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H A S  C H A N G E DT H E  P I C T U R E

• a 3 TeV lepton collider is only good to 

measure the detailed properties of  new 

physics particles discovered at the LHC 

• >1 TeV lepton colliders are 

complimentary probes of  the big hole 

the LHC has not filled!  

Overall picture about the SM

https://agenda.infn.it/event/28673/
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Open Questions on the “big picture” on fundamental physics circa 2020

Theories to solve some of these problems can come with associated new physics at any mass scale, that is to say 
whatever the collider you will build you will not even come close to probe thoroughly the idea.

Example: The origin of neutrino mass
Majorana neutrino mass breaks lepton number. Neutrino mass may be explained if 

•  lepton number is broken at a very large scale ( very heavy Majorana right-handed neutrinos 
exists with big couplings to the SM) 

• lepton number is broken by tiny couplings at a comparatively small scale (e.g. few TeV) 
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N U M B E R  B R E A K I N GL E P T O N

Neutrino mass mechanisms 

mν = (coupling)2 < H >2

Mheavy
→ SMALL mν = (coupling)2 < H >2

Mheavy
→ SMALL mν = μ ⋅ (coupling)2 < H >2

M2
heavy

→ SMALL

μ → SMALLcoupling → SMALLMheavy → LARGE

https://agenda.infn.it/event/28673/
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N U M B E R  B R E A K I N GL E P T O N

Neutrino mass mechanisms 

mν = (coupling)2 < H >2

Mheavy
→ SMALL mν = (coupling)2 < H >2

Mheavy
→ SMALL mν = μ ⋅ (coupling)2 < H >2

M2
heavy

→ SMALL
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Mass

10 TeV

1 TeV
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P R O B E ST H O R O U G H  

The value of searching and not finding

At least in my opinion there is enormously more scientific value in testing 
thoroughly one thing than in superficially testing any number of things.

Io stimo più il trovar un vero, benché di cosa leggiera, che 'l disputar 

lungamente delle massime questioni senza conseguir verità nissuna.

https://agenda.infn.it/event/28673/
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A gauge of the progress we can make with any 
future collider

• The breadth of the physics program is very important. Had the Higgs 
boson not been observed at the LHC, the experiments were ready to 
catch the experimental signals from alternatives to the Higgs boson of 
the SM. 

• The guaranteed discovery of the Higgs or its substitute at the LHC is a 
very enviable position under which ambitious projects could be 
envisioned and implemented. 

• None of the future colliders currently under study enjoy this enviable 
position … back to regular science exploration

https://agenda.infn.it/event/28673/
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1511.06495 - Arkani-Hamed, N. and Han, T. and Mangano, M. and Wang, L.-T. - Physics Opportunities of a 100 TeV Proton-Proton Collider 
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Mind the structure 
• Electroweak phase transition 

• Naturalness of the EW scale 

• Dark Matter 

• “Others”

3 pillars of a very good physics program for a new machine



A closer look at these  
issues of the SM



Open Questions on the “big picture” on 
fundamental physics circa 2020

Nothing we have measured in high energy physics 
makes so much of a distinction between particles 
and anti-particles.

The observable Universe is made of matter, no antimatter

We need to go from this

to this

out-of-equilibrium processes are necessary 

particles
antiparticles



Open Questions on the “big picture” on 
fundamental physics circa 2020

The observable Universe is made of matter, plus about 5 times as 
much dark matter

We need to go from this

to this

interactions rate from                              are just about right! 

normal particles
dark matter

σ = ( gweak

Mweak )
2

antiparticles



Open Questions on the “big picture” on 
fundamental physics circa 2020
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FIG. 1. The “Mexican Hat Potential” V(| |, �) for the condensate field  in the long wave-length limit as a
function of the amplitude | | and the phase �.

equations of motion below.

The invariance of the energy to the phase implies that there must exist a zero energy or mass-

less modes of fluctuations of density-current in the long wave-length limit, i.e. along the azimuthal

direction at the minimum of the potential in Fig. (1). This is the physical content of the Goldstone

theorem [7]. These are the sound modes derived for superfluid 4He and for the weakly interacting

Bose gas. Due to the long-range nature of the Coulomb interaction, density or longitudinal fluctu-

ations of the charge density in superconductors at long wave-lengths occur not at zero energy but

close to the plasmon energy as in the normal metallic state [8].

But what about the orthogonal degree of freedom exhibited in Fig. (1), i.e. the oscillations of

the amplitude of the order parameter | (r, t)| about its equilibrium value (3). This is the Higgs or

amplitude mode of the model. Its existence was first mentioned in a paper by Higgs [9] for the

same model but with Lorentz invariance, i.e. with a second order derivative in time only, because

he was interested in applications to particle physics. Lorentz-invariance implies particle-hole sym-

metry so that ⌧�1
GL
= K1 = 0. Its occurrence in superconductivity was missed till 1981 [10], because

collective fluctuations of amplitude were studied primarily only near Tc, where ⌧�1
GL
, 0 and then

there is no distinct Higgs mode [11], as explained below. In superfluid 4He, K1 , 0 and so no

Higgs mode can be found [11]. Particle-hole symmetry occurs for interacting Bosons in a periodic

lattice [12] along a line in their phase diagram and such a system was experimentally realized by

cold atom techniques and the observations interpreted in terms of the Higgs or amplitude modes.

3

A mexican hat is not enough to get a Higgs boson

I. INTRODUCTION

Ever since the phenomenological theory of Ginzburg and Landau in 1950 [1], it has been known

that the long-range order of superfluids and superconductors and its slow variations in space and

time must be described by a complex function describing an amplitude and a phase, i.e. a U(1)

matter field:

 (r, t) = | (r, t)|ei�(r,t). (1)

This is in accord with the hydrodynamics introduced by Landau [2] for liquid 4He and the mi-

croscopic weak-coupling theory for Bosons by Bogoliubov [3]. The microscopic theory of su-

perconductivity was invented by Bardeen, Cooper and Schrie↵er [4] (BCS) in 1957 and almost

immediately the phenomenological Ginzburg-Landau Lagrangian with (1) as the order parameter

field was derived by Gorkov [5] in the low frequency and long wave-length limit of the theory.

A gauge invariant action [6] for a model with such an order parameter field is of the form

S = �r ⇤ +
U

2
( ⇤ )2 (2)

+ (⌧�1
GL

) ⇤@t + iK1 
⇤@t � K2 (@t 

⇤)(@t ) + ⇠�2 (r ⇤)(r )

For a charged matter field  (r, t), as in superconductivity, one must include the action of the

electromagnetic field and its interaction with  (r, t) in a gauge invariant way by changing r !

(r�i(e/c)A), where A(r, t) is the vector potential. We have included two first order time-derivative

terms, a term proportional to the damping rate ⌧�1
GL

which breaks time-reversal, and a term propor-

tional to K1 which is first order in time but time-reversal invariant as in the Schrödinger action. We

have also included a quadratic term in the time-derivative proportional to K2 which is necessary

if the system is time-reversal symmetric and ⌧�1
GL

and K1 ! 0. K2 , 0 requires that the system is

close to particle-hole symmetry.

We need consider only the first two terms of (2) in equilibrium. Then for r > 0, the potential

energy is represented pictorially as in Fig. (1). The static equilibrium is at

| 0| = h i =
p

r/U ⌘ ⇢1/2
0 , (3)

where ⇢1/2
0 is the condensate density. The equilibrium energy does not depend on the phase � and

we may pick it to be 0. The leading fluctuations about the equilibrium are calculated from the

2

1406.2968 - Pekker, D. and Varma, C.~M. - Amplitude / Higgs Modes in Condensed Matter Physics 
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• The Higgs boson of the SM is nothing like any other 
known symmetry breaking scalar*

• The point-like nature of the Higgs boson is unique

• Progress in establishing the SM nature of the Higgs 
boson is a milestone 



Electroweak Phase-
Transition
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Electroweak phase transition

• Modifications of the Higgs potential  Out of Equilibrium transition from one vacuum to a new energetically favorable one⇒

vc
H

V(H)

H

V(H)

H

V(H)

T=Tc+Δ T=Tc

Vtherm~T2
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C O L L I D E RW  B O S O N

μ+μ− → hh

• High-Energy lepton collider has 
large flux of “partonic” W bosons

ξ ≃ ( mW

mnew )
2

∼ 1
E ℒ

Singlet tree and loop makes V(0,v) deeper

vc
H

V(H)

H

V(H)

H

V(H)

T=Tc+Δ T=Tc

Vtherm~T2

Electroweak phase transition

https://agenda.infn.it/event/28673/


Roberto Franceschini - https://agenda.infn.it/event/28673/ - RD_MUCOL Padova 2021

I N T E R P L AYD I R E C T  &  I N D I R E C T

EW phase transition
3.1 Model and theoretical constraints

We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):

V (�, S) = � µ
2
⇣
�†�

⌘
+ �

⇣
�†�

⌘2
+

a1

2

⇣
�†�

⌘
S

+
a2

2

⇣
�†�

⌘
S
2 + b1S +

b2

2
S
2 +

b3

3
S
3 +

b4

4
S
4
. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as

a1 =
m

2
1 �m

2
2

v
2 sin ✓ cos ✓

b2 +
a2 v

2

2
= m

2
1 sin

2
✓ +m

2
2 cos

2
✓ (3.2)

� =
m

2
1 cos

2
✓ +m

2
2 sin

2
✓

2 v2

with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)
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 2101.10469

independent parameters

1807.04743, 1910.04170, 2101.10469

and then the mass term of the two neutral scalars reads

V �
1

2

⇣
h s

⌘
M

2
s

 
h

s

!
; M

2
s =

 
@
2
V

@h2
@
2
V

@h@s

@
2
V

@h@s

@
2
V

@s2

!
. (2.3)

Diagonalizing M
2
s yields the mass eigenstates h1, h2 and the mixing angle ✓ between them,

namely  
h

s

!
= U

 
h1
h2

!
, U =

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
, (2.4)

such that the mass matrix becomes U †
M

2
sU = diag

�
M2

h1
,M2

h2

 
. Here we assume the

lighter state h1 is the SM Higgs-like boson.

