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Overview
• Brief review

• Deep learning (DL)
• Image reconstruction
• Why include DL?

• Four main approaches:
• Direct : use only data to learn the mapping
• Direct with physics: use data as well as our imaging (and noise) model
• Iterative reconstruction: use our known reconstruction algorithms, our imaging 

model and noise model and data
• Use of DL for image representation or filtering: no training data

• Recent directions
• Outlook and perspectives
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What is deep learning?
• Software which learns from data, …rather than by explicit programming

• Regular programming: take input, write instructions to obtain output

• Sequential operations  deep learning means a cascade of steps with trainable parameters

• Deep learning / networks  trainable code

Kingfisher

CNNs: depth -> feature hierarchy
Increasing context and abstraction.

Or, transformers, for easy long-
range context (~ BM3D, ~ NLM)

INPUT OUTPUT

CODE

INPUT
Relate latent to OUTPUT

CODE??
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Medical Imaging Process

Measured dataScannerRadiotracer 
distribution

From data acquisition to image reconstruction
Reconstruction

FBP     
or 

OSEM

Net transverse 
magnetisation

Inv. FT 
or LS or 

CS



1990s (iterative reconstruction, OSEM, MLEM)

Improved noise modelling

(Gaussian to Poisson)

2000s (OSEM+PSF, MLEM+PSF)

Improved physics modelling

(e.g. positron range)

1980s – 1990s (filtered backprojection)

Colsher 1980, Kinahan & Rogers 1989, 
Shepp & Vardi 1982, Hudson & Larkin 1994

Regularise (MAPEM)    MRI guidance

From Past to Present PET Image Reconstruction
TBP:
OSEM+PSF+TOF
192x192x673



So why the need for deep learning?
• Conventional reconstruction fits images to noisy data   ->  noisy images
• Conventional noise compensation (regularisation) is by simple mathematically 

convenient methods (quadratic, TV, …)
• Assumes:

• Imaging system model
• Data noise distribution
• How to exploit multi-modal information (e.g. MRI)
• How to regularise
….but do we really know these things?

• Deep learning offers improved image quality (use as is, else dose or time reduction) by
• Learning the system model (and its ‘inverse’) from examples of real data
• Learning the noise from real data
• Use of ground truth or high-quality reference data

• Sophisticated manifolds to define acceptable images



• How to regularise
….but do we really know these things?

• Deep learning offers improved image quality (use as is, else dose or time reduction) by
• Learning the system model (and its ‘inverse’) from examples of real data
• Learning the noise from real data
• Use of ground truth or high-quality reference data

• Sophisticated manifolds to define acceptable images



Basic approaches for DL in image reconstruction
• Four main approaches:

• Direct : use only data (e.g. DeepPET, AUTOMAP, …)

• Direct with physics: use data as well as our imaging (and noise) model
(e.g. LPD)

• Unrolled iterative reconstruction: use our known reconstruction algorithms, our 
imaging model and noise model and data
Use data to define the prior probability of certain images (the manifold)
(e.g. FBSEM-Net)

• DL representations (e.g. deep image prior): use DL for the image, and for the 
optimisation
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Direct reconstruction with DL

MAPPING BASED

ON DATA
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Häggström et al, MIA 2019

FBP                                 OSEM                         DeepPET

DeepPET: results

FBP         OSEM   DeepPET

True                            FBP                           OSEM                      DeepPET

Structural similarity

~10% lower noise (RMSE) than OSEM conventional reconstruction

~100x faster than OSEM

Simulated data

Real data

+discriminator, perceptual loss: Zhanli Hu et al, IEEE TRPMS (5) Jan 2021



MRI reconstruction from k-space: AUTOMAP

Figure represents method of Zhu et al, Nature 2018

Uses ~ 50,000 training data pairs to learn ~800 million parameters
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MRI reconstruction from k-space: AUTOMAP

Figure represents method of Zhu et al, Nature 2018

Uses ~ 50,000 training data pairs to learn ~800 million parameters
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Direct DL reconstruction summary
PET, MR Examples: DeepPET, DPIR-Net, AUTOMAP, …  [not yet TBP!]

