Status of the $B_s \rightarrow D_s K^{\mp}$ benchmark analysis

Marco Scodeggio

Dipartimento di Fisica e Scienze della Terra

RD_FCC Collaboration Meeting December 2021

Istituto Nazionale di Fisica Nucleare

Outline:

- Brief comment on the analysis tools Tools
 - Troubleshooting

Outline:

- Brief comment on the analysis tools Tools
 - Troubleshooting

DISCLAIMER

This section will be tailored around my experience

This implies that anyone else can find other problems or difficulties, or not find them at all

Outline:

- Brief comment on the analysis tools Tools
 - Troubleshooting
- Analysis
 - Motivation
 - Status
 - Outlook

DISCLAIMER

This section will be tailored around my experience

This implies that anyone else can find other problems or difficulties, or not find them at all

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

key4hep/EDM4hep

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

key4hep/EDM4hep

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

A Doxygen might be of help, but digging around on GitHub (HEP-FCC/FCCAnalyses) helps fine either

key4hep/EDM4hep

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

A Doxygen might be of help, but digging around on GitHub (HEP-FCC/FCCAnalyses) helps fine either

Might be a bit tricky as it subdivided into 3 parts Preselection \rightarrow Event selection on your samples Selection \rightarrow Produce ntuples Plotting \rightarrow Well, it's just plotting

key4hep/EDM4hep

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

A Doxygen might be of help, but digging around on GitHub (HEP-FCC/FCCAnalyses) helps fine either

Might be a bit tricky as it subdivided into 3 parts Preselection \rightarrow Event selection on your samples Selection \rightarrow Produce ntuples Plotting \rightarrow Well, it's just plotting

Other bits of information can be found in hep-fcc.github.io/FCCeePhysicsPerformance

key4hep/EDM4hep

Producing datasets

That's where I had a bit more of a trouble

Just because I did not know where to look for decay cards (i.e, CHANNEL.DEC)

Ask to those-who-know (they exist!)

HEP-FCC/FCC-config/tree/dev/FCCee/Generator/EvtGen

NB wrt what's written in the "FCC Starterkit" is outdated some updates can be found in Ref. [1]

Just discussing analysis and fast-sim related problems (i.e., involving k4SimDelphes)

Mostly followed the "FCC Starterkit" Quite self-explanatory

A Doxygen might be of help, but digging around on GitHub (HEP-FCC/FCCAnalyses) helps fine either

Might be a bit tricky as it subdivided into 3 parts Preselection \rightarrow Event selection on your samples Selection \rightarrow Produce ntuples Plotting \rightarrow Well, it's just plotting

Other bits of information can be found in hep-fcc.github.io/FCCeePhysicsPerformance

ANALS

Motivation (1)

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Analyse a physics benchmark channel connected with the interests of the PiFE group Starting with a fast-sim, and then (in a far far away future?) move to a full-sim

Motivation (1)

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

$$B_{s}^{0} \rightarrow D_{s}^{\pm} K^{\mp}$$
$$B_{s} \rightarrow J/\psi \varphi$$

- DCH Rin = 35 cm These will give me the possibility to test the IDEA tracking system features with a full simulation
 - The channels have as well the potential to investigate the properties of the calorimeter

13

Motivation (2)

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

As already mentioned the studied decays are:

1. $B_s \rightarrow D_s K^{\mp}$ $B_s \rightarrow J/\psi \phi$

Motivation (2)

Status of the $B_s \rightarrow D_s K^{\mp}$ benchmark analysis - M. Scodeggio

As already mentioned the studied decays are:

1.
$$B_{s}^{0} \rightarrow D_{s}^{\pm}K^{\mp}$$

2. $B_{s}^{0} \rightarrow J/\psi \phi$

with the final objective (for the fast-sim) to estimate $\varphi_{CKM} = \gamma (+ \gamma_{ds}) - 2\beta_s$ and $2\beta_s$

From 2., $\varphi_{CP}(J/\psi \phi) = \pi + 2\beta_s$ From 1., $\varphi_{CKM}(D_sK) = \pi - (a_s - \beta_s)$ Using $a_s = \gamma - \beta_s + \gamma_{ds}$ Approximating $\gamma_{ds} \sim 0$ (properly, O(10⁻³))

Motivation (2)

Status of the $B_s \rightarrow D_s K^{\mp}$ benchmark analysis - M. Scodeggio

With 75 (310) billion of $B_s^0(B^0)$, $\sigma(\gamma) \sim 0.4^\circ$ and $\sigma(\beta_s) \sim (3.4^\circ \times 10^{-2} \text{ on } \beta_s)$ These can be compared with the present measurements...

$$\gamma = (72.1^{+4.1}_{-4.5})^{\circ} \qquad 2\beta_s = 0.051 \pm 0.023$$

From $B_s \rightarrow J/\psi \phi$, $\phi_{CP}(J/\psi\phi) = \pi + 2\beta_s$ From $B^0_s \rightarrow D^{\pm}_s K^{\mp}$, $\phi_{CKM}(D_s K) = \pi - (a_s - \beta_s)$ Using $a_s = \gamma - \beta_s + \gamma_{ds}$ Approximating $\gamma_{ds} \sim 0$ (properly, O(10⁻³))