The requirement that (v, vs) is an extremum of Eq. (2.1) yields two relations [12]

µ2 = �v2 +
vs
2
(a1 + a2vs), b2 = �

1

4vs

⇥
v2(a1 + 2a2vs) + 4v2s(b3 + b4vs)

⇤
, (2.5)

where the coe�cients �, a1 and a2 can be further expressed in terms of Mh1 , Mh2 and ✓,

� =
M2

h1
c2
✓
+M2

h2
s2
✓

2v2
,

a1 =
4vs
v2


v2s

✓
2b4 +

b3
vs

◆
�M2

h1
s2
✓
�M2

h2
c2
✓

�
,

a2 =
1

2vs

hs2✓
v

�
M2

h1
�M2

h2

�
� a1

i
,

(2.6)

with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming

VT =�
�
µ2

� cHT 2
�
|H|

2 + �|H|
4 +

a1
2
|H|

2S +
a2
2
|H|

2S2

+
�
b1 +m1T

2
�
S +

b2 + cST 2

2
S2 +

b3
3
S3 +

b4
4
S4,

(2.8)

where we only keep the gauge invariant T 2-order terms [82, 83], and

cH =
3g2 + g02

16
+

y2t
4

+
�

2
+

a2
24

, cS =
a2
6

+
b4
4
, m1 =

a1 + b3
12

. (2.9)
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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EW phase transition
3.1 Model and theoretical constraints

We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):
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S
4
. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as

a1 =
m

2
1 �m

2
2
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2 sin ✓ cos ✓
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with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)
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and then the mass term of the two neutral scalars reads

V �
1

2

⇣
h s

⌘
M

2
s

 
h

s

!
; M

2
s =

 
@
2
V

@h2
@
2
V

@h@s

@
2
V

@h@s

@
2
V

@s2

!
. (2.3)

Diagonalizing M
2
s yields the mass eigenstates h1, h2 and the mixing angle ✓ between them,

namely  
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such that the mass matrix becomes U †
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. Here we assume the

lighter state h1 is the SM Higgs-like boson.

The requirement that (v, vs) is an extremum of Eq. (2.1) yields two relations [12]
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with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming
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where we only keep the gauge invariant T 2-order terms [82, 83], and
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.
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V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
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+

2M2
h2

� 2b3vs � 4b4v2s
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h
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+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):
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. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as
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with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)
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and then the mass term of the two neutral scalars reads
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Diagonalizing M
2
s yields the mass eigenstates h1, h2 and the mixing angle ✓ between them,

namely  
h

s

!
= U
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h2

!
, U =

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
, (2.4)

such that the mass matrix becomes U †
M

2
sU = diag

�
M2

h1
,M2

h2

 
. Here we assume the

lighter state h1 is the SM Higgs-like boson.

The requirement that (v, vs) is an extremum of Eq. (2.1) yields two relations [12]

µ2 = �v2 +
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2
(a1 + a2vs), b2 = �

1

4vs
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where the coe�cients �, a1 and a2 can be further expressed in terms of Mh1 , Mh2 and ✓,
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(2.6)

with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming

VT =�
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µ2

� cHT 2
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|H|
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v
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(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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Figure 3. Left: after the basic acceptance cuts, the invariant mass distributions of the jet pairs and
four-jet system for the signal and main backgrounds at the 10 TeV muon collider. Here we select
Mh2 = 600 GeV as the signal benchmark. Right: the expected probe limits on s2✓ ⇥Br(h2 ! h1h1)
for di↵erent muon collider setups. The scatter points are the FOEWPT data, in which red, green
and blue colors represent SNR 2 [50,+1), [10, 50) and [0, 10), respectively. The limit from ATLAS
at the 13 TeV LHC with L = 36.1 fb�1 [114] and its extrapolation to the HL-LHC [12] are also
shown for comparison.

as illustrated in orange in the left panel of Fig. 3. The cut flows for three chosen signal

benchmarks at a 10 TeV muon collider are shown in Table 1, indicating Cut III is fairly

powerful to improve the signal over background factor.

Given the collision energy
p
s and the integrated luminosity L, the signal and back-

ground event numbers are

S = �S ⇥ ✏S ⇥ L = �SM
h2

⇥ s2
✓
⇥ Br(h2 ! h1h1)⇥ ✏S ⇥ L,

B = �B ⇥ ✏B ⇥ L,
(3.14)

where �S,B are the signal and background production rates, and ✏S,B are the corresponding

cut e�ciencies, respectively. Note that �B is already fixed, and �SM
h2

as well as ✏S,B depends

only on Mh2 . This implies that we can generate events for several Mh2 benchmarks and

derive the collider probe limits for s2
✓
⇥ Br(h2 ! h1h1) by the 2� exclusion criterion

S/
p

B = 2, (3.15)

and make the interpolation to derive the s2
✓
⇥Br(h2 ! h1h1) reach as a function ofMh2 . The

sensitivity of the muon collider to FOEWPT can be obtained by projecting the FOEWPT

parameter space to such 2-dimension plane. This is done in the right panel of Fig. 3, in

which the reach of di↵erent collider setups are plotted as di↵erent colored solid lines, and

the FOEWPT data points lying above a specific line can be probed by the corresponding

muon collider. Note that our projections are derived without b-tagging. We have checked

that by assuming a 90% b-tagging e�ciency the probe limits can be improved by a factor

of 3 ⇠ 5, which has little visual e↵ect in the log coordinate.
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We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):
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Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as
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2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2
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✓) . (3.3)
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such that the mass matrix becomes U †
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lighter state h1 is the SM Higgs-like boson.
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1

4vs

⇥
v2(a1 + 2a2vs) + 4v2s(b3 + b4vs)

⇤
, (2.5)

where the coe�cients �, a1 and a2 can be further expressed in terms of Mh1 , Mh2 and ✓,

� =
M2

h1
c2
✓
+M2

h2
s2
✓

2v2
,

a1 =
4vs
v2


v2s

✓
2b4 +

b3
vs

◆
�M2

h1
s2
✓
�M2

h2
c2
✓

�
,

a2 =
1

2vs

hs2✓
v

�
M2

h1
�M2

h2

�
� a1

i
,

(2.6)

with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming

VT =�
�
µ2

� cHT 2
�
|H|

2 + �|H|
4 +

a1
2
|H|

2S +
a2
2
|H|

2S2

+
�
b1 +m1T

2
�
S +

b2 + cST 2

2
S2 +

b3
3
S3 +

b4
4
S4,

(2.8)

where we only keep the gauge invariant T 2-order terms [82, 83], and

cH =
3g2 + g02

16
+

y2t
4

+
�

2
+

a2
24

, cS =
a2
6

+
b4
4
, m1 =

a1 + b3
12

. (2.9)
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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Figure 3. Left: after the basic acceptance cuts, the invariant mass distributions of the jet pairs and
four-jet system for the signal and main backgrounds at the 10 TeV muon collider. Here we select
Mh2 = 600 GeV as the signal benchmark. Right: the expected probe limits on s2✓ ⇥Br(h2 ! h1h1)
for di↵erent muon collider setups. The scatter points are the FOEWPT data, in which red, green
and blue colors represent SNR 2 [50,+1), [10, 50) and [0, 10), respectively. The limit from ATLAS
at the 13 TeV LHC with L = 36.1 fb�1 [114] and its extrapolation to the HL-LHC [12] are also
shown for comparison.

as illustrated in orange in the left panel of Fig. 3. The cut flows for three chosen signal

benchmarks at a 10 TeV muon collider are shown in Table 1, indicating Cut III is fairly

powerful to improve the signal over background factor.

Given the collision energy
p
s and the integrated luminosity L, the signal and back-

ground event numbers are

S = �S ⇥ ✏S ⇥ L = �SM
h2

⇥ s2
✓
⇥ Br(h2 ! h1h1)⇥ ✏S ⇥ L,

B = �B ⇥ ✏B ⇥ L,
(3.14)

where �S,B are the signal and background production rates, and ✏S,B are the corresponding

cut e�ciencies, respectively. Note that �B is already fixed, and �SM
h2

as well as ✏S,B depends

only on Mh2 . This implies that we can generate events for several Mh2 benchmarks and

derive the collider probe limits for s2
✓
⇥ Br(h2 ! h1h1) by the 2� exclusion criterion

S/
p

B = 2, (3.15)

and make the interpolation to derive the s2
✓
⇥Br(h2 ! h1h1) reach as a function ofMh2 . The

sensitivity of the muon collider to FOEWPT can be obtained by projecting the FOEWPT

parameter space to such 2-dimension plane. This is done in the right panel of Fig. 3, in

which the reach of di↵erent collider setups are plotted as di↵erent colored solid lines, and

the FOEWPT data points lying above a specific line can be probed by the corresponding

muon collider. Note that our projections are derived without b-tagging. We have checked

that by assuming a 90% b-tagging e�ciency the probe limits can be improved by a factor

of 3 ⇠ 5, which has little visual e↵ect in the log coordinate.
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I N T E R P L AYD I R E C T  &  I N D I R E C T

EW phase transition
3.1 Model and theoretical constraints

We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):

V (�, S) = � µ
2
⇣
�†�

⌘
+ �

⇣
�†�

⌘2
+

a1

2

⇣
�†�

⌘
S

+
a2

2

⇣
�†�

⌘
S
2 + b1S +

b2

2
S
2 +

b3

3
S
3 +

b4

4
S
4
. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as

a1 =
m

2
1 �m

2
2

v
2 sin ✓ cos ✓

b2 +
a2 v

2

2
= m

2
1 sin

2
✓ +m

2
2 cos

2
✓ (3.2)

� =
m

2
1 cos

2
✓ +m

2
2 sin

2
✓

2 v2

with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)

– 7 –

 2101.10469

independent parameters

1807.04743, 1910.04170, 2101.10469

and then the mass term of the two neutral scalars reads

V �
1

2

⇣
h s

⌘
M

2
s

 
h

s

!
; M

2
s =

 
@
2
V

@h2
@
2
V

@h@s

@
2
V

@h@s

@
2
V

@s2

!
. (2.3)

Diagonalizing M
2
s yields the mass eigenstates h1, h2 and the mixing angle ✓ between them,

namely  
h

s

!
= U

 
h1
h2

!
, U =

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
, (2.4)

such that the mass matrix becomes U †
M

2
sU = diag

�
M2

h1
,M2

h2

 
. Here we assume the

lighter state h1 is the SM Higgs-like boson.

The requirement that (v, vs) is an extremum of Eq. (2.1) yields two relations [12]

µ2 = �v2 +
vs
2
(a1 + a2vs), b2 = �

1

4vs

⇥
v2(a1 + 2a2vs) + 4v2s(b3 + b4vs)

⇤
, (2.5)

where the coe�cients �, a1 and a2 can be further expressed in terms of Mh1 , Mh2 and ✓,

� =
M2

h1
c2
✓
+M2

h2
s2
✓

2v2
,

a1 =
4vs
v2


v2s

✓
2b4 +

b3
vs

◆
�M2

h1
s2
✓
�M2

h2
c2
✓

�
,

a2 =
1

2vs

hs2✓
v

�
M2

h1
�M2

h2

�
� a1

i
,

(2.6)

with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming

VT =�
�
µ2

� cHT 2
�
|H|

2 + �|H|
4 +

a1
2
|H|

2S +
a2
2
|H|

2S2

+
�
b1 +m1T

2
�
S +

b2 + cST 2

2
S2 +

b3
3
S3 +

b4
4
S4,

(2.8)

where we only keep the gauge invariant T 2-order terms [82, 83], and

cH =
3g2 + g02

16
+

y2t
4

+
�

2
+

a2
24

, cS =
a2
6

+
b4
4
, m1 =

a1 + b3
12

. (2.9)
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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Figure 3. Left: after the basic acceptance cuts, the invariant mass distributions of the jet pairs and
four-jet system for the signal and main backgrounds at the 10 TeV muon collider. Here we select
Mh2 = 600 GeV as the signal benchmark. Right: the expected probe limits on s2✓ ⇥Br(h2 ! h1h1)
for di↵erent muon collider setups. The scatter points are the FOEWPT data, in which red, green
and blue colors represent SNR 2 [50,+1), [10, 50) and [0, 10), respectively. The limit from ATLAS
at the 13 TeV LHC with L = 36.1 fb�1 [114] and its extrapolation to the HL-LHC [12] are also
shown for comparison.

as illustrated in orange in the left panel of Fig. 3. The cut flows for three chosen signal

benchmarks at a 10 TeV muon collider are shown in Table 1, indicating Cut III is fairly

powerful to improve the signal over background factor.

