2021 Test Beam activities for Dual Readout Calorimeter

Giacomo Polesello INFN, Sezione di Pavia On behalf of the IDEA Dual-Readout Calorimeter Collaboration

Introduction

Long term R&D project aiming by 2025 to test full hadronic containment prototype with partial SiPM readout

2020/21: Build and test in beam a em containment prototype (10x10cmx1m) DR fiber prototype partially equipped with SiPM. Aims:

- Start handling a scalable readout for SiPMs
- Consolidate EM performance
- Exploit mm-level space resolution for particle id and shower shape studies
- Tune detailed simulation

Two beam periods

- DESY (June) e⁻ beam 1-6 GeV
- CERN (August) e⁺ beam 6-100 GeV

Prototype design

- EM-prototype (10x10x100 cm³)
 - 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
 - Capillaries (brass): 2 mm outer diameter and 1.1 mm inner diameter
- □ EM-prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

Scintillating fibres

Cherenkov fibres

SiPM readout

Dummy SiPM FEE board

5 FEE Boards (320 SiPMs)

Photosensitive area 1.3 × 1.3 Photosensitive area Photos

Hamamatsu SiPM: S14160-1315 PS Cell size: 15 $\mu\mathrm{m}$

Assembled prototype

DESY Test Beam

- •Trigger based on Coincidence of two scintillators
- •SiPM readout system running in self-triggered mode with majority algorithm.
- •Trigger from scintillators used to flag and store data on disk
- Tracker triggered by scintillators

SiPM calibration: ADC to Ph-e

Calibration: Ph-e to GeV

Sum the light detected by all SiPM event-by-event From distribution extract energy calibration and linearity

•Event selection requiring leading fiber placed in centre of tower

0 2 4 6 6 10 12 14

- (4x4 cell)
- •Assumed containment 70%

CERN Test Beam

H8 Beam line

✦ Calorimeter:

- ✤ 8 towers with PMT RO
- ✤ I tower with SiPM RO
- Auxiliary detectors
 - 2 Cherenkov counters
 - ✤ 2 delay wire Chambers
 - Preshower
 - Muon counter
- Trigger
 - 2 scintillators + veto

Software setup for analysis

Raw data handling workflow

As two DAQ systems are involved for PMTs and SiPMs, the workflow looks like this:

.dat files as raw data output for SiPMS

Beam cleaning

Two SPS DWC at 499 (Ch1) and 322 (Ch2) cm from calo face Structure due to hardware problem in the chambers Require beam radius in two chambers<10 cm and [xch2-xch1]<3 cm and [ych1-ych2]<3 cm to ensure beam collimation

Electron ID

Preshower detector and two SPS Cerenkov detectors

Distribution of counts in Cerenkov Detector.

Electron: >3 mip in PS, energy in calo compatible with beam No electron <3 mip in PS, energy in calo much smaller than beam energy

Distribution of counts in preshower For events with firing Cerenkov detectors And energy in calo compatible with beam energy

Energy distributions at 40 GeV

Plot linear combination of sum of energies in SiPM and PMT cells minimizing resolution

For each energy: electron content of beam by fitting 3rd degree polinomial+gaussian and taking the ratio of the integral of the gaussian to the number of entries

Quality of SPS beam

Energ y	Events	Events good beam	Nele	Fract.
10	79k	61k	34k	0.56
20	352k	289k	79k	0.27
30	302k	251k	31k	0.13
40	1523k	1270k	71k	0.060
60	488k	402k	9.6k	0.024
80	697k	563k	10.8	0.019
100	512k	424k	5.7k	0.013

Poor beam purity at high energies.

Requiring 3 MIPs in preshower obtain purity from 95 to 98% In energy range within 3 sigmas of peak

Preliminary baseline extraction of calo performance

Select electrons with 3MIP in preshower

Tight beam spot: |X_ch2|<2mm, |Y_ch2|<3 mm to minimize impact point effects

Use 5 measurements:

Preshower signal, Sum of energy in SiPMs (Scint. and Cerenkov),

Sum of energy in PMS (S snd C)

Find linear combination of 5 measurements minimising RMS of distribution,

Preliminary performance result

Mediocre resolution result, but only preliminary baseline exercise:

- •Calculate the 'perfect' expected resolution from full simulation
- •Understand and if possible correct sources of fluctuation in setup:
- Geometrical effects, equalisation of light response for all cells, beam line

Impact of preshower on energy measurement

PreShower Distribution with cut on C1

A Loeschcke Centeno

20 GeV e+:

Require signal in Cerenkov 1
Bin the response of preshower
For each bin fit gaussian part of distribution of sum of SiPMs or of sum of SiPMS and PMs

Containment effect

Very large effect on containment of central tower Significant effect on full calorimeter Additional resolution term for this effect

A Loeschcke Centeno

Comparison to simulation

Dependence of energy containment on preshower signal ascribed to Broadening of early starting shower in preshower detector, verify with full simulation of full testbeam setup

Dependence of shower containment from preshower signal confirmed by full simulation L. Pezzotti

Measurement of shower shape

Excellent granularity of SiPM readout \rightarrow detailed studies of EM shower shape

Two variables:

Radial profile: average signal in a radial shell centered on the beam axis Lateral profile: average signal in a fiber located at a distance r from beam axis

Shower shape: compare Scintillator and Cerenkov

20 GeV e+ profiles from 20 GeV run without preshower

Possible 1 mm sampling of shower up to 3 cm from beam axis Difference in shape Scinitllator/Cerenkov already measured in previous test https://inspirehep.net/literature/1672363

Energy dependence of shower shape

Shape approximately independent from energy

Conclusions

EM containment DR module built and successfully tested in beam in 2021

Good data collected in two testbeam periods at DESY and CERN SPS

- Very rich and clean set of data up to 6 GeV from DESY
- Full energy scan available up to 100 GeV from CERN, but low statistics at high because of beam purity issues

Work ongoing to exploit these data, start already to see dividends from the very high granularity of the SiPM readout, many interesting studies in the pipeline

Still quite some work to master the complexity of the data and extract final performance figures