 Few model assumptions (avoids system and noise model errors)
 Data driven, just the network’s inductive prior
 Fast reconstructions

• Slow training (but done once)
• Huge data needs (>>10k images)
• Relearns imaging physics, relearns Poisson noise model
• Huge network (10-100 million parameters)
• Mainly applied for 2D reconstruction, not fully 3D
• Generalisation query?

Häggström et al, MIA 2019,   Zhanli Hu et al, IEEE TRPMS (5) Jan 2021, Zhu et al Nature 2018
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model included

MAPPING BASED
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IMAGING MODEL



PET image reconstruction

q
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Physics modelling of a PET acquisition

𝑷: positron range

𝒔: scatter
𝒓: randoms

𝑿: Radon transform
𝑳: attenuation factors
𝑵: normalisation related factors

𝑨: forward projection, FP
𝑨𝑻: backprojection, BP

For MRI: image -> coil sensitivity maps -> FFT -> undersample:         



Learned Primal Dual (LPD)
Original method: Adler & Oktem IEEE TMI 2018

BP FP



Learned Primal Dual (LPD)
Original method: Adler & Oktem IEEE TMI 2018

BP FP



Learned Primal Dual (LPD)
Original method: Adler & Oktem IEEE TMI 2018

BP FP

MAPPING BASED

ON DATA &
IMAGING MODEL



TRUE FBP TV

Learned Primal Dual (LPD)

Adler & Oktem IEEE TMI 2018

FBP + U-Net LPD



TRUE FBP TV

Learned Primal Dual (LPD)

Adler & Oktem IEEE TMI 2018

FBP + U-Net

 2k training data pairs to learn ~240k  parameters via MSE

LPD

LPD



Fast PET (for TOF histo images – potential for TBP)

Whiteley et al. IEEE TRPMS 2021

Input data compressed
U-Net architecture, only 20 million parameters
3D images
67x faster than OSEM
Noise reductions Target

64
64

256

128 128
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Iterative reconstruction with DL

MAPPING BASED ON

DATA, OUR MODELS & OUR 
CURRENT ALGORITHMS



Embedding deep learning into iterative reconstruction

WHY?
 Iterative reconstruction uses our known system and noise modelling via a principled objective 

function and theoretically convergent framework

 Arguably, the only shortfall is the prior

 Unrolled methods: keep our iterative algorithm (objective and models), and just use deep 
learning for the prior (the image manifold)

Compared to direct DL:
 Practical for 3D
 Reduced training data needs (~tens of 3D images) 

• Approaches include: a CNN model for the image during iterative reconstruction
• Lim et al 2018 (BCD-Net for low count PET), TMI 2020 (Iterative NN)
• Gong et al 2019 (MAPEM-Net)
• Mehranian and Reader 2020 (FBSEM-Net)
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Simple example of regularisation for PET: quadratic prior
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Example of regularisation for PET: quadratic prior
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FBSEM-Net: real [18F]FDG data

Mehranian and Reader, IEEE TRPMS 2020

PET data
Low count (short scan, or low dose) 

Reconstructed image of [18F]FDG 

Learns ~77k parameters
N = 35 training datasets

Uses MR, and the physics with AIMRI

Initial empty image



FBSEM-Net: real [18F]FDG data

30 min                            2 min

MRI                  Reference               OSEM                FBSEM-Net
Uses MRI and AI

Mehranian and Reader, IEEE TRPMS 2020

Recent variations:

Sequential training
[Corda d’Incan et al 
IEEE TRPMS 2021]

Using transformers
[Rui Hu, Huafeng Liu 
2022]



Self-supervised MRI reconstruction
Yaman et al MRM 2020

Supervised: images from fully-sampled data used for training
Self-supervised: half data used for k-space to reconstruct from, other half used for loss function

CNN CNN

Iteration 1 Iteration 𝒏

R=4



TBP: unrolled reconstruction (DPL)