Given the collision energy
p
s and the integrated luminosity L, the signal and back-

ground event numbers are

S = �S ⇥ ✏S ⇥ L = �SM
h2

⇥ s2
✓
⇥ Br(h2 ! h1h1)⇥ ✏S ⇥ L,

B = �B ⇥ ✏B ⇥ L,
(3.14)

where �S,B are the signal and background production rates, and ✏S,B are the corresponding

cut e�ciencies, respectively. Note that �B is already fixed, and �SM
h2

as well as ✏S,B depends

only on Mh2 . This implies that we can generate events for several Mh2 benchmarks and

derive the collider probe limits for s2
✓
⇥ Br(h2 ! h1h1) by the 2� exclusion criterion

S/
p

B = 2, (3.15)

and make the interpolation to derive the s2
✓
⇥Br(h2 ! h1h1) reach as a function ofMh2 . The

sensitivity of the muon collider to FOEWPT can be obtained by projecting the FOEWPT

parameter space to such 2-dimension plane. This is done in the right panel of Fig. 3, in

which the reach of di↵erent collider setups are plotted as di↵erent colored solid lines, and

the FOEWPT data points lying above a specific line can be probed by the corresponding

muon collider. Note that our projections are derived without b-tagging. We have checked

that by assuming a 90% b-tagging e�ciency the probe limits can be improved by a factor

of 3 ⇠ 5, which has little visual e↵ect in the log coordinate.
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I N T E R P L AYD I R E C T  &  I N D I R E C T

EW phase transition
3.1 Model and theoretical constraints

We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):

V (�, S) = � µ
2
⇣
�†�

⌘
+ �

⇣
�†�

⌘2
+

a1

2

⇣
�†�

⌘
S

+
a2

2

⇣
�†�

⌘
S
2 + b1S +

b2

2
S
2 +

b3

3
S
3 +

b4

4
S
4
. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as

a1 =
m

2
1 �m

2
2

v
2 sin ✓ cos ✓

b2 +
a2 v

2

2
= m

2
1 sin

2
✓ +m

2
2 cos

2
✓ (3.2)

� =
m

2
1 cos

2
✓ +m

2
2 sin

2
✓

2 v2

with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)
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independent parameters

1807.04743, 1910.04170, 2101.10469

and then the mass term of the two neutral scalars reads

V �
1

2
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⌘
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. (2.3)

Diagonalizing M
2
s yields the mass eigenstates h1, h2 and the mixing angle ✓ between them,

namely  
h

s

!
= U

 
h1
h2

!
, U =

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
, (2.4)

such that the mass matrix becomes U †
M

2
sU = diag

�
M2

h1
,M2

h2

 
. Here we assume the

lighter state h1 is the SM Higgs-like boson.

The requirement that (v, vs) is an extremum of Eq. (2.1) yields two relations [12]

µ2 = �v2 +
vs
2
(a1 + a2vs), b2 = �

1

4vs

⇥
v2(a1 + 2a2vs) + 4v2s(b3 + b4vs)

⇤
, (2.5)

where the coe�cients �, a1 and a2 can be further expressed in terms of Mh1 , Mh2 and ✓,

� =
M2

h1
c2
✓
+M2

h2
s2
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,
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,

(2.6)

with c✓ and s✓ being short for cos ✓ and sin ✓, respectively. Fixing Mh1 = Mh = 125.09

GeV and v = 246 GeV, we can use the following five parameters

{Mh2 , ✓, vs, b3, b4} , (2.7)

as input, and derive other parameters such as µ2, � via Eq. (2.5) and Eq. (2.6).

We use the strategy described in Appendix A to obtain the parameter space that

satisfies the SM constraints. The dataset is stored in form of a list of the five input

parameters in Eq. (2.7), and then used for the calculation of FOEWPT and GWs in the

following subsection.

2.2 FOEWPT and GWs

The scalar potential V in Eq. (2.1) receives thermal corrections at finite temperature,

becoming

VT =�
�
µ2

� cHT 2
�
|H|

2 + �|H|
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2
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(2.8)

where we only keep the gauge invariant T 2-order terms [82, 83], and

cH =
3g2 + g02
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24
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4
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Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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strong First Order EW phase transition on all points

Gravity Wave SNR

Figure 3. Left: after the basic acceptance cuts, the invariant mass distributions of the jet pairs and
four-jet system for the signal and main backgrounds at the 10 TeV muon collider. Here we select
Mh2 = 600 GeV as the signal benchmark. Right: the expected probe limits on s2✓ ⇥Br(h2 ! h1h1)
for di↵erent muon collider setups. The scatter points are the FOEWPT data, in which red, green
and blue colors represent SNR 2 [50,+1), [10, 50) and [0, 10), respectively. The limit from ATLAS
at the 13 TeV LHC with L = 36.1 fb�1 [114] and its extrapolation to the HL-LHC [12] are also
shown for comparison.

as illustrated in orange in the left panel of Fig. 3. The cut flows for three chosen signal

benchmarks at a 10 TeV muon collider are shown in Table 1, indicating Cut III is fairly

powerful to improve the signal over background factor.

Given the collision energy
p
s and the integrated luminosity L, the signal and back-

ground event numbers are

S = �S ⇥ ✏S ⇥ L = �SM
h2

⇥ s2
✓
⇥ Br(h2 ! h1h1)⇥ ✏S ⇥ L,

B = �B ⇥ ✏B ⇥ L,
(3.14)

where �S,B are the signal and background production rates, and ✏S,B are the corresponding

cut e�ciencies, respectively. Note that �B is already fixed, and �SM
h2

as well as ✏S,B depends

only on Mh2 . This implies that we can generate events for several Mh2 benchmarks and

derive the collider probe limits for s2
✓
⇥ Br(h2 ! h1h1) by the 2� exclusion criterion

S/
p

B = 2, (3.15)

and make the interpolation to derive the s2
✓
⇥Br(h2 ! h1h1) reach as a function ofMh2 . The

sensitivity of the muon collider to FOEWPT can be obtained by projecting the FOEWPT

parameter space to such 2-dimension plane. This is done in the right panel of Fig. 3, in

which the reach of di↵erent collider setups are plotted as di↵erent colored solid lines, and

the FOEWPT data points lying above a specific line can be probed by the corresponding

muon collider. Note that our projections are derived without b-tagging. We have checked

that by assuming a 90% b-tagging e�ciency the probe limits can be improved by a factor

of 3 ⇠ 5, which has little visual e↵ect in the log coordinate.
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Mixed Singlet for EW phase transition3.1 Model and theoretical constraints

We consider the most general form for the SM + S scalar potential that depends on a

Higgs doublet � and real singlet S (see e.g. [7, 9]):

V (�, S) = � µ
2
⇣
�†�

⌘
+ �

⇣
�†�

⌘2
+

a1

2

⇣
�†�

⌘
S

+
a2

2

⇣
�†�

⌘
S
2 + b1S +

b2

2
S
2 +

b3

3
S
3 +

b4

4
S
4
. (3.1)

Upon EW symmetry breaking, � ! (v + h)/
p
2 with v = 246 GeV. We note that a shift

in the singlet field S + �S does not lead to any change in the physics, which may be used

to choose a vanishing vev for the singlet field in the EW broken minimum by requiring

b1 = �a1v
2
/4. This is the choice we adopt in the following. Once the EW symmetry is

broken, the singlet S and the SM Higgs h mix in the presence of a1, yielding two mass

eigestates h1, h2. We identify h1 with the 125 GeV Higgs boson, and h2 with the heavy

state H discussed in the previous sections. The masses m1 = 125 GeV, m2 and the singlet-

doublet mixing angle ✓ are related to the scalar potential parameters as

a1 =
m

2
1 �m

2
2

v
2 sin ✓ cos ✓

b2 +
a2 v

2

2
= m

2
1 sin

2
✓ +m

2
2 cos

2
✓ (3.2)

� =
m

2
1 cos

2
✓ +m

2
2 sin

2
✓

2 v2

with µ
2 = � v

2. In the following we consider as independent parameters for our analysis

the set {v, m1, m2, ✓, a2, b3, b4}.

In order to obtain a viable SM + S scenario, we need to satisfy several theoretical

constraints which we discuss below:

• (Perturbative) unitarity and perturbativity: The size of the quartic scalar couplings in

eq. (3.1) is constrained by perturbative unitarity of the partial wave expansion of scattering

amplitudes. The bound |a0|  0.5 for the leading order term in the partial wave expansion

of the h2h2 ! h2h2 scattering amplitude, a0(h2h2 ! h2h2) = 3b4/(8⇡), yields b4 < 4⇡/3

(see e.g. [37]). In addition, we require perturbative values for a2 and b3/v: |a2| < 4⇡,

|b3| /v < 4⇡.

• Boundedness from below of scalar potential: We require the absence of runaway directions

in the scalar potential (3.1) at large field values. Along the h and S directions, this leads

respectively to the bounds � > 0 and b4 > 0. For a2 < 0 we further require a2 > �2
p
� b4

to ensure boundedness from below along an arbitrary field direction.

• Absolute stability of EW vacuum: First, the EW vacuum (hhi , hSi) = (v, 0) must be

a minimum. On one hand, this requires b2 > 0, which by virtue of (3.2) yields an upper

bound on the value of a2

a2 <
2

v2
(m2

1 sin
2
✓ +m

2
2 cos

2
✓) . (3.3)
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in the scalar potential (3.1) at large field values. Along the h and S directions, this leads
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Figure 11.2: Singlet-like scalar pair production as a signature of the EWPT in the xSM. Left: FCC-
hh sensitivity to pp! h2h2 ! 2j 3` 3n for a given h2 mass and mixing angle. Here, �221 and b3 are
the h2h2h1 and singlet cubic couplings, respectively. Darker (lighter) shaded regions indicate 5� (2�)
sensitivity assuming 30 ab�1 integrated luminosity. Coloured points feature a strong first-order EWPT.
Also shown for comparison are the sensitivity projections for h1 self-coupling measurements (dashed
contours) and precision measurements of the ZH production cross-section (solid red contours). From
Ref. [321]. Right: FCC-hh sensitivity to pp! h2h2 jj in the xSM with a Z2 symmetry. h2 escapes the
detector as missing energy. mS is the singlet mass and �HS is the Higgs portal coupling. Lighter shaded
regions indicate points compatible with a strong first-order EWPT, and the labelled contours indicate the
expected FCC-hh sensitivity given 30 ab�1 integrated luminosity. From Ref. [318].
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Fig. 4: In green, the points compatible with electroweak baryogenesis, for m2 = 500 GeV and sin ✓ =

0.05, in the model discussed in Section 6.1.3. These could all be tested both by the Higgs self coupling
measurement and by direct searches, indicated by the black and the blue dashed lines respectively.

