

for the working group

University of Torino

RD FCC Collaboration Meeting, 15-16/12/2021

IDEA detector simulation

standalone

simulation + reconstruction

The IDEA the detector the code has been implemented as a standalone software

Key4Hep

full integration

Key4hep the software framework the bigger FA projects decided to share the efforts to have a platform, customizable & w/ common tools

IDEA needs to move into Key4hep

Key4hep

A turnkey software for Future Colliders from the necessity of **many projects**, ILC, CLIC, FCC, CEPC, to have a complete software stack for **physics studies**, support all the cases (hh,ee,eh) and **detector studies**, support all the detector concepts.

Requirements from users

- Easy to install
- Easy to use
- Documented

Requirements from developers

- Portable to different architectures
- GPU, FPGA, cloud
- Parallel computing, multi-threading

Requirements from experiments

- Modular / Expandable / Adaptable
- Detector agnostic reconstruction tools

Key4hep

Language - C++ / python

EDM4hep - Event Data Model

GAUDI - framework

- from LHCb, also used elsewhere, e.g. BESIII
- Marlin wrapper

DD4hep - Detector Description

geometry for simulation & reconstruction

Spack - package manager

- build, compilation, installation
- CernVM-FS, from LHC, w/ dedicated repository: /cvmfs/sw.hsf.org/key4hep

Common reconstruction tools

• ACTS (from ATLAS), PandoraPFA (from CMS), etc.

Key4hep GitHub Project
https://github.com/key4hep
Main documentation page
https://key4hep.github.io/key4hep-doc/

EDM4hep

- Different components of HEP experiment software have to talk to each other
- The event data model defines the language for this communication
- Users express their ideas in the same language

vCHEP 2021

T.Madlener | EDM4hep and podio

- based on LCIO & FCC edm
- different objects and their interactions
- both for leptonic & hadronic collisions
- support multi-threading
- the user is freed of any resource management duties or worries
- leverages the available computing power as efficiently as possible

PODIO

A generic EDM toolkit

- automatic code generator all code is automatically generated from a high level description in YAML format
 - → free the users from the implementation details
- efficient I/O & simple memory layout
- three layers:
 - (lower) POD Plain Old Data. Holds arrays of the actual data structures
 - (*middle*) transient objects. Handles the relations among EDM objects and manages POD objects.
 - (top) comprises lightweight handles to the objects & collections.
- adaptable to backend, e.g. ROOT

IDEA detector simulation

standalone

simulation + reconstruction

port the geometry

port the algorithms

port the the data format

Key4Hep full integration

IDEA detector simulation

standalone

simulation + reconstruction

port the geometry
port the algorithms
port the the data format

Key4Hep

full integration

First step is to translate to EDM4Hep format

- GEANT4 Monte Carlo hits
- Standalone reconstructed tracks

Standalone code on the stack

- The standalone code was adapted for compilation on Key4hep stack (thanks to G. Tassielli)
- It works with the latest key4hep stack on CERN **lxplus** machines source /cvmfs/sw.hsf.org/key4hep/setup.sh

Everything is working with these versions

Contacted Key4hep developers to plan how to distribute the code

How to install

https://github.com/lialavezzi/DriftChamberPLUSVertex/tree/uptodate

Instructions:

- Download the file install standalone.sh
- Edit it and set STANDALONE INSTALL DIR to the directory where you want to install everything
- · Make it executable with: chmod u+x install standalone.sh
- Execute it with: ./install standalone.sh

In order to run the code, go directly here

MC hit conversion

GMCG4TrackerHit original GEANT4 hit

```
G4int
              fTrackID;
G4int
              fChamberNb:
G4int
              fChannelNb:
G4double
              fEdep;
G4double
              fNoIEdep:
G4double
              fGlobalTime;
G4double
              fProperTime;
G4ThreeVector fPos:
G4ThreeVector fPosEnding:
G4ThreeVector fMomentum:
G4double
              fStepLength;
            fProcessCode;
G4String
```

```
----- SimTrackerHit
                                                                      SimTrackerHit
edm4hep::SimTrackerHit:
                                                                  EDM4Hep tracker hit
  Description: "Simulated tracker hit"
  Author: "F.Gaede, DESY"
  Members:
    - unsigned long long cellID
                                    //ID of the sensor that created this hit
    - float EDep
                                    //energy deposited in the hit [GeV].
    - float time
                                    //proper time of the hit in the lab frame in [ns].
    - float pathLength
                                    //path length of the particle in the sensitive material that result
    - int
           quality
                                    //quality bit flag.
    - edm4hep::Vector3d position
                                    //the hit position in [mm].
    - edm4hep::Vector3f momentum
                                    //the 3-momentum of the particle at the hits position in [GeV]
 OneToOneRelations:
    - edm4hep::MCParticle MCParticle //MCParticle that caused the hit.
  ExtraCode :
```

