**FEB** cards

Samtec Firefly cables (20 cm - 50 cm - 100 cm - 200 cm)





D. Falchieri [INFN-BO]

## MD1: check-list from electrical tests



- ☑ Chip configuration write/readback
- **☑** Space Mode enable/disable
- ☑ Clock Gating and Clock Dividers
- ☑ Digital Injection
- ✓ LVDS SER1-15 enable/disable
- Test Pulse connectivity
- ☑ Analog FE bias and threshold scan



- ☑ Soft (SPI-enabled) and Hard (through Ext pin) Resets
- tests with analogue front-end ongoing:
  - test pulse charge injection with FE, s-curves, FE baseline map, noise measurements, depletion studies
  - next: characterisation with radioactive sources and laser

## MD1: first very preliminary data

11





S. Garbolino, A. Paternò [INFN-TO]

## Pixel/Strip Test Structures





#### strips come in different flavours:

12

- 25  $\mu$ m pitch pixelated + 25  $\mu$ m continuous (10+10) [2 variants]
- 10 μm pixelated (4 groups of 12 strips connected to pads) [4 variants]

#### and pixels as well:

- Pseudo-Matrices of 1x1 and 2x2 mm<sup>2</sup>
- 50 μm (5 variants)
- 25 μm (3 variants)
- 10 μm (6 variants)

L. Pancheri [TIFPA]

## **Depletion Studies**



| Group                                                  | thickness      | Vdepl    | Vpt       |
|--------------------------------------------------------|----------------|----------|-----------|
| GROUP 1: wafer #06 and #07 (BSI 8µm n- epi 1E14 / N-   | 200µm          | 87 – 102 | 105 – 111 |
| GROUP 2: wafer #02 and #03 (FSI 8µm n- epi 1E14 / N-   | 100µm no litho | 20 – 30  | 36 – 39   |
| GROUP 3: wafer #15 and #16* (BSI 7μm n- epi 1E14 /N-   | 200µm          | 50 - 66  | 66 – 76   |
| GROUP 4: wafer #10 and #12 (FSI 7μm n- epi 1E14 /N-    | 100µm no litho | 9 – 18   | 20 – 25   |
| GROUP 5: wafer #20 and #24 (FSI 8μm n-epi 1 40 μm / P+ | 300µm          | 21 – 23  | 24 – 26   |
| GROUP 6: wafer #22 and #23 (FSI 8μm n-epi 1 40 μm / P+ | 100µm          | 20 – 30  | 24 – 33   |

note:  $V_{depl}$  and  $V_{PT}$  ranges are reported in absolute value





T. Corradino [TIFPA]

## Status of silicon testing - 1st SPW



Measurements on bonded test structures (first non-irradiated and then irradiated with xrays and neutrons), front-side and back side

#### now

11/21

IV curves with temperature, extraction of depletion, punch-through voltages, dark current and capacitance, first laser tests

- Charge collection with focused pulsed laser (back-side). On pixels: only signal evolution with time and position of the laser spot. On strips: charge sharing is also possible.
- Lab. sources. (top-side and back-side)

#### Characterisation of the ARCADIA-MD1

- functional and electrical characterisation (basic functionalities with on-chip test pulse and hit injection, s-curves, threshold calibration, rate assessment)
- laser scans with red and IR light (CCE vs bias voltage, uniformity, clustering and resolution)
- tests with x-ray and radioactive sources (55Fe, 241Am, 90Sr)
- cosmic ray stand (sync and event building, efficiency, resolution) and beam tests with MD1 telescopes

now

12/21

mid-22

M. Caccia [INFN-MI]

## Multi-plane MD1 Telescope Configuration





15

## ARCADIA-MD2



A second main demonstrator (codename ARCADIA-MD2) has been submitted in Summer 2021, featuring design and architecture improvements targeting power reduction, scalability.

- \* 16x2 pixel Cores, 8 Cores in the Matrix
- \* Logic and buffering optimization -> Acknowledge signal propagates 7 times faster!
  - \* Simulations validated matrices up to 8192 pixels high
- Power optimization in the periphery
- 1 GHz DDR serializer -> 2Gbps bandwidth!
- Now in foundry, expected dies in January 2022.