Direct discoveries of new particles182

Various BSM theories, such as supersymmetry, have substantial parameter space that yields no new183

discoveries at the LHC, but can be discovered through direct production at high-energy CLIC. This184

occurs when the new BSM states have highly compressed mass differences, rendering them invisible at185

the LHC, or when the only interactions allowed by the new BSM states are through electroweak and/or186

Higgs boson interactions, rendering their rates too small to discern from the large LHC backgrounds.187

Examples presented in this document range from supersymmetry and extended Higgs sectors potentially188

related with electroweak baryogenesis, to Dark Matter, neutrino mass models and feebly interacting189

particles.190

Extra Higgs boson searches191

CLIC is ideally suited to discover and study heavy additional Higgs bosons (either new singlets or new192

doublets) that couple to the SM Higgs boson via its |H|
2 portal. Indirect and direct sensitivities on exotic193

Higgs bosons are typically substantially better than HL-LHC capabilities. (See Figure 5 and Section 2.1194

and 4.2 for more discussion.)195

Fig. 5: Reach on heavy scalar singlets, from Section 4.2.
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• High energy colliders are excellent and 
very robust probes of WIMPs!

• The chessboard of DM is very large! 
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E X O T I C  S I G N A LS T U B - T R A C K S

Higgsino DM

• Heavy n-plet of SU(2) 

• Mass splitting ~ αw mW ~ 0.1 GeV - GeV

L A R G E  R AT E S ,  B U T  N E E D S  T O  L I G H T  U P  T H E  
D E T E C T O R  I N  A  D I S C E R N I B L E  WAY

uncertainty. A systematic uncertainty of 30% (100%) on the total background prediction
has been assumed for SR�

1t (SR�
2t) for the

p
s = 3 TeV data-taking run. When considering

the
p
s = 10 TeV data-taking run, the systematic uncertainty on the total background pre-

diction in SR�
1t has been reduced to 10%. The discovery significance is evaluated from the

expected discovery p-value, while limits are set at 95% CL using the CLs method [91] with
the pyhf software package [92, 93]. Additional lines show the sensitivity of the conservative
scenario inflating the background estimates by an order of magnitude. The sensitivity is
shown separately for the

p
s = 3 TeV and

p
s = 10 TeV data-taking runs, and for wino

and higgsino multiplets. Available HL-LHC prospects [60, 94] are also included for com-
parison. Limits at 95% CL extracted from the

p
s = 3 TeV data-taking are overlaid on the

p
s = 10 TeV discovery prospects.
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Figure 14: Expected sensitivity using 1 ab�1 of 3 TeV or 10 ab�1 of 10 TeV µ
+
µ
� collision

data as a function of the �̃
± mass and lifetime. Models including �̃

±
�̃
⌥ are considered

assuming pure-wino scenarios (a and c) and pure-higgsino scenarios (b and d). The �̃
±

lifetime as a function of the �̃
± mass is shown by the dashed grey line: in the pure-wino

scenario it was calculated at the two-loops level [95], in the pure-higgsino scenario it was
calculated at the one-loop level [28, 62].

In the most favourable scenarios, the analysis of the full muon collider dataset is ex-
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Figure 17: Summary of the sensitivity to pure higgsino models at future experimental
facilities. The results for other facilities are taken from Refs. [17, 60].
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PRELIMINARY

Majorana DM triplet

μμ 3 TeV 4 ab−1

• fiducial cross-sections are 
significantly affected by off-shell 
new physics heavier than the 
collider kinematic reach

χ  is heavy/light new physics
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Electroweak Dark Matter: LSP (+NLSP)
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Electroweak symmetry breaking

• Extended Higgs Sector 

• Higgs compositeness

Big picture questions:
back to “valence” muon collisions 
and direct production of new physics
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“The size of the Higgs boson”
it matters because being “point-like” is the source of all the theoretical questions on the Higgs boson and weak scale 

… and if it is not … well, that is physics beyond the Standard Model!
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S T R O N G LY  I N T E R A C T I N G  L I G H T  H I G G Sh ~π

Effects of the size of the Higgs boson
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where ✏q stands for the degree of compositeness of the third-generation quark doublet, � is the SM Higgs1730

quartic coupling and Nc = 3 is the number of colours. The c-coefficients are expected to be of order one.1731

The set (66) contains 12 bosonic operators which is 2 less than the minimal universal set defined1732

in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743

contribution to the modification of hgg and h�� interactions comes not from OGG and OBB , but from1744

OH and a non-universal operator Oyt .1745

Using the projected sensitivities presented in the listed sections, we derive the sensitivities to the1746

strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748

at high g⇤, and by cW,B at low g⇤. For each category of measurement, regions probed in pessimistic and1749

optimistic cases are respectively indicated in dark and light colour shades. To derive them we indepen-1750

dently vary, in the [�2, �1/2] [ [1/2, 2] range, the numerical factors up to which the power counting for1751

each operator is satisfied. In the pessimistic case, a point in the (m⇤, g⇤) plane is considered to be within1752

reach only if it is expected to be probed for any choice of numerical factor within the specified range. In1753

the optimistic case instead, we require the point to be probed for at least one choice of parameters within1754

that range. This procedure aims at covering various possible CH model realizations.1755

1756

Top compositeness effects1757

The dominant non-universal effects of the strong sector are expected to arise from the sizeable mixings1758

of the top-quark with composite states, required to generate its Yukawa coupling. The latter is given by1759

yt ' ✏q✏tg⇤ (67)

where q and t in the following refer to the SM third-generation left-handed quark doublet and right-1760

handed singlet, respectively. We consider two representative scenarios: featuring an equal degree of1761

compositeness for both chiralities, ✏q = ✏t = (yt/g⇤)
1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763
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in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743
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strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748
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1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763

66

effects and purely gluonic operators):1729

L
d=6
universal = cH

g2
⇤

m2
⇤
OH + cT

Nc✏
4
qg

4
⇤

(4⇡)
2m2

⇤
OT + c6�

g2
⇤

m2
⇤
O6 +

1

m2
⇤

[cW OW + cBOB]

+
g2
⇤

(4⇡)
2m2

⇤
[cHW OHW + cHBOHB] +

y2
t

(4⇡)
2m2

⇤
[cBBOBB + cGGOGG]

+
1

g2
⇤m

2
⇤

h
c2W g2

O2W + c2Bg02
O2B

i
+ c3W

3!g2

(4⇡)
2m2

⇤
O3W

+ cyt

g2
⇤

m2
⇤
Oyt + cyb

g2
⇤

m2
⇤
Oyb (66)

where ✏q stands for the degree of compositeness of the third-generation quark doublet, � is the SM Higgs1730

quartic coupling and Nc = 3 is the number of colours. The c-coefficients are expected to be of order one.1731

The set (66) contains 12 bosonic operators which is 2 less than the minimal universal set defined1732

in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743

contribution to the modification of hgg and h�� interactions comes not from OGG and OBB , but from1744

OH and a non-universal operator Oyt .1745

Using the projected sensitivities presented in the listed sections, we derive the sensitivities to the1746

strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748

at high g⇤, and by cW,B at low g⇤. For each category of measurement, regions probed in pessimistic and1749

optimistic cases are respectively indicated in dark and light colour shades. To derive them we indepen-1750

dently vary, in the [�2, �1/2] [ [1/2, 2] range, the numerical factors up to which the power counting for1751

each operator is satisfied. In the pessimistic case, a point in the (m⇤, g⇤) plane is considered to be within1752

reach only if it is expected to be probed for any choice of numerical factor within the specified range. In1753

the optimistic case instead, we require the point to be probed for at least one choice of parameters within1754

that range. This procedure aims at covering various possible CH model realizations.1755

1756

Top compositeness effects1757

The dominant non-universal effects of the strong sector are expected to arise from the sizeable mixings1758

of the top-quark with composite states, required to generate its Yukawa coupling. The latter is given by1759

yt ' ✏q✏tg⇤ (67)

where q and t in the following refer to the SM third-generation left-handed quark doublet and right-1760

handed singlet, respectively. We consider two representative scenarios: featuring an equal degree of1761

compositeness for both chiralities, ✏q = ✏t = (yt/g⇤)
1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763

66

effects and purely gluonic operators):1729

L
d=6
universal = cH

g2
⇤

m2
⇤
OH + cT

Nc✏
4
qg

4
⇤

(4⇡)
2m2

⇤
OT + c6�

g2
⇤

m2
⇤
O6 +

1

m2
⇤

[cW OW + cBOB]

+
g2
⇤

(4⇡)
2m2

⇤
[cHW OHW + cHBOHB] +

y2
t

(4⇡)
2m2

⇤
[cBBOBB + cGGOGG]

+
1

g2
⇤m

2
⇤

h
c2W g2

O2W + c2Bg02
O2B

i
+ c3W

3!g2

(4⇡)
2m2

⇤
O3W

+ cyt

g2
⇤

m2
⇤
Oyt + cyb

g2
⇤

m2
⇤
Oyb (66)

where ✏q stands for the degree of compositeness of the third-generation quark doublet, � is the SM Higgs1730

quartic coupling and Nc = 3 is the number of colours. The c-coefficients are expected to be of order one.1731

The set (66) contains 12 bosonic operators which is 2 less than the minimal universal set defined1732

in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743

contribution to the modification of hgg and h�� interactions comes not from OGG and OBB , but from1744

OH and a non-universal operator Oyt .1745

Using the projected sensitivities presented in the listed sections, we derive the sensitivities to the1746

strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748

at high g⇤, and by cW,B at low g⇤. For each category of measurement, regions probed in pessimistic and1749

optimistic cases are respectively indicated in dark and light colour shades. To derive them we indepen-1750

dently vary, in the [�2, �1/2] [ [1/2, 2] range, the numerical factors up to which the power counting for1751

each operator is satisfied. In the pessimistic case, a point in the (m⇤, g⇤) plane is considered to be within1752

reach only if it is expected to be probed for any choice of numerical factor within the specified range. In1753

the optimistic case instead, we require the point to be probed for at least one choice of parameters within1754

that range. This procedure aims at covering various possible CH model realizations.1755

