Dual Readout: a step forwards a scalable solution

Romualdo Santoro and Nikolay Ampilogov on behalf of the IDEA Dual Readout group

Università dell'Insubria and INFN - Milano

Outlook

- ☐ The 2021 test beam prototype
- The design of a scalable solution

The 2021 test beam prototype

- \square EM-prototype ($10x10x100 \text{ cm}^3$)
 - □ 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
 - Capillaries (brass): 2 mm outer diameter and 1.1 mm inner diameter
- EM-prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

The 2021 test beam prototype

The 2021 test beam prototype: readout

- PMTs read out with QDC (V792AC) and TDC (V775N) modules from Caen
- □ The highly granular module (320 SiPMs) read out with the Caen FERS system (5200) using 5 readout boards (A5202)

FERS: A5202

- Two Citiroc1A for reading out up to 64 SiPMs
- One (20 85V) HV power supply with temperature compensation
- Two 12-bit ADCs to measure the charge in all channels
- Timing measured with 64 TDCs implemented on FPGA (LSB = 500 ps)
- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

The impact of high granularity

Beam @ 6GeV centred on the SiPM tower

CITIROC 1A: block diagram

The impact of high granularity

■ Beam @ 6GeV centred on the SiPM tower

CITIROC 1A: block diagram

From raw data to merged and calibrated data

see G. Polesello's talk for the test beam results

Prototype with hadronic containment: Hidra

The hadronic prototype

The challenge:

We have 10240 SiPMs, fitting the back side of the detector, to be operated

The design of a scalable solution

- Challenging integration: there is almost no space
 - Sensor
 - Mechanical support
 - Cabling and readout to serve all channels
- Costs (only sensors and readout)
 - First goal: less than 10 euro per SiPM (is this reasonable?)
 - □ We need 160 FERS to operate 10240 SiPMs (same strategy used in the last test beam): do we have alternatives?

The design of a scalable solution

The challenge:

- □ 1 SiPM per Fiber: compact package
- □ SiPM with high Dyn-Range: $10\mu m$ pitch
- No contamination between Cherenkov and scintillating light

The design of a scalable solution: 1st design

The challenge:

- □ 1 SiPM per Fiber: compact package
- □ SiPM with high Dyn-Range: $10\mu m$ pitch
- No contamination between Cherenkov and scintillating light

The design of a scalable solution: new sensor

The challenge:

- □ 1 SiPM per Fiber: compact package
- □ SiPM with high Dyn-Range: $10\mu m$ pitch
- No contamination between Cherenkov and scintillating light

SiPM module from Hamamatsu

- □ Custom designed module with 8 SiPMs (1x1mm²)
- Distance between SiPMs: 2mm (drawings to be modified)
- \square Two options: 10 and 15 μm pitch

The design of a scalable solution: new design

The challenge:

- ☐ 1 SiPM per Fiber: compact package
- □ SiPM with high Dyn-Range: $10\mu m$ pitch
- No contamination between Cherenkov and scintillating light

The front-end board

Crucial for the commissioning phase

- Each SiPM can be qualified individually
- □ 1 FERS allows to operate up to 64 SiPMs at the same time

The full granularity option

28 mm

Side view

Crucial for the commissioning phase

- 8 FERSs to readout 1 mini-module: not feasible for Hidra (20 mini-modules)
- Options to be considered only for system qualification or for specific measurements

238 mm

Mini-module: the baseline solution

Baseline solution

- Each bar of SiPMs will be operated at the same voltage
- The signals from 8 SiPMs is summed up in the grouping board

The module

Hidra: final integration

Summary

- This year we built and qualified on beam an EM prototype which allowed:
 - To test the assembling solution based on capillaries
 - To qualify the new readout system for SiPMs
 - To assess the EM performances (see next talk)
 - To precisely tune the Montecarlo simulation (see next talk)
- The hadronic prototype is calling for new challenges. The proposed strategy allows
 - To qualify individually the SiPMs before the installation
 - To fit all SiPMs and readout board in the available space
 - To reduce costs by using the grouping

Backup