# Figure: CAD Layout of 2x32x50µm pixelised strips

17

# **CMOS Embedded Si-strip and readout**



- Design and Production of continuous and "pixelised" strips, range 10 100μm pitch
- Proof-of-concept: CMOS monolithic strip block and readout electronics



Figure: (top) detail of 2x32x50µm pixelised strips and (bottom) 32-channel custom readc

## ARCADIA CMOS DMAPS at CEPC



https://indico.ihep.ac.cn/event/15229/session/6/contribution/3/material/slides/3.pdf



# ARCADIA at AlDAinnova WP5 - Depleted Monolithic Active Pixel Sensors



# Development of next generation monolithic CMOS devices.

- Develop a demonstrator system that can be used in future experiments and upgrades
- Improvements in many directions: timing, thickness, speed, power, area, bendability,...
- Arcadia++ more focused on future colliders: ALICE LS3, Higgs factories (FCC, CEPC)
- Project started April 2021, 4 Years.

19

## Expression of Interest for participating in the H2020 Innovation Pilot on detector technologies at accelerators

| Name of the legal entity                                                                               | Type (university, institute, laboratory, company)                                    | Country                                                                               |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| INFN – BO, MI, PD, PV, PG,<br>TIFPA, TO                                                                | Institute                                                                            | Italy                                                                                 |  |
| Univ. Oxford                                                                                           | University                                                                           | England                                                                               |  |
| PSI                                                                                                    | Institute                                                                            | Switzerland                                                                           |  |
| ЕТН                                                                                                    | Institute                                                                            | Switzerland                                                                           |  |
| Univ. Zurich                                                                                           | University                                                                           | Switzerland                                                                           |  |
| IHEP                                                                                                   | Institute                                                                            | China                                                                                 |  |
|                                                                                                        |                                                                                      |                                                                                       |  |
| Contacts: One name + e-mail per Participating institute/company                                        | Main contact person                                                                  | E-mail                                                                                |  |
| Participating institute/company                                                                        |                                                                                      | E-mail darochar@to.infn.it                                                            |  |
| Participating institute/company INFN                                                                   | Main contact person                                                                  |                                                                                       |  |
| Participating institute/company INFN Univ. Oxford                                                      | Main contact person  Manuel Da Rocha Rolo                                            | darochar@to.infn.it                                                                   |  |
| Participating institute/company INFN Univ. Oxford PSI                                                  | Main contact person  Manuel Da Rocha Rolo  Daniela Bortoletto                        | darochar@to.infn.it daniela.bortoletto@physics.ox.ac.uk                               |  |
| Contacts: One name + e-mail per Participating institute/company INFN Univ. Oxford PSI ETH Univ. Zurich | Main contact person  Manuel Da Rocha Rolo  Daniela Bortoletto  Hans-Christian Kästli | darochar@to.infn.it daniela.bortoletto@physics.ox.ac.uk hans-christian.kaestli@psi.ch |  |

## **Depleted MAPS for Future Colliders**



|                                          | RHIC<br>STAR | LHC - ALICE ITS  | CLIC   | HL-LHC<br>Outer Pixel | HL-LHC<br>Inner Pixel | FCC pp    |
|------------------------------------------|--------------|------------------|--------|-----------------------|-----------------------|-----------|
| NIEL [n <sub>eq</sub> /cm <sup>2</sup> ] | 1012         | 10 <sup>13</sup> | <1012  | 10 <sup>15</sup>      | 10 <sup>16</sup>      | 1015-1017 |
| TID                                      | 0.2Mrad      | <3Mrad           | <1Mrad | 80 Mrad               | 2x500Mrad             | >1Grad    |
| Hit rate [MHz/cm <sup>2</sup> ]          | 0.4          | 10               | <0.3   | 100-200               | 2000                  | 200-20000 |

Heinz Pernegger, Vertex 2018

- Hit rate and radiation hardness for Frontier Detectors could require improvements of ~2 orders of magnitude in respect to the state-of-the-art technology
  - Charge collection by drift: faster signals, better radiation hardness
  - New architectures for higher event rate capability
  - \* Advanced integration and interconnect technology for large sensor area and lightweight modules