1756

Top compositeness effects1757

The dominant non-universal effects of the strong sector are expected to arise from the sizeable mixings1758

of the top-quark with composite states, required to generate its Yukawa coupling. The latter is given by1759

yt ' ✏q✏tg⇤ (67)

where q and t in the following refer to the SM third-generation left-handed quark doublet and right-1760

handed singlet, respectively. We consider two representative scenarios: featuring an equal degree of1761

compositeness for both chiralities, ✏q = ✏t = (yt/g⇤)
1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763

66

1/f ∼ g⋆/m⋆

1/(g⋆ f ) ∼ 1/m⋆

gSM /(g⋆ f ) ∼ gSM /m⋆

{ℓHiggs ∼ 1/m⋆
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SM works wonderfully!

dσ
dpT

measurements sensitive to a range of mass scales

New Physics may fit well in a EFT (new contact interactions)
• effects grow at larger energies like νe-→νe- in Fermi Theory

• sensitive to a range of energy scales 
• progress is easy to measure: bounds on new Fermi constants

1% at mZ is worse than 10% at 1 TeV

as NP effects may grow quadratically with energy 

ΔO = ONP − OSM ∼ ( E
v )

2
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SM works wonderfully!

mW, mZ, sin θW, Awhatever
FB , h → Zγ, h → ZZ, t → bτν, σtot(ℓℓ → hh)

dσ
dpT

measurements dominated by a single mass scale measurements sensitive to a range of mass scales

New Physics may fit well in a EFT (new contact interactions)
• effects grow at larger energies like νe-→νe- in Fermi Theory

• dominant energy scale is low 
• measurement is simple to grasp 
• progress is easy to measure (in)significant digits

• sensitive to a range of energy scales 
• measurement of a spectrum (not so?!?) simple to grasp 
• progress is easy to measure: bounds on new Fermi constants

H I G H - L U M I  P R O B E S H I G H - E N E R G Y  P R O B E S

1% at mZ is worse than 10% at 1 TeV

as NP effects may grow quadratically with energy 

ΔO = ONP − OSM ∼ ( E
v )

2

fight against systematics

NP effects may show up in the combination 
of many precise measurements
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μμ 3 TeV
̂S95% ≲ 1.2 ⋅ 10−4

Ebeam /TeV ⋅ ℒ/ab−1
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̂S95% ≲ 1.2 ⋅ 10−4 1
Ebeam /TeV ⋅ 1

ℒ/ab−1

Ever higher energy colliders can exploit “precise” measurements at the 10% level

Buttazzo, RF, Wulzer -  2012.11555 the “leveraging energy” way 

ℒ ∼ E2
cm
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S T R O N G LY  I N T E R A C T I N G  T O P  A N D  H I G G S

Effects of the size of the top quark

• Top quarks are 
naturally involved 
in a composite 
Higgs sector. 

•  final states 
contain new 
information not 
present in generic 

 Drell-Yan

tt̄

ff̄
• enhanced  contact interaction!μμ̄tt̄
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Effects of the size of the Higgs boson

{ℓtop ∼ 1/m⋆ ∼ ℓHiggs

effects and purely gluonic operators):1729
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where ✏q stands for the degree of compositeness of the third-generation quark doublet, � is the SM Higgs1730

quartic coupling and Nc = 3 is the number of colours. The c-coefficients are expected to be of order one.1731

The set (66) contains 12 bosonic operators which is 2 less than the minimal universal set defined1732

in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743

contribution to the modification of hgg and h�� interactions comes not from OGG and OBB , but from1744

OH and a non-universal operator Oyt .1745

Using the projected sensitivities presented in the listed sections, we derive the sensitivities to the1746

strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748

at high g⇤, and by cW,B at low g⇤. For each category of measurement, regions probed in pessimistic and1749

optimistic cases are respectively indicated in dark and light colour shades. To derive them we indepen-1750

dently vary, in the [�2, �1/2] [ [1/2, 2] range, the numerical factors up to which the power counting for1751

each operator is satisfied. In the pessimistic case, a point in the (m⇤, g⇤) plane is considered to be within1752

reach only if it is expected to be probed for any choice of numerical factor within the specified range. In1753

the optimistic case instead, we require the point to be probed for at least one choice of parameters within1754

that range. This procedure aims at covering various possible CH model realizations.1755

1756

Top compositeness effects1757

The dominant non-universal effects of the strong sector are expected to arise from the sizeable mixings1758

of the top-quark with composite states, required to generate its Yukawa coupling. The latter is given by1759

yt ' ✏q✏tg⇤ (67)

where q and t in the following refer to the SM third-generation left-handed quark doublet and right-1760

handed singlet, respectively. We consider two representative scenarios: featuring an equal degree of1761

compositeness for both chiralities, ✏q = ✏t = (yt/g⇤)
1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763
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The set (66) contains 12 bosonic operators which is 2 less than the minimal universal set defined1732

in Ref. [14] (neglecting again two purely gluonic operators).1733

The OW , OB, O2W , O2B, OT operators contribute to Drell-Yan production discussed in Section 2.6,1734

as well as to the tt̄ production of Section 2.7. The latter however receives larger non-universal contribu-1735

tions, which we discuss next. OT and a combination of OW and OB are already strongly constrained by1736

the LEP data.1737

The Higgs self-coupling measurements of Section 2.2.1 are a unique probe of O6, while the other1738

operators contributing to this process are much better probed in other channels. The expected sensitivity1739

is, however, not sufficient to test the typically expected order-one values of c6, given that m⇤/g⇤ is1740

already constrained to be at or above about 800 GeV [124].1741

Higgs and vector boson production analysed in Sections 2.1, 2.4 and 2.3 are affected by OW , OB ,1742

OHW , OHB , O3W , OGG, OBB and OH . Here one should emphasize that in CH models the dominant1743

contribution to the modification of hgg and h�� interactions comes not from OGG and OBB , but from1744

OH and a non-universal operator Oyt .1745

Using the projected sensitivities presented in the listed sections, we derive the sensitivities to the1746

strong sector parameters g⇤ and m⇤ from the most relevant channels. The results are displayed in Fig-1747

ure 35. The sensitivity of the combined fit to the Higgs and diboson data is dominated by cH , cyt and cyb1748

at high g⇤, and by cW,B at low g⇤. For each category of measurement, regions probed in pessimistic and1749

optimistic cases are respectively indicated in dark and light colour shades. To derive them we indepen-1750

dently vary, in the [�2, �1/2] [ [1/2, 2] range, the numerical factors up to which the power counting for1751

each operator is satisfied. In the pessimistic case, a point in the (m⇤, g⇤) plane is considered to be within1752

reach only if it is expected to be probed for any choice of numerical factor within the specified range. In1753

the optimistic case instead, we require the point to be probed for at least one choice of parameters within1754

that range. This procedure aims at covering various possible CH model realizations.1755

1756

Top compositeness effects1757

The dominant non-universal effects of the strong sector are expected to arise from the sizeable mixings1758

of the top-quark with composite states, required to generate its Yukawa coupling. The latter is given by1759

yt ' ✏q✏tg⇤ (67)

where q and t in the following refer to the SM third-generation left-handed quark doublet and right-1760

handed singlet, respectively. We consider two representative scenarios: featuring an equal degree of1761

compositeness for both chiralities, ✏q = ✏t = (yt/g⇤)
1/2, and a totally composite top right [125], ✏t =1762

1, ✏q = yt/g⇤. For a consistent treatment of top-quark compositeness effects, we write down all possible1763

66

1/f ∼ g⋆/m⋆

1/(g⋆ f ) ∼ 1/m⋆

gSM /(g⋆ f ) ∼ gSM /m⋆

+ ctD
g2

*
m2

*
-tD
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Fig. 8.4: Left panel: exclusion reach on the Composite Higgs model parameters of FCC-hh,
FCC-ee, and of the high-energy stages of CLIC. Right panel: the reach of HE-LHC, ILC,
CEPC and CLIC380. The reach of HL-LHC is the grey shaded region.
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Fig. 8.5: Exclusion reach of different colliders on the inverse Higgs length 1/`H = m⇤ (orange
bars, left axis) and the tuning parameter 1/e (blue bars, right axis), obtained by choosing the
weakest bound valid for any value of the coupling constant g⇤.

final state studies. Direct searches are more effective at low g⇤, which may seem surprising.
The reason is that g⇤ is the r coupling to the Higgs boson, while the coupling of the r to
quarks, which drives the production, scales like g2

2/g⇤ and therefore increases for small g⇤.
Unfortunately, no direct reach projection is currently available for the HE-LHC.

The information in Fig. 8.4 can be projected into a single number, as displayed in Fig. 8.5.
The orange bars show the maximum m⇤ (or, equivalently, the minimum Higgs size `H) a given
collider is sensitive to, independently of the value of g⇤. The blue bars show the tuning param-
eter 1/e (which is equal to the conventional tuning parameter D), obtained as follows. Higgs
compositeness can address the naturalness problem, provided it emerges at a relatively low
scale, but the parameter m⇤ is not the most appropriate measure of the degree of fine-tuning re-
quired to engineer the correct Higgs mass and EWSB scale. A better measure is (see e.g., [443])
1/e > (mT /500GeV)2 > m2

⇤/g2
⇤v2, where v = 246 GeV and mT is the top-partner mass. The

second inequality provides the estimate of the reach on e reported in Fig. 8.5. The equation
also displays the impact of fermionic top-partner searches on e . The discovery reach of these
particles at HL-LHC, HE-LHC and FCC-hh are of 1.5, 2 and 4.7 TeV, respectively. These
correspond to a reach on 1/e of 10, 16 and 88.

Looking ahead
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compositeness at 
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M U O N SVA L E N C E

→ new physicsμ+μ−

Can produce heavy new physics (colored or not) Compares pretty well with a pp collider

in principle can probe directly new states at  scale!
s

2

Find equivalent √sp for proton coll. have same cross-section as μ coll. 
for reactions at E~√sμ. Use that        is nearly constant in τ.

Lepton coll. operating at energy √sμ.

Cross section for reaction at E~√sμ

(e.g., production of BSM at M=E)

Proton coll. operating at energy √sp.

Cross section for reaction at E.

Parton Luminosity suppression

2. Physics Opportunities

Ideally, a muon collider might useful in three ways: as a Higgs pole machine aimed
at studying the Higgs line shape in µ+µ� ! H; as a more compact version of e+e�

colliders below 500 GeV aimed at Higgs and top measurements; as a high energy machine
well above the TeV. However the luminosity and the energy spread performances of the
LEMMA scheme are insu�cient for the two former applications, hence in what follows
we focus on the latter, which is arguably also the most interesting one. Specifically, we
consider a “Very High Energy” option, well above 10 TeV, and a “Multi-TeV” one. The
Very High Energy muon collider would be a discovery machine, with a direct reach on
new physics in the same ballpark as the one of a 100 TeV proton-proton machine, but
it would also have an astonishingly high indirect reach on new physics. The Multi-TeV
one would compete with 3 TeV CLIC, it would address some aspects of Higgs physics
(notably, the Higgs trilinear coupling), and it would indirectly probe new physics in the
electroweak sector deep in the 10 TeV mass range.