Y Lv & C Xi PMB 2021

(1) 1st EM iterations (2) CNN-denoising (4) 2nd EM iterations(3) Edge preserving fusion (4) Weighted fusion(5) CNN-enhancement



TBP: unrolled reconstruction (DPL)

Y Lv & C Xi PMB 2021

OSEM+
smooth

OSEM+
U-Net

Proposed
DPL



Unrolled reconstruction summary
Examples: INN, MAPEM-Net, FBSEM-Net, DPL, TransEM, …

 Uses our physics and statistics knowledge

 (?) Uses our trusted algorithms for image reconstruction 

 Some of exploit training data to define the image manifold

 Smaller networks (e.g. ~77k parameters)

 Smaller training sets (e.g. ~35)

 Practical for 3D reconstruction 

 Improved generalisation

• Slower than direct reconstruction

Lim et al 2018, TMI 2020, Gong et al 2019 , Mehranian and Reader IEEE TRPMS 2020,
Y Lv & C Xi PMB 2021, R. Hu & H. Liu 2022, …
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Deep image prior with system model

Hashimoto et al IEEE TRPMS 2022



Deep image prior with system model

Hashimoto et al IEEE TRPMS 2022



Deep filter with system model

AJ Reader PSMR 2022
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Some recent directions
Deep kernel 
TBP kinetics

Synergistic PET-MR reconstruction



Figures courtesy Siqi Li & Guobao Wang

Deep kernel representation (Li & Wang 2022)
Uses AI to learn the best pixel features for reconstructing short time frames (v. low count data)



Deep kernel representation results: can reconstruct 2 second frames with 
much improved quality (GE Discovery ST PET/CT in 2D mode, 20 mCi [18F]FDG, cardiac scan)

Conventional ML-EM Conventional kernel Proposed deep kernel

Figure courtesy Siqi Li & Guobao Wang



TB PET using deep learning to predict kinetic parameters
• Direct parametric map generation for [18F]FDG for the uEXPLORER: mapping SUV to Ki

Figure courtesy Meiyun Wang and Zhanli Hu (based on Huang et al EJNMMI 2022)

SUV
50-60 min

Ki

0-60 min

160 patient datasets for training
20 for validation, 20 for testing



TB-PET current research
• Direct parametric map 

generation

Figure courtesy Meiyun Wang and Zhanli Hu (Huang et al EJNMMI 2022)



TB-PET current research
• Direct parametric map 

generation

Figure courtesy Meiyun Wang and Zhanli Hu (Huang et al EJNMMI 2022)
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Corda D’Incan, Schnabel and Reader, submitted to IEEE Medical Imaging Conference 2022



PET reconstruction

Joint DL methods

Conventional methods (NO deep learning (DL))

ROI P

Independent DL methods

MR for guidance

ROI P

ROI P

Corda D’Incan, Schnabel and Reader, submitted to IEEE Medical Imaging Conference 2022
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Outlook



Future?
• Latent space

• Encode your raw data into a latent space

• Decode into an image, parametric map, a diagnosis, …

• Use data, physics, statistics, analytically informed inductive priors

• Fully Bayesian: latent space as a pdf conditioned on your data

• Decode multiple samples, to allow expression in each chosen decoded representation

• Allows degree of uncertainty to be expressed with high quality outputs

Diagnosis

Image

Kinetics

“All models are wrong,… but models that know that they’re wrong are useful” (J. Snoek)



Future?
• Modular processing for robustness & validation of each component 

• AI module for ‘inversion’ of core scanner forward model
• AI module for regularisation 

• High quality references, vs. self-supervision

• Assess AI reconstruction for clinical tasks, ideally with benchmark datasets (still needed)

• Reminders:
• Improve image quality for a given count level

• Or trade this in for lower dose, and/or even faster scans
• Could keep the lower noise, higher spatiotemporal resolution
• Best to directly relate raw data to desired endpoints

• Use of TOF histo images (and other data compression strategies)
• Uncertainty quantification (aleatoric, epistemic)
• Multiplexed imaging and disentangling



Thank you

Andrew J. Reader

andrew.reader@kcl.ac.uk