- The class **convertHits** translates GEANT4 hits to EDM4hep tracker hits
- **The EDM4hep hit is at the moment the SimTrackerHit** defined in: https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml
- Discussed with EDM4hep people: if needed more information can be accommodated, but for now it should be fine

MC hit conversion

Here I will present only the tracker hits: silicon vertex tracker, drift chamber, pre-shower

Example of simulation

particle

- 1090 events
- 1 muon/event
- theta in [88.5, 90.5] deg
- energy = 1 GeV

geometry

- Beam pipe
- SVX
- DCH
- PSHW
- magnetic field = 2.0 T

- 1. Vivarelli / L. Pezzetti ported **DR calo hits** to EDM format
- W. Elmetenawee is adding them to the standalone code
 - → we will need to merge all the pieces of code
- 1. Garzia is adding the geometry of the muon chambers

Hits are not enough for inserting IDEA in the analysis. Also reconstruction is standalone for now \rightarrow need reconstructed tracks in EDM4hep!

Reconstructed track conversion

The class **convertTracks** translates standalone reconstructed tracks to EDM4Hep model

```
Track from standalone reconstruction
           TrkID
                                  Track ID
Int t
Double t
           x0,y0,z0
                                  Track Vertex x,y,z coord
Double t
           err_x0, err_y0,err_z0
                                  Error On the Track Vertex x,y,z coord
Double t
           theta
                                  polar an
                                           #----- Track
                                                                                              EDM4Hep reconstructed track
Double_t
           err_theta
                                  Error on
Double t
           phi
                                  azimutha
                                            edm4hep::Track:
Double t
           err phi
                                  Error on
                                              Description: "Reconstructed track"
Double t
           Momentum
                                  Track Mo
                                              Author: "F.Gaede, DESY"
Double t
           Err_Momentum
                                  Error on
TVector3
                                  Fitted T
                                              Members:
           MOM
TMatrixDSym cov
                                  Covarian
                                                - int type
                                                                                    //flagword that defines the type of track.Bits 16-31 are used internally
Int_t
           hitindex
                                  Index of
                                                - float chi2
                                                                                    //Chi^2 of the track fit
Int_t
           detid
                                  detector
                                                - int ndf
                                                                                    //number of degrees of freedom of the track fit
                                  Flag for
Bool t
           Skipped
TVector3
           StateVector
                                  State ve
                                                - float dEdx
                                                                                    //dEdx of the track.
Int_t
           nhits
                                  number o
                                                - float dEdxError
                                                                                    //error of dEdx.
Int_t
           ngoodhits
                                  number o

    float radiusOfInnermostHit

                                                                                    //radius of the innermost hit that has been used in the track fit
           nhitsdch
Int_t
                                  number o
                                              VectorMembers:
Int_t
           ngoodhitsdch
                                  number o
           nhitssvx
Int_t
                                  number o
                                                - int subDetectorHitNumbers
                                                                                    //number of hits in particular subdetectors.Check/set collection variable
           ngoodhitssvx
Int_t
                                  number o

    edm4hep::TrackState trackStates //track states

Int t
           nhitspshw
                                  number o
                                              OneToManyRelations:
           ngoodhitspshw
Int t
                                  number o
Double t
                                  chi2 of
                                                - edm4hep::TrackerHit trackerHits //hits that have been used to create this track
           chi2
           dof
Int_t
                                  Degrees
                                                - edm4hep::Track tracks
                                                                                    //tracks (segments) that have been combined to create this track
Bool t
           IsFitted
                                  Flag ind
```

Will need a place to accommodate the cluster counting variable dN/dx

Reconstructed track conversion

Track from standalone reconstruction

- track parameters @ poca to the beamline
- (x, y, z, p_x, p_y, p_z) state vector @ poca
- relative covariance matrix

EDM4hep reconstructed track

- track parameters @ poca to the beamline
- $(k, \varphi, \varrho, cotg(\theta), z_0)$ state vector @ poca
- relative covariance matrix

$$J = \frac{\partial(k, \varphi, \rho, ctg(\theta), z_0)}{\partial(x, y, z, p_x, p_y, p_z)}$$

Jacobian for the conversion

Conclusions

- The code is available on https://github.com/lialavezzi/DriftChamberPLUSVertex/tree/uptodate and it is installable on lxplus machines with a script
- It does the following, with IDEA detector:
 - standalone simulation, with SVX, DCH, PSHW (DRCALO and MUC in progress)
 - standalone track reconstruction
 - hit / track conversion to EDM4hep

Usable as interface between IDEA detector and FCC analysis tools for now

→ later the geometry and reconstruction will be implemented in the framework

Ongoing

- Under test in order to be used soon
- Soon (I hope) will be made available to everyone
- Soon (I hope) merged with the latest developments from DRCALO & MUCO

thank you for the attention