Notice however that the conclusions above are the result of a preliminary semi-quantitative
investigation of the muon collider physics performances. The physics case should be
developed in much greater details in parallel with the accelerator feasibility studies.

2.1. Very High Energy

The possibility of reaching center of mass collision energies above 10 TeV makes the muon
collider a discovery machine, aimed at an order-of-magnitude progress in the experimental
exploration of the energy frontier. Such an experimental progress is perceived by many
[4] as essential for fundamental physics. The most ambitious project in this direction is
the one of a 100 TeV proton-proton collider. A very high energy muon collider might have
comparable or superior physics potential, as illustrated in the left panel of Fig. 1. The
figure shows a rough estimate of the center of mass energy,

p
sH , required for a hadronic

proton-proton collider to have equivalent sensitivity of a leptonic one, with energy
p
sL,

to physics at the E ⇠ p
sL energy scale. The estimate is obtained by comparing the

hadron collider cross-section, for a given process occurring at E ⇠ p
sL, with the one for

the “analogous” process (e.g., the production of the same heavy BSM particles pair) at
the lepton collider

�H(E, sH) =
1

sH

Z 1

E2/sH

d⌧

⌧

dL

d⌧
[ŝ�̂]

H
, �L(sL) =

1

sL
[ŝ�̂]

L
. (1)

PRELIMINARY DOCUMENT 6 Not for distribution

QCD-coloured BSM can easily 
have much larger partonic XS.            

Comparison even more favourable 
for QCD-neutral BSM

Simple Things First
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]

σμ(sμ) = 1
sμ

[ ̂s ̂σ]μ σp(E, sp) = 1
sp ∫

1

E2/sp

dτ
τ

dL
dτ

[ ̂s ̂σ]p

[ ̂s ̂σ]p = [ ̂s ̂σ]μ
[ ̂s ̂σ]p = 10 [ ̂s ̂σ]μ

It is enough to remember the shape of pdf’s !
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new physics in the same ballpark as the one of a 100 TeV proton-proton machine, but
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one would compete with 3 TeV CLIC, it would address some aspects of Higgs physics
(notably, the Higgs trilinear coupling), and it would indirectly probe new physics in the
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Notice however that the conclusions above are the result of a preliminary semi-quantitative
investigation of the muon collider physics performances. The physics case should be
developed in much greater details in parallel with the accelerator feasibility studies.
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The possibility of reaching center of mass collision energies above 10 TeV makes the muon
collider a discovery machine, aimed at an order-of-magnitude progress in the experimental
exploration of the energy frontier. Such an experimental progress is perceived by many
[4] as essential for fundamental physics. The most ambitious project in this direction is
the one of a 100 TeV proton-proton collider. A very high energy muon collider might have
comparable or superior physics potential, as illustrated in the left panel of Fig. 1. The
figure shows a rough estimate of the center of mass energy,
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p
sL,

to physics at the E ⇠ p
sL energy scale. The estimate is obtained by comparing the

hadron collider cross-section, for a given process occurring at E ⇠ p
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the “analogous” process (e.g., the production of the same heavy BSM particles pair) at
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2HDM
Figure 2. Representative Feynman diagram for the EW scalar pair production in µ+µ� annihilation
µ+µ� ! �1�2.
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Figure 3. Cross sections versus the c.m. energy
p

s. For the left panel: µ+µ� ! H+H� (red),
and HA (green) through µ+µ� annihilation; and for the right panel: in addition, H±H/H±A (blue),
HH/AA (purple), through VBF in the alignment limit cos(� �↵) = 0. Solid, dashed and dotted lines
for degenerate Higgs masses m� = 1 TeV, 2 TeV and 5 TeV, respectively. The vertical axis on the
right shows the corresponding event yields for a 10 ab�1 integrated luminosity.

c.m. energy for heavy particle production, it has been argued that the VBF processes will

become increasingly more important at higher energies and o↵er a variety of production

channels due to the initial state spectrum.

3.1 Production cross sections

Once crossing the pair production threshold, the heavy Higgs bosons can be produced in pair

via the µ+µ� annihilation

µ+µ� ! �⇤, Z⇤ ! H+H�, µ+µ� ! Z⇤ ! HA. (3.1)

The Feynman diagrams of the leading contributions are shown in Fig. 2. In the alignment

limit of cos(� � ↵) = 0, the production is fully governed by the EW gauge interactions,

which are universal for all types of the 2HDMs. The left panel of Fig. 3 shows the total cross

sections of Eq. (3.1) versus the collider c.m. energy
p

s for degenerate heavy Higgs masses

m�(= mH = mA = mH±) =1 TeV (solid curves), 2 TeV (dashed curves) and 5 TeV (dotted

curves). Red and green curves are for H+H� and HA productions. We see the threshold

– 8 –

• HL-LHC coverage ends well below TeV 

• detailed model analysis for 3 TeV desirable 

• reach close to s /2

2102.08386
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μμ 3 TeV
σ ≃ 1 fb

thousands of events per ab−1

• HL-LHC coverage ends well below TeV 

• detailed model analysis for 3 TeV desirable 

• reach close to s /2
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters. The
gap in performances between CEPC or FCC-ee with respect to ILC250 or CLIC380 is most likely
due to the lack of dedicated di-fermion production studies as discussed in Sect. 8.2.1.

posite (`H 6= 0). The coupling parameter g⇤ represents the interaction strength among particles
originating from the Composite Sector. It controls the strength of the Higgs couplings to the
r resonance and it sets the scale of couplings that appear in the EFT Lagrangian. The internal
coherence of the construction requires g⇤ to be larger than the EW coupling (g⇤ & 1) but smaller
than the perturbative unitarity limit (g⇤ . 4p).

Among the operators in the Composite Higgs EFT, Of (defined as in [39]), OW and O2W
are the most representative and offer the best sensitivity at all colliders. Parametrically, their
Wilson coefficients are

cf

L2 ⇠ g2
⇤

m2
⇤
,

cW

L2 ⇠ 1
m2

⇤
,

c2W

L2 ⇠ 1
g2

⇤m2
⇤
.

These relations are merely estimates of the expected magnitude of the Wilson coefficients,
which hold up to model-dependent order-one factors. In the current analysis, these relations
are taken as exact equalities, so the results should not be interpreted as strictly quantitative, but
only as a fair assessment of the sensitivity.

Figure 8.4 shows the exclusion reach on m⇤ and g⇤ from the highly complementary probes
on the operators Of , OW and O2W with different experimental strategies in different colliders.
For the FCC project, Of is most effective at large g⇤, and it is well probed by Higgs couplings
measurements at FCC-ee. However FCC-hh and FCC-eh further improve the reach on cf as
shown in the figure. The reach on cf for all collider options is extracted from the summary
Table 8 of Ref. [39], with the exception of HL-LHC for which a more conservative value of
cf |1s = 0.42/TeV2 (also reported in Ref. [39]) is employed. The operator O2W is instead
effective at low g⇤, and it is probed by high-energy charged DY measurements at FCC-hh [439].
The mass-reach from OW is instead independent of g⇤. The reach of direct resonance searches
is also shown in Fig. 8.4, for the FCC-hh and the HL-LHC. It represents the sensitivity to an
EW triplet r vector resonance, generically present in Composite Higgs models. The reach
is extracted from ref. [440–442], and it emerges from a combination of dilepton and diboson

30 TeV μμ

preliminary

116 CHAPTER 8. BEYOND THE STANDARD MODEL

7GEPI���GSYTPMRK�?8I:A

,0�0,'
,)�0,'
-0'� 䈻䈾䈹
-0'� 䈾䈹䈹
-0'� 䈺䈹䈹䈹
'0-'� 䈼䉁䈹
'0-'� 䈺䈾䈹䈹
'0-'� 䈼䈹䈹䈹

')4'
*''�II�䈻䈽䈹
*''�II�䈼䈿䈹
*''�II�LL

� � �� �� �� �� �� ��

ᮃୗ ᮃݫ

��	�'0�WGEPI�PMQMXW�SR���JIVQMSR���FSWSR�GSRXEGX�MRXIVEGXMSRW

Fig. 8.2: Exclusion reach of different colliders on the two-fermion/two-boson contact inter-
actions from the operator OW and OB. The blue bars give the reach on the effective scale
L/(g2
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pcW ) and the orange bars on L/(g2
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pcB), where cW,B are the Wilson coefficients of the

corresponding operators and the gauge couplings come from the use of the equations of motion.
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters.

Figure 8.3 displays the 95% CL exclusion reach on gZ0 and M, at various colliders. For
hadron machines, the reach of direct searches (round curves at small gZ0) is obtained from
recasting the results in Refs. [443, 444], overlaid with the indirect sensitivity (diagonal straight
lines at large gZ0) discussed previously. It is seen that the direct mass reach is inferior to the
indirect one for high gZ0 , in agreement with the generic expectation that strongly-coupled new
physics is better probed indirectly. Moreover, the indirect reach benefits greatly from higher
collider energies. These two observations explain both the competitiveness of lepton colliders
in indirect searches and the good indirect performances of the FCC-hh and HE-LHC colliders.
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters. The
gap in performances between CEPC or FCC-ee with respect to ILC250 or CLIC380 is most likely
due to the lack of dedicated di-fermion production studies as discussed in Sect. 8.2.1.

posite (`H 6= 0). The coupling parameter g⇤ represents the interaction strength among particles
originating from the Composite Sector. It controls the strength of the Higgs couplings to the
r resonance and it sets the scale of couplings that appear in the EFT Lagrangian. The internal
coherence of the construction requires g⇤ to be larger than the EW coupling (g⇤ & 1) but smaller
than the perturbative unitarity limit (g⇤ . 4p).

Among the operators in the Composite Higgs EFT, Of (defined as in [39]), OW and O2W
are the most representative and offer the best sensitivity at all colliders. Parametrically, their
Wilson coefficients are

cf

L2 ⇠ g2
⇤

m2
⇤
,

cW

L2 ⇠ 1
m2

⇤
,

c2W

L2 ⇠ 1
g2

⇤m2
⇤
.

These relations are merely estimates of the expected magnitude of the Wilson coefficients,
which hold up to model-dependent order-one factors. In the current analysis, these relations
are taken as exact equalities, so the results should not be interpreted as strictly quantitative, but
only as a fair assessment of the sensitivity.

Figure 8.4 shows the exclusion reach on m⇤ and g⇤ from the highly complementary probes
on the operators Of , OW and O2W with different experimental strategies in different colliders.
For the FCC project, Of is most effective at large g⇤, and it is well probed by Higgs couplings
measurements at FCC-ee. However FCC-hh and FCC-eh further improve the reach on cf as
shown in the figure. The reach on cf for all collider options is extracted from the summary
Table 8 of Ref. [39], with the exception of HL-LHC for which a more conservative value of
cf |1s = 0.42/TeV2 (also reported in Ref. [39]) is employed. The operator O2W is instead
effective at low g⇤, and it is probed by high-energy charged DY measurements at FCC-hh [439].
The mass-reach from OW is instead independent of g⇤. The reach of direct resonance searches
is also shown in Fig. 8.4, for the FCC-hh and the HL-LHC. It represents the sensitivity to an
EW triplet r vector resonance, generically present in Composite Higgs models. The reach
is extracted from ref. [440–442], and it emerges from a combination of dilepton and diboson
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters.