## **Future R&D: Thinner Silicon**



#### Technology:

- Course + fine grinding
- · Critical: thinning damage, impact on devices
- Wafer handling:
- Very thin wafers (< 100 um): use</li> of carrier wafers and temporary wafer (de-)bonding technology
- IMEC results:
- Thinning down to 15 um
- Total thickness variation ~ 2 um on 200 mm wafer

P. De Moor (IMEC)







50 µm thin 300 mm Silicon Interposer Wafer with Cu-RDI metallisation, Source: Fraunhofer I7M







RD FCC collaboration meeting 2021-12-15

Wafer-scale ultra-thin (< 20 µm) stitched MAPS could bend into a cylindrical mechanically stable self-supporting shape:



# Wafer Thinning, applied to MAPS

INFN

or... µITS3, i.e. 6 ALPIDEs at ITS3 radii

ALICE ITS3 working group demonstrated the bending, operation and performance of thinned MAPS, using 1.5 cm × 3 cm ALPIDE chips, and system studies towards the integration of wafer-scale sensors

- bent to radii of about 2cm without any signs of mechanical or electrical damage
- characterisation using a 5.4 GeV electron beam, detection efficiencies above 99.9 % at typical operating conditions
- 3-layer integration successful using
   50 µm dummy Silicon

<u>arxiv:2105.13000</u> "First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors"











Magnus Mager CEPC2021

# Trending up: going "green"









Observations:

23

- Si makes only 1/7th of total material
- irregularities due to support/cooling
- Removal of water cooling
  - possible if power consumption stays below 20 mW/cm<sup>2</sup>

- Removal of the circuit board (power+data)
  - possible if integrated on chip
- Removal of mechanical support
  - benefit from increased stiffness by rolling Si wafers

**Power needs to be lowered to O(20mW/cm²)** 

# Trending up: Bigger, Stitched Silicon





24





- (left) Example of a wafer-scale imaging sensor chip for X-Ray applications developed at RAL (UK)
- \* 139 x 120 mm CIS, Towerjazz 180nm on 200 mm (8") wafers, 1 sensor per wafer
- 2D Stitching paves the way for all-silicon CMOS monolithic APS as active interposers: substrate handles signal, power and data interconnects, enabling the development of ultra-low material budget trackers;
- particularly interesting assuming 12" wafers, very low power (no water cooling) and no mechanical support for an only-silicon inner tracker in future HEP colliders. Different considerations may apply for an outer Si-tracker...

## **Cost and Yield considerations** (my favourite slide on)





Cost of \$100,000/m<sup>2</sup> tracking area is achievable with the following assumptions

- > 75% Yield
- No stitching

25

Wafer cost <\$2,000 (only achievable using high volume CMOS manufacturing)</li>

## **Summary**

26



- **★ ARCADIA** secured a total budget of 1.4 M€ and is extended to end 2022 with several groups working on:
  - Sensor R&D and Technology
  - CMOS IP Design and Chip Integration
  - Data Acquisition for electrical characterisation and beam tests with multi-chip telescopes
  - Radiation Hardness qualification
  - System-level characterisation for Medical (pCT), Future Leptonic Colliders and Space Instruments

#### \* ARCADIA Status and Schedule for 2022

- ARCADIA-MD1 submitted in October 2020, first dies in June 2021
- 1st SPW run included 800 mm2 of innovative DMAPS, sensor and CMOS technology (tests on sensors are ok, tests on all digital and analog features confirmed the expected functionality)
- 2nd run mid-2021: in foundry, 3rd run scheduled for mid-2022;



## ... and Outlook



- \*\* CMOS Depleted monolithic pixel (and strip) sensors are now a strong candidate both for future low material budget silicon trackers and for timing layers, with investment and R&D mostly focusing on:
  - very low-power architectures 0 (20 mW/cm²)
  - process engineering for better time resolution 0 (100 ps) or better
  - larger and thinner chips towards all/only-silicon inner trackers
- \*\* We need to foster access to advanced technologies and foundries, and make a good use of the most advanced integration and industry standard wafer stacking/bonding techniques

# Thank you for your time!



