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Introduction
Radiomics is a branch of medical image analysis concerned with the extraction of ‘feature’ metrics from a region of interest, which could then be used for

artificial intelligence-aided diagnosis and treatment planning. Heterogeneity features, for example, can be excellent predictors of the degree of hypoxia,

or the success of a course of radiotherapy. Currently there is a lack of understanding around the reproducibility and uncertainty of these features in

quantitative PET (positron emission tomography). This project explores using the noise equivalent count rate (NECR) to estimate the effect of data noise

on texture features, aided by the use of 3D-printed anthropomorphic phantoms, and shows where Total Body PET can improve the current outcomes .

The Noise-Equivalent Count Rate (NECR)

If T , R and S represent true, random

and scattered count rates and ∆t the

scan duration:

NECR =
T 2

T + S + x ·R
; (1)

SNR2

data = NECR ×∆t. (2)

The NECR, a proxy for signal-noise ra-

tio of the count data, is an object- and

scanner-dependent performance met-

ric with a characteristic variation with

activity [1].

Correction Factors for Heterogeneity Features
• A 20 cm cylinder phantom was filled with

18F and left to decay over 12 hours; 24x 5

minute & 24x 25 minute scans were taken

on a Siemens Biograph mCT.

• This was repeated for the NEMA phantom

with standard sphere inserts and 3 arrange-

ments of 4 3D-printed tumour-like inserts.

• Of the 75 texture matrix features, 32

were observed to correlate well with NECR

(|PMCC| ≥ 0.9). Correction factors from

100 MBq → NECRmax were calculated.

• The feature-NECR |PMCC|s reduce sig-

nificantly when considering the 5 minute

frame dataset; only 7 texture features sur-

passed the |PMCC| ≥ 0.9 threshold, with

the |PMCC| for the ten features listed falling

by an average of (11.5 ± 6.6) %.

• |PMCC|s for the ten listed features also

fall when considering 25 minute scan data

from VOIs of the phantom inserts; falling

(53.4 ± 9.3) % for the largest insert and

(64 ± 22) % for the smallest.

Feature |PMCC|
Compensation Factor,

100 MBq → A(NECRmax)

IMC2 (GLCM) 0.996 1.129± 0.020

Correlation (GLCM) 0.994 1.177± 0.037

Gray Level Non Unif. (GLSZM) 0.991 0.640± 0.019

IMC1 (GLCM) 0.985 1.697± 0.071

Dependence Entropy (GLDM) 0.984 1.048± 0.009

MCC (GLCM) 0.982 1.213± 0.034

Small Dependence Emphasis (GLDM) 0.964 0.686± 0.015

Zone Percentage (GLSZM) 0.964 0.598± 0.022

Run Length Non Uniformity (GLRLM) 0.963 0.956± 0.002

Inverse Variance (GLCM) 0.963 1.213± 0.017

Heterogeneity & Radiomics

In the event that two images, as above, share

identical means and standard deviations of their

pixel values, more convoluted features are re-

quired to distinguish them numerically. Ra-

diomics software packages include the use of:

• GLCM, the gray level connectivity matrix;

• GLDM, the gray level dependence matrix;

• GLRLM, the gray level run length matrix;

• GLSZM, the gray level size zone matrix;

• NGTDM, the neighbourhood gray tone differ-

ence matrix; [2].

features extracted from these ‘texture’ matri-

ces are understandably complex and their be-

haviour in response to noise difficult to predict.

Tumour-Specific ‘NECR’
It is clear that metrics are more robust when we know

more about specific ‘regional’ noise, shown by comparing

to same tumour insert with cold background. Can we de-

velop a metric that can tell us how much noise originates

from a specific region of the scan? Initial efforts assume R

is dependent on the LOR-map, which can be approximated

by dividing by the fraction of solid angle subtended by the

ROI; other assumptions include S dependence on µ-map,

and T proportional to activity concentration in ROI.

TBP Advantages

SNRimage ∝
√

η ×∆t (3)

where η is the effective scanner sensitivity [3].

Using the information for the uEXPLORER [4]:

ΩmCT ≈ 0.99π; ΩTBP ≈ 3.71π (4)

For a phantom like the NEMA IQ,

ηTBP ≈ 4× ηmCT (5)

The geometric sensitivity advantage is com-

parable to the ∆t boost required to generate

‘good’ |PMCC| between NECR and texture fea-

tures for the cylinder data. TBP can be seen as

utilising the longer frame duration data for the

better modelling of noise for texture features -

particularly useful in patient scans.
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