Figure 8.3 displays the 95% CL exclusion reach on gZ0 and M, at various colliders. For
hadron machines, the reach of direct searches (round curves at small gZ0) is obtained from
recasting the results in Refs. [443, 444], overlaid with the indirect sensitivity (diagonal straight
lines at large gZ0) discussed previously. It is seen that the direct mass reach is inferior to the
indirect one for high gZ0 , in agreement with the generic expectation that strongly-coupled new
physics is better probed indirectly. Moreover, the indirect reach benefits greatly from higher
collider energies. These two observations explain both the competitiveness of lepton colliders
in indirect searches and the good indirect performances of the FCC-hh and HE-LHC colliders.

95 % CL at μμ 3TeV

Glioti, Chen, Rattazzi, Ricci, Wulzer
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters. The
gap in performances between CEPC or FCC-ee with respect to ILC250 or CLIC380 is most likely
due to the lack of dedicated di-fermion production studies as discussed in Sect. 8.2.1.

posite (`H 6= 0). The coupling parameter g⇤ represents the interaction strength among particles
originating from the Composite Sector. It controls the strength of the Higgs couplings to the
r resonance and it sets the scale of couplings that appear in the EFT Lagrangian. The internal
coherence of the construction requires g⇤ to be larger than the EW coupling (g⇤ & 1) but smaller
than the perturbative unitarity limit (g⇤ . 4p).

Among the operators in the Composite Higgs EFT, Of (defined as in [39]), OW and O2W
are the most representative and offer the best sensitivity at all colliders. Parametrically, their
Wilson coefficients are

cf

L2 ⇠ g2
⇤

m2
⇤
,

cW

L2 ⇠ 1
m2

⇤
,

c2W

L2 ⇠ 1
g2

⇤m2
⇤
.

These relations are merely estimates of the expected magnitude of the Wilson coefficients,
which hold up to model-dependent order-one factors. In the current analysis, these relations
are taken as exact equalities, so the results should not be interpreted as strictly quantitative, but
only as a fair assessment of the sensitivity.

Figure 8.4 shows the exclusion reach on m⇤ and g⇤ from the highly complementary probes
on the operators Of , OW and O2W with different experimental strategies in different colliders.
For the FCC project, Of is most effective at large g⇤, and it is well probed by Higgs couplings
measurements at FCC-ee. However FCC-hh and FCC-eh further improve the reach on cf as
shown in the figure. The reach on cf for all collider options is extracted from the summary
Table 8 of Ref. [39], with the exception of HL-LHC for which a more conservative value of
cf |1s = 0.42/TeV2 (also reported in Ref. [39]) is employed. The operator O2W is instead
effective at low g⇤, and it is probed by high-energy charged DY measurements at FCC-hh [439].
The mass-reach from OW is instead independent of g⇤. The reach of direct resonance searches
is also shown in Fig. 8.4, for the FCC-hh and the HL-LHC. It represents the sensitivity to an
EW triplet r vector resonance, generically present in Composite Higgs models. The reach
is extracted from ref. [440–442], and it emerges from a combination of dilepton and diboson
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters.

Figure 8.3 displays the 95% CL exclusion reach on gZ0 and M, at various colliders. For
hadron machines, the reach of direct searches (round curves at small gZ0) is obtained from
recasting the results in Refs. [443, 444], overlaid with the indirect sensitivity (diagonal straight
lines at large gZ0) discussed previously. It is seen that the direct mass reach is inferior to the
indirect one for high gZ0 , in agreement with the generic expectation that strongly-coupled new
physics is better probed indirectly. Moreover, the indirect reach benefits greatly from higher
collider energies. These two observations explain both the competitiveness of lepton colliders
in indirect searches and the good indirect performances of the FCC-hh and HE-LHC colliders.

95 % CL at μμ 3TeV

Glioti, Chen, Rattazzi, Ricci, Wulzer

 can probe 70+ TeV mass for s ≃ 3 TeV gZ′ 
≃ gSM ≃ 0.67
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters. The
gap in performances between CEPC or FCC-ee with respect to ILC250 or CLIC380 is most likely
due to the lack of dedicated di-fermion production studies as discussed in Sect. 8.2.1.

posite (`H 6= 0). The coupling parameter g⇤ represents the interaction strength among particles
originating from the Composite Sector. It controls the strength of the Higgs couplings to the
r resonance and it sets the scale of couplings that appear in the EFT Lagrangian. The internal
coherence of the construction requires g⇤ to be larger than the EW coupling (g⇤ & 1) but smaller
than the perturbative unitarity limit (g⇤ . 4p).

Among the operators in the Composite Higgs EFT, Of (defined as in [39]), OW and O2W
are the most representative and offer the best sensitivity at all colliders. Parametrically, their
Wilson coefficients are

cf

L2 ⇠ g2
⇤

m2
⇤
,

cW

L2 ⇠ 1
m2

⇤
,

c2W

L2 ⇠ 1
g2

⇤m2
⇤
.

These relations are merely estimates of the expected magnitude of the Wilson coefficients,
which hold up to model-dependent order-one factors. In the current analysis, these relations
are taken as exact equalities, so the results should not be interpreted as strictly quantitative, but
only as a fair assessment of the sensitivity.

Figure 8.4 shows the exclusion reach on m⇤ and g⇤ from the highly complementary probes
on the operators Of , OW and O2W with different experimental strategies in different colliders.
For the FCC project, Of is most effective at large g⇤, and it is well probed by Higgs couplings
measurements at FCC-ee. However FCC-hh and FCC-eh further improve the reach on cf as
shown in the figure. The reach on cf for all collider options is extracted from the summary
Table 8 of Ref. [39], with the exception of HL-LHC for which a more conservative value of
cf |1s = 0.42/TeV2 (also reported in Ref. [39]) is employed. The operator O2W is instead
effective at low g⇤, and it is probed by high-energy charged DY measurements at FCC-hh [439].
The mass-reach from OW is instead independent of g⇤. The reach of direct resonance searches
is also shown in Fig. 8.4, for the FCC-hh and the HL-LHC. It represents the sensitivity to an
EW triplet r vector resonance, generically present in Composite Higgs models. The reach
is extracted from ref. [440–442], and it emerges from a combination of dilepton and diboson
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Fig. 8.3: Exclusion reach of different colliders on the Y -Universal Z0 model parameters.

Figure 8.3 displays the 95% CL exclusion reach on gZ0 and M, at various colliders. For
hadron machines, the reach of direct searches (round curves at small gZ0) is obtained from
recasting the results in Refs. [443, 444], overlaid with the indirect sensitivity (diagonal straight
lines at large gZ0) discussed previously. It is seen that the direct mass reach is inferior to the
indirect one for high gZ0 , in agreement with the generic expectation that strongly-coupled new
physics is better probed indirectly. Moreover, the indirect reach benefits greatly from higher
collider energies. These two observations explain both the competitiveness of lepton colliders
in indirect searches and the good indirect performances of the FCC-hh and HE-LHC colliders.
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M E G A - H I G G S  FA C T O RY1 0 6 H I G G S  B O S O N S

μ+μ− → hνν̄

σ ∼ log(s)

σ ⋅ ℒ ⇒ O(106) h

• ultra-rare Higgs decays 
• differential distribution 
• off-shell Higgs bosons 
• rare production modes

s = 3 TeV

 [GeV]s
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 H
X)

 [f
b]

→ - e+
(e
σ

2−10

1−10
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eνeνH

-e+He

ZH

ZHH

Htt

eνeνHH

Fig. 2: Cross section as a function of centre-of-mass energy
for the main Higgs production processes at an e+e� collider
for a Higgs mass of mH = 126GeV. The values shown cor-
respond to unpolarised beams and do not include the effect
of beamstrahlung.

provide access to the top Yukawa coupling and the Higgs
trilinear self-coupling governed by the parameter l in the
Higgs potential. Feynman diagrams for these processes are
shown in Figure 4. In all cases, the Higgs production cross
sections can be increased with polarised electron (and positron)
beams.
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Fig. 3: Leading-order Feynman diagrams of the highest
cross section Higgs production processes at CLIC; Hig-
gsstrahlung (a), WW-fusion (b) and ZZ-fusion (c).

a)
Z

e�

e+

t

H

t

b)
W

W
H

e�

e+

ne

H

H

ne

c) W
W

e�

e+

ne

H

H

ne

Fig. 4: Feynman diagrams of the leading-order processes at
CLIC involving the top Yukawa coupling gHtt (a), the Higgs
boson trilinear self-coupling l (b) and the quartic coupling
gHHWW (c).

Table 1 lists the expected numbers of ZH, Hnene and He+e�

events for the three main CLIC centre-of-mass energy stages.
These numbers account for the effect of beamstrahlung and
initial state radiation (ISR), which result in a tail in the distri-
bution of the effective centre-of-mass energy

p
s0. The im-

pact of beamstrahlung on the expected numbers of events
is mostly small. For example, it results in an approximately
10% reduction in the numbers of Hnene events at

p
s> 1TeV

(compared to the beam spectrum with ISR alone), because
the cross section rises relatively slowly with

p
s. The reduc-

tion of the effective centre-of-mass energies due to ISR and
beamstrahlung leads to moderate numbers of ZH events atp

s = 1.4TeV and 3TeV.

The polar angle distributions for single Higgs production
obtained using WHIZARD 1.95 [19] for the CLIC centre-
of-mass energies are shown in Figure 5. Most Higgs bosons
produced at

p
s = 350GeV can be reconstructed in the cen-

tral parts of the detectors while the Higgs bosons produced
in the WW-fusion process and their decay products tend to-
wards the beam axis with increasing energy. Hence good ca-
pabilities of the detectors in the forward regions are crucial
at
p

s = 1.4TeV and 3TeV.

A SM Higgs boson with mass of mH = 126GeV has a wide
range of decay modes, as listed in Table 2, providing the
possibility to test the SM predictions for the couplings of
the Higgs to both gauge bosons and to fermions [20]. All
the modes listed in Table 2 are accessible at CLIC.

5

N E X T  TA L K  B Y  L .  S E S T I N I

σ ∼ 1/s At 3 TeV the weak bosons are sufficiently light 
that can be radiated very efficiently

• large number of Higgs bosons!

