Evaluation of different image regularization techniques on simulated phantoms with the TRIMAGE brain PET scanner

Luigi Masturzo^{1,2}, Pietro Carra^{1,2}, Paola Anna Erba³, Matteo Morrocchi^{1,2}, Alessandro Pilleri², Giancarlo Sportelli^{1,2}, Nicola Belcari^{1,2}

¹ National Institute of Nuclear Physics (INFN), Pisa Section, Pisa, Italy

² Department of Physics "E.Fermi", University of Pisa, Pisa, Italy

³ Department of Translational Research and New Technology in Medicine and Surgery, Regional Center of Nuclear Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy

The TRIMAGE PET system

- Fully integrated PET/MRI brain system
- LYSO:Ce crystal staggered layers
- Crystal dimensions: 3.3 x 3.3 x (8-12) mm³

Sectors	18	Crystals	24
Modules	54	Axial FOV	164
Tiles	216	Transaxial FOV	260

N. Belcari et al. "Design and Detector Performance of the PET Component of the TRIMAGE **PET/MR/EEG Scanner**". In: *IEEE Transactions on Radiation and Plasma Medical Sciences* 3.3 (2019), pp. 292–301.

PET system performance

Energy resolution — 17.8%
Coincidence window — 5 ns
Sensitivity (CFOV) — 7.61% [350-650 keV]

	Rat-like	Head-like
Diameter [cm]	5	20
Height [cm]	15	15

3

Reconstruction software

In-house reconstruction software - Histogram mode **-** MLEM/OSEM - image space resolution modelling - Two step reconstruction

System matrix factorization

- N Normalization
- D Detector
- A Attenuation
- G Geometry
- R Blurring

D is computationally intensive → Excluded from S → Noise increases

$S = N \times D \times A \times G \times R$

A. Pilleri. "Efficient projection-space resolution modelling for image reconstruction in Positron Emission Tomography". PhD thesis. University of Pisa, 2021.

Regularization

Compromise between spatial resolution and noise

Image Quality procedures

- Specific NEMA procedures for brain imaging do not exist
- •NEMA-like phantom --> NEMA NU4 2008 procedures
- Image quality parameters:
- Spatial resolution
- •Uniformity
- Recovery Coefficient (RC)
- Spill Over Ratio (SOR)

NEMA NU 4-2008. Performance measurements of Small Animal Positron Emission Tomographs; National Electrical Manufacturers Association, Rosslyn, VA, 2008.

L. Moliner et al. NEMA Performance Evaluation of **CareMiBrain dedicated brain PET and Comparison with the** whole-body and dedicated brain PET systems. Sci. Rep. 2019, 9, 15484.

Image Quality procedures

RC and SOR

Ratio between full (RC) and empty (SOR) rods activity and background activity

Uniformity

%STD of background region

Spatial resolution

FWHM of point sources in predetermined positions in a warm background

K. Gong, S. Cherry and J. Qi. "On the Assessment of Spatial Resolution of PET Systems with Iterative Image Reconstruction". In: *Physics in Medicine and Biology* 61 (Feb. 2016), N193.

7

Spatial resolution

8

Uniformity, RC and SOR

Iteration number	10	20	30	40	50	60	70	80	90	100
Uniformity [%]	4.19	7.01	9.58	11.82	13.96	15.84	17.55	19.13	20.56	21.88

.

Gaussian filter

- Post smoothing operation
- Easy to implement
- Fastest method

Patch-based regularization

G. Wang, J. Qi Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. *IEEE Trans. Med. Imaging 2012*, *31*, 2194–2204.

Good edge preserving and noise control

Gradient-based regularization

$$\sum_{x,y} (N)$$

$$\frac{\sum_{x,y} (N)}{len(N)}$$

$$3^{3^{6}}$$

$$3^{4}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3^{2}$$

$$3$$

1000

Gradient-based regularization

- Removes noise effectively
- Faster than Patch reg. algorithm
- Good edge preservation

Spatial resolution

- Unable to perform the NEMA procedure
- Derenzo phantom with radius from 1.8 mm to 5.3 mm

Gradient reg.

Uniformity

RC and SOR

Recovery Coefficient

Spill Over Ratio

Conclusions

We obtained good results in terms of hardware system performance

> The main IQ results needs some sort of regularization

Regularization is a compromise between noise and spatial resolution

The best available seems to be the patch-based regularization but the ability of reducing the noise makes the gradient-based regularization very auspicable for low activity dynamic imaging

Sensitivity	7.6% EW [350-650 keV]
ECR curve	63.4 kcps @ 13 MBq
SF	21.29%

MAX N

Spatial

Noise	21.88%
resolution	$\simeq 2.3 \text{ mm}$
RC	0.97 (smallest rod)
SOR	0.042 (air rod), 0.084 (water rod)

Future work

Improve the reconstruction software

Improve the gradient-based regularization

Need to perform Hoffman phantom simulations and reconstruction

Implementation of regularization by using AI

The inclusion of Detector matrix **D** will improve the image quality

Changing the parameters in terms of iteration (not just fixed) numbers), try different voxel sizes

Using a brain phantom to understand better the outcome of the regularising techniques

That's a good idea!

Thank you for your attention

Backup slides

Patch-based regularization

Energy function

$$U(\rho) = \frac{1}{4} \sum_{j=1}^{N} \sum_{k \in N_j} \omega_{jk} \cdot \psi(\rho_j - \rho_k)$$

$$U(\rho) = \frac{1}{4} \sum_{j=1}^{N} \sum_{k \in N_j} \psi(||f_j(\rho) - f_k(\rho)||_h, \delta)$$

Patch-based distance

 $||f_{j}(\rho) - f_{k}(\rho)||_{h} = \sqrt{\sum_{l=1}^{n_{l}} h_{l}(\rho_{j_{l}} - \rho_{k_{l}})^{2}}$

Use of patches instead of single pixels

$$\Omega(\rho, n) = \log L(\rho, n) - \beta U(\rho)$$

Spatial resolution

Single layer

Double layer

PET reconstruction - iterative methods

Reconstruction process Recover spatial distribution of radiotracer ρ starting from registered events *n*

 $n = S \times \rho$

- Model of the physics and the measurement uncertainty
- Set of basis function (voxel)
- Objective function (log-likelihood function)
- Numerical algorithm (EM)

Iterative methods

