for the working group University of Torino RD FCC Collaboration Meeting, 15-16/12/2021 ### IDEA detector simulation ### standalone simulation + reconstruction **The IDEA** the detector the code has been implemented as a standalone software ### Key4Hep full integration **Key4hep** the software framework the bigger FA projects decided to share the efforts to have a platform, customizable & w/ common tools IDEA needs to move into Key4hep ## Key4hep A turnkey software for Future Colliders from the necessity of **many projects**, ILC, CLIC, FCC, CEPC, to have a complete software stack for **physics studies**, support all the cases (hh,ee,eh) and **detector studies**, support all the detector concepts. #### **Requirements from users** - Easy to install - Easy to use - Documented #### **Requirements from developers** - Portable to different architectures - GPU, FPGA, cloud - Parallel computing, multi-threading #### **Requirements from experiments** - Modular / Expandable / Adaptable - Detector agnostic reconstruction tools ## Key4hep **Language** - C++ / python **EDM4hep** - Event Data Model **GAUDI** - framework - from LHCb, also used elsewhere, e.g. BESIII - Marlin wrapper **DD4hep** - Detector Description geometry for simulation & reconstruction **Spack** - package manager - build, compilation, installation - CernVM-FS, from LHC, w/ dedicated repository: /cvmfs/sw.hsf.org/key4hep #### **Common reconstruction tools** • ACTS (from ATLAS), PandoraPFA (from CMS), etc. Key4hep GitHub Project https://github.com/key4hep Main documentation page https://key4hep.github.io/key4hep-doc/ ## EDM4hep - Different components of HEP experiment software have to talk to each other - The event data model defines the language for this communication - Users express their ideas in the same language vCHEP 2021 T.Madlener | EDM4hep and podio - based on LCIO & FCC edm - different objects and their interactions - both for leptonic & hadronic collisions - support multi-threading - the user is freed of any resource management duties or worries - leverages the available computing power as efficiently as possible ### PODIO #### A generic EDM toolkit - automatic code generator all code is automatically generated from a high level description in YAML format - → free the users from the implementation details - efficient I/O & simple memory layout - three layers: - (lower) POD Plain Old Data. Holds arrays of the actual data structures - (*middle*) transient objects. Handles the relations among EDM objects and manages POD objects. - (top) comprises lightweight handles to the objects & collections. - adaptable to backend, e.g. ROOT ## IDEA detector simulation ### standalone simulation + reconstruction port the geometry port the algorithms port the the data format **Key4Hep** full integration ### IDEA detector simulation ### standalone simulation + reconstruction port the geometry port the algorithms port the the data format ### Key4Hep full integration ## First step is to translate to EDM4Hep format - GEANT4 Monte Carlo hits - Standalone reconstructed tracks ### Standalone code on the stack - The standalone code was adapted for compilation on Key4hep stack (thanks to G. Tassielli) - It works with the latest key4hep stack on CERN **lxplus** machines source /cvmfs/sw.hsf.org/key4hep/setup.sh ### Everything is working with these versions Contacted Key4hep developers to plan how to distribute the code ### How to install https://github.com/lialavezzi/DriftChamberPLUSVertex/tree/uptodate #### Instructions: - Download the file install standalone.sh - Edit it and set STANDALONE INSTALL DIR to the directory where you want to install everything - · Make it executable with: chmod u+x install standalone.sh - Execute it with: ./install standalone.sh In order to run the code, go directly here ### MC hit conversion ## **GMCG4TrackerHit** original GEANT4 hit ``` G4int fTrackID; G4int fChamberNb: G4int fChannelNb: G4double fEdep; G4double fNoIEdep: G4double fGlobalTime; G4double fProperTime; G4ThreeVector fPos: G4ThreeVector fPosEnding: G4ThreeVector fMomentum: G4double fStepLength; fProcessCode; G4String ``` ``` ----- SimTrackerHit SimTrackerHit edm4hep::SimTrackerHit: EDM4Hep tracker hit Description: "Simulated tracker hit" Author: "F.Gaede, DESY" Members: - unsigned long long cellID //ID of the sensor that created this hit - float EDep //energy deposited in the hit [GeV]. - float time //proper time of the hit in the lab frame in [ns]. - float pathLength //path length of the particle in the sensitive material that result - int quality //quality bit flag. - edm4hep::Vector3d position //the hit position in [mm]. - edm4hep::Vector3f momentum //the 3-momentum of the particle at the hits position in [GeV] OneToOneRelations: - edm4hep::MCParticle MCParticle //MCParticle that caused the hit. ExtraCode : ``` - The class **convertHits** translates GEANT4 hits to EDM4hep tracker hits - **The EDM4hep hit is at the moment the SimTrackerHit** defined in: https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml - Discussed with EDM4hep people: if needed more information can be accommodated, but for now it should be fine ## MC hit conversion Here I will present only the tracker hits: silicon vertex tracker, drift chamber, pre-shower #### **Example of simulation** #### particle - 1090 events - 1 muon/event - theta in [88.5, 90.5] deg - energy = 1 GeV #### geometry - Beam pipe - SVX - DCH - PSHW - magnetic field = 2.0 T - 1. Vivarelli / L. Pezzetti ported **DR calo hits** to EDM format - W. Elmetenawee is adding them to the standalone code - → we will need to merge all the pieces of code - 1. Garzia is adding the geometry of the muon chambers Hits are not enough for inserting IDEA in the analysis. Also reconstruction is standalone for now \rightarrow need reconstructed tracks in EDM4hep! ## Reconstructed track conversion The class **convertTracks** translates standalone reconstructed tracks to EDM4Hep model ``` Track from standalone reconstruction TrkID Track ID Int t Double t x0,y0,z0 Track Vertex x,y,z coord Double t err_x0, err_y0,err_z0 Error On the Track Vertex x,y,z coord Double t theta polar an #----- Track EDM4Hep reconstructed track Double_t err_theta Error on Double t phi azimutha edm4hep::Track: Double t err phi Error on Description: "Reconstructed track" Double t Momentum Track Mo Author: "F.Gaede, DESY" Double t Err_Momentum Error on TVector3 Fitted T Members: MOM TMatrixDSym cov Covarian - int type //flagword that defines the type of track.Bits 16-31 are used internally Int_t hitindex Index of - float chi2 //Chi^2 of the track fit Int_t detid detector - int ndf //number of degrees of freedom of the track fit Flag for Bool t Skipped TVector3 StateVector State ve - float dEdx //dEdx of the track. Int_t nhits number o - float dEdxError //error of dEdx. Int_t ngoodhits number o float radiusOfInnermostHit //radius of the innermost hit that has been used in the track fit nhitsdch Int_t number o VectorMembers: Int_t ngoodhitsdch number o nhitssvx Int_t number o - int subDetectorHitNumbers //number of hits in particular subdetectors.Check/set collection variable ngoodhitssvx Int_t number o edm4hep::TrackState trackStates //track states Int t nhitspshw number o OneToManyRelations: ngoodhitspshw Int t number o Double t chi2 of - edm4hep::TrackerHit trackerHits //hits that have been used to create this track chi2 dof Int_t Degrees - edm4hep::Track tracks //tracks (segments) that have been combined to create this track Bool t IsFitted Flag ind ``` Will need a place to accommodate the cluster counting variable dN/dx ### Reconstructed track conversion #### Track from standalone reconstruction - track parameters @ poca to the beamline - (x, y, z, p_x, p_y, p_z) state vector @ poca - relative covariance matrix #### **EDM4hep reconstructed track** - track parameters @ poca to the beamline - $(k, \varphi, \varrho, cotg(\theta), z_0)$ state vector @ poca - relative covariance matrix $$J = \frac{\partial(k, \varphi, \rho, ctg(\theta), z_0)}{\partial(x, y, z, p_x, p_y, p_z)}$$ Jacobian for the conversion ### Conclusions - The code is available on https://github.com/lialavezzi/DriftChamberPLUSVertex/tree/uptodate and it is installable on lxplus machines with a script - It does the following, with IDEA detector: - standalone simulation, with SVX, DCH, PSHW (DRCALO and MUC in progress) - standalone track reconstruction - hit / track conversion to EDM4hep #### Usable as interface between IDEA detector and FCC analysis tools for now → later the geometry and reconstruction will be implemented in the framework #### **Ongoing** - Under test in order to be used soon - Soon (I hope) will be made available to everyone - Soon (I hope) merged with the latest developments from DRCALO & MUCO # thank you for the attention