De

Ei Cl

Eı

End

Exclusive $Z \rightarrow b\overline{b}$ with – 10k events @ $\sqrt{s} = 91.188 \text{ GeV}$

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

Signal MC sample

$B_{S} \rightarrow D_{S} K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$

ecay B_s0 1.000 nddecay Decay anti	MyD_s- -B_s0	K+	PHSP;	
ecay MyD_s 1.000 nddecay Decay MyD_s	- K- S+	K+	pi-	D_DALITZ;

Status

1800

1600

1400

1200

1000

800

600

400

200

0

Events/0.02 GeV/c²

Identified the D[±]_s final state Simple selection

$$n_{K} = 2$$

 $n_{\Pi} = 1$
 $|Q_{Tot}| = 1$
 $Q_{KK} = 0$

NB

Despite the reco, MC truth is still used to identify the D[±]_s meson daughters

Status of the $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ benchmark analysis - M. Scodeggio

$B_{S} \rightarrow D_{S} K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$

800

700

600

500

400

300

200

100

Events/0.10 (GeV/c²)

Purely combinatorial

Combine the **D**[±]_s candidates with the **K**⁺ requesting

 $|Q_{Tot}| = 1$

Status

$B_{s} \rightarrow D_{s}K^{\mp} \rightarrow (KK\pi^{\pm})K^{\mp}$

Reconstructed B⁰_s mass

800

700

600

500

400

300

200

100

Events/0.10 (GeV/*c*²)

Purely combinatorial

Combine the **D**[±]_s candidates with the **K**⁺ requesting

$$|Q_{Tot}| = 1$$

Despite main peak clearly visible, there is a heap in the low invariant mass region

Status

$B_{s} \rightarrow D_{s} K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$

Reconstructed B⁰_s mass

$B_{S} \rightarrow D_{S} K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$

Around the end of October had a really fruitful discussion with E. Perez

Defined some objectives and "deliverables"

Prepared some DEC cards and new datasets have been centrally produced^[2] (thanks to E. Perez)

Status

Main mode	Decay chain	Background	Decay chain
Wall Mode		mode	
$B_s \rightarrow D_s^{\pm} K^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$	$B_s \rightarrow D_s^{*\pm} K^{\mp}$	$D_s^{*\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-$	"	$D_s^{*\pm} \rightarrow \gamma \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$B_s \to D_s^{\pm} K^{*\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-, K^{*\mp} \rightarrow K^{\mp} \pi^0$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0, K^{*\mp} \rightarrow K^{\mp} \pi^0$
		$B_s \rightarrow D_s^{\pm} \pi^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$B_s \to D_s^{\pm} \rho^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\mp} \rightarrow \pi^{\mp} \pi^0$
		$B^0 \rightarrow D_s^{\pm} K^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 \to D_s^- p^+$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 ightarrow D_s^{*-} p^+$	$D_s^{\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \gamma \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
	1	1	

Finally, **started the analysis** and got used with the FCCSW tools

Still making use of the MC truth **B⁰, & D[±],** mass have been **reconstructed**

Yet, clearly, more **thoughts** need to be put **into the B⁰s mass**

Next Steps

Remove the MC truth matching and use "real" reconstruction

Implement vertex reconstruction at the B_s^0 level too \rightarrow Many thanks to E. Perez

Finally, **started the analysis** and got used with the FCCSW tools

Still making use of the MC truth **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Yet, clearly, more **thoughts** need to be put **into the B⁰ mass**

Next Steps

Remove the MC truth matching and use "real" reconstruction

Implement vertex reconstruction at the B_s^0 level too \rightarrow Many thanks to E. Perez

Finally, **started the analysis** and got used with the FCCSW tools

Still making use of the MC truth **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Yet, clearly, more **thoughts** need to be put **into the B⁰ mass**

Next Steps

Remove the MC truth matching and use "real" reconstruction

Implement vertex reconstruction at the B_s^0 level too \rightarrow Many thanks to E. Perez

Finally, **started the analysis** and got used with the FCCSW tools

Still making use of the MC truth **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Yet, clearly, more **thoughts** need to be put **into the B⁰** s mass

Next Steps

Remove the MC truth matching and use "real" reconstruction

Implement vertex reconstruction at the B_s^0 level too \rightarrow Many thanks to E. Perez

Status of the $B_s \rightarrow D_s K^{\mp}$ benchmark analysis - M. Scodeggio

During discussion with E. Perez (P. Azzi was there too!)

It was decided the would be of help to **reproduce** the plots of the **B**⁰_s **reconstructed mass** on the right^[3]

Ref. [3] describes a generic FCC scenario, so it would be useful to see them within EDM4hep

Thank you for the attention!