F U RT H E R  O P P O RT U N I T I E S

https://agenda.infn.it/event/28673/


Roberto Franceschini - https://agenda.infn.it/event/28673/ - RD_MUCOL Padova 2021

Higgs + Singlet
• Broad coverage of  BSM 

scenarios: (N)MSSM, Twin 

Higgs, Higgs portal, modified 

Higgs potential (Baryogenesis) 

• Phenomenology is also 

useful as “simplified model”

Singlet

h(125)

Mass
H E AV Y  P H Y S I C S

Impact on BSM
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Higgs + Singlet
×h125 h0

cos γ
SM
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Fig. 8.11: Direct and indirect sensitivity at 95% CL to a heavy scalar singlet mixing with the SM
Higgs boson (left) and in the no-mixing limit (right). The hatched region shows the parameters
compatible with a strong first-order EW phase transition.

It is interesting to note that a large fraction of the region compatible with a first-order
phase transition could be probed by the full CLIC or FCC programmes. For illustration pur-
poses, Fig. 8.11 shows an example of the region compatible with a two-step phase transition,
where the singlet supports the Higgs in delivering a strong first-order phase transition [456].
Strongly first-order phase transitions are particularly interesting as they could also lead to size-
able gravitational wave signals at future experiments like LISA, linking discoveries at Earth-
based colliders with space interferometry (see Chapter 7). The case of a light singlet scalar,
with mass lower than 125 GeV, is discussed extensively in the section on feebly interacting
particles 8.6.
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Fig. 8.12: Direct and indirect sensitivity at 95% CL to heavy neutral scalars in minimal SUSY.

Another common extension of the SM Higgs sector is the addition of a second SU(2)
doublet, which naturally appears in supersymmetric extensions of the Higgs sector or in models
with a non-minimal pattern of symmetry breaking. In this case, the scalar sector contains two
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Higgs + Singlet: BSM interpretations
T W I N  H I G G S
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Figure 55: Left: NMSSM with couplings � = 1 and with �hh = 80 GeV. Right: Twin Higgs models,
where in the shaded area in the bottom-right corner one has �� > m�. See text for more details.

200 300 400 500 600 700 800
0

2

4

6

8

10

12

mf @GeVD

l H
S

full
y pe

rt.

2 s
tep
s P
.T

full
y pe

rt.

1 st
ep P

.T

10
0
ev
en
ts
û
CL
IC
1.
5

100
even

ts û
CLIC

3

10 eve
nts û C

LIC1.5 10 even
ts û CL

IC3

Dlhhh =2
0%

Dlhhh=
40%

DK������

DK=
���%

Figure 56: Iso-lines of total number of ��⌫⌫̄ events at CLIC in the zero Higgs-singlet mixing limit.
Red lines are for CLIC 1.5 TeV 1.5ab�1, blue lines are CLIC 3 TeV 3ab�1. Thin lines correspond
to total number of double singlet production events N�� = 10, thick lines to 100. The region with a
possible first order electroweak phase transition is shaded in green (two-step transition) or blue (one-step
transition) regions as discussed in the text. Darker shades corresponds to better perturbative control of
the calculation of the strength of the phase transition. In addition we show iso-lines for the prediction
of this model for the deviations in triple Higgs couplings and for the overall Higgs coupling strength
modifier  defined in Section 2.1 which may be subject to constraints from Higgs physics studies.

4.2.2 Light singlets and relaxion 43

Recently, a new mechanism [398] has been proposed that addresses the hierarchy problem in a way
that goes beyond the conventional paradigm of symmetry-based solution to fine-tuning. This so-called
relaxion mechanism belongs to the class of models where the solution is associated with the existence
of a new and special kind of pseudo-Nambu-Goldstone boson (pNGB), the relaxion, which stabilizes
the Higgs mass dynamically. The Higgs mass depends on the classical value of the relaxion field which
evolves in time. Eventually, the relaxion stops its rolling in a special field value where the Higgs mass
is much smaller than the theory’s cutoff, hence addressing the fine tuning problem. Relaxion models do
not require top, gauge or Higgs partners at the TeV scale, while a crucial role is played by the relaxion.
The possible mass range for the relaxion is very broad, ranging from sub-eV to tens of GeV. Hence this

43Based on a contribution by C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer.
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where in the shaded area in the bottom-right corner one has �� > m�. See text for more details.
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Figure 56: Iso-lines of total number of ��⌫⌫̄ events at CLIC in the zero Higgs-singlet mixing limit.
Red lines are for CLIC 1.5 TeV 1.5ab�1, blue lines are CLIC 3 TeV 3ab�1. Thin lines correspond
to total number of double singlet production events N�� = 10, thick lines to 100. The region with a
possible first order electroweak phase transition is shaded in green (two-step transition) or blue (one-step
transition) regions as discussed in the text. Darker shades corresponds to better perturbative control of
the calculation of the strength of the phase transition. In addition we show iso-lines for the prediction
of this model for the deviations in triple Higgs couplings and for the overall Higgs coupling strength
modifier  defined in Section 2.1 which may be subject to constraints from Higgs physics studies.

4.2.2 Light singlets and relaxion 43

Recently, a new mechanism [398] has been proposed that addresses the hierarchy problem in a way
that goes beyond the conventional paradigm of symmetry-based solution to fine-tuning. This so-called
relaxion mechanism belongs to the class of models where the solution is associated with the existence
of a new and special kind of pseudo-Nambu-Goldstone boson (pNGB), the relaxion, which stabilizes
the Higgs mass dynamically. The Higgs mass depends on the classical value of the relaxion field which
evolves in time. Eventually, the relaxion stops its rolling in a special field value where the Higgs mass
is much smaller than the theory’s cutoff, hence addressing the fine tuning problem. Relaxion models do
not require top, gauge or Higgs partners at the TeV scale, while a crucial role is played by the relaxion.
The possible mass range for the relaxion is very broad, ranging from sub-eV to tens of GeV. Hence this

43Based on a contribution by C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer.
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Physics at  collider3 TeV μ+μ−

A 3 TeV muon collider can bring excellent progress over HL-LHC about 
key questions on fundamental interactions (nature of the Higgs bosons, 
nature of Dark Matter, nature of the EW phase transition)

• high energy machine (e.g. Dark Matter direct production, Higgs and top compositeness, …) 

• high intensity machine (e.g. SM Higgs boson production)

The relatively clean environment makes it suitable for searches of 
subtle exotic signals (e.g. tracklets from Dark Matter)

3 TeV is a sufficiently high energy to enable both modes of exploration as

These two modes complement each other very nicely (e.g. EW phase transition, extended Higgs sector) 
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μμ 3 TeV
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Physics at  collider3 TeV μ+μ−

Figure 5. Indirect limits from the measurements of the Higgs couplings. The scatter points are
the FOEWPT data, in which red, green and blue colors represent SNR 2 [50,+1), [10, 50) and
[0, 10), respectively. The colored vertical and horizontal lines are the projections of di↵erent setups
of muon colliders. The projections of CEPC (

p
s = 250 GeV) are also shown in dashed lines for

comparison.

at tree level we obtain V = 3 = 1 for the SM, while

V = c✓, 3 =
2v

M2
h


�vc3

✓
+

1

4
c2
✓
s✓ (2a2vs + a1) +

1

2
a2vc✓s

2
✓
+

1

3
s3
✓
(3b4vs + b3)

�
, (3.21)

for the xSM. Defining the deviations as

�V = 1� V , �3 = 3 � 1, (3.22)

we project the FOEWPT data points into the �3-�V plane in Fig. 5. One finds that

�3 is always positive (and . 0.8). This can be understood by expanding the deviation at

small mixing angle [12]

�3 = ✓2
 
�
3

2
+

2M2
h2

� 2b3vs � 4b4v2s
M2

h

!
+O(✓3), (3.23)

where the M2
h2
/M2

h
term dominates the terms in the bracket, implying an enhanced Higgs

triple coupling. Since we set ✓ 6 0.15 when scanning over the parameter space (see

Appendix A), the �V distribution has a sharp edge at around 0.152/2 ⇡ 0.01.

Also shown in Fig. 5 are the projections of the reach for di↵erent setups of muon

colliders. The corresponding probe limits are adopted from Ref. [74], which uses the

VBF single Higgs production to study the h1V V coupling and the vector boson scattering

di-Higgs production to study the triple Higgs coupling. It is clear that the FOEWPT

parameter space can be probed very e�ciently using via such indirect approach. A 3 TeV

muon collider is already able to cover most of the data points, and a 30 TeV muon collider

could test almost the whole parameter space.
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μμ 3 TeV CL

uncertainty. A systematic uncertainty of 30% (100%) on the total background prediction
has been assumed for SR�

1t (SR�
2t) for the

p
s = 3 TeV data-taking run. When considering

the
p
s = 10 TeV data-taking run, the systematic uncertainty on the total background pre-

diction in SR�
1t has been reduced to 10%. The discovery significance is evaluated from the

expected discovery p-value, while limits are set at 95% CL using the CLs method [91] with
the pyhf software package [92, 93]. Additional lines show the sensitivity of the conservative
scenario inflating the background estimates by an order of magnitude. The sensitivity is
shown separately for the

p
s = 3 TeV and

p
s = 10 TeV data-taking runs, and for wino

and higgsino multiplets. Available HL-LHC prospects [60, 94] are also included for com-
parison. Limits at 95% CL extracted from the

p
s = 3 TeV data-taking are overlaid on the

p
s = 10 TeV discovery prospects.
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Figure 14: Expected sensitivity using 1 ab�1 of 3 TeV or 10 ab�1 of 10 TeV µ
+
µ
� collision

data as a function of the �̃
± mass and lifetime. Models including �̃

±
�̃
⌥ are considered

assuming pure-wino scenarios (a and c) and pure-higgsino scenarios (b and d). The �̃
±

lifetime as a function of the �̃
± mass is shown by the dashed grey line: in the pure-wino

scenario it was calculated at the two-loops level [95], in the pure-higgsino scenario it was
calculated at the one-loop level [28, 62].

In the most favourable scenarios, the analysis of the full muon collider dataset is ex-
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Fig. 8.11: Direct and indirect sensitivity at 95% CL to a heavy scalar singlet mixing with the SM
Higgs boson (left) and in the no-mixing limit (right). The hatched region shows the parameters
compatible with a strong first-order EW phase transition.

It is interesting to note that a large fraction of the region compatible with a first-order
phase transition could be probed by the full CLIC or FCC programmes. For illustration pur-
poses, Fig. 8.11 shows an example of the region compatible with a two-step phase transition,
where the singlet supports the Higgs in delivering a strong first-order phase transition [456].
Strongly first-order phase transitions are particularly interesting as they could also lead to size-
able gravitational wave signals at future experiments like LISA, linking discoveries at Earth-
based colliders with space interferometry (see Chapter 7). The case of a light singlet scalar,
with mass lower than 125 GeV, is discussed extensively in the section on feebly interacting
particles 8.6.
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Fig. 8.12: Direct and indirect sensitivity at 95% CL to heavy neutral scalars in minimal SUSY.

Another common extension of the SM Higgs sector is the addition of a second SU(2)
doublet, which naturally appears in supersymmetric extensions of the Higgs sector or in models
with a non-minimal pattern of symmetry breaking. In this case, the scalar sector contains two
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