Module loading update

G. Chiodini, L. Longo

Workflow

- Half-Ring metrology
- Module metrology
- Glue deposition
- Pick module
- Place module

For all the steps above a dedicated labview panel is in place

Half-Ring metrology

- Goal:
- center of the HR
- outer radius R
- estimate of the HR shift in Θ
- coordinates of the various tools to be in HR center
- Steps:
- offsets estimate of the various tools wrt the microscope
- measure the coordinates (x, y) of $x L$, $x C, x R$ to determine the HR center and R
- measure the coordnates OL and OR to determine the HR shift in Θ

Module metrology

- Goal:
- barycenter / c-point (BL corner+(21,20)mm) estimate (barycenter and c-point should be the same with an ideal module)
- module rotation (in the ideal case all the ϕ angles should be the same)

- Steps:
- measure the coordinates ($B L, T L, T R, B R$) with the microscope to determine c-point and barycenter
- to FINALIZE:
- estimate the rotation of the module

Glue deposition

- Goal:
- deposition of 4 glue flakes on HR in the nominal position of the modules
- Steps:
- provide the gantry RF coordinate to have the glue gun in the HR centre, the Θ offset of HR as inputs
- To DO:
- calibrate the glue gun speed ($\mathrm{cm} 3 / \mathrm{s}$) with the gantry speed (mm / s) to have a uniform deposition of the glue along the flake lines

Test done with the glue "Giotto vinilik", with a glue gun speed of $0.00228 \mathrm{~cm} 3 / \mathrm{s}$ and a gantry speed of $3 \mathrm{~mm} / \mathrm{s} \rightarrow$ to be redone: amount of deposited glue is $0.44 \mathrm{~g} \rightarrow$ its density is $1 \mathrm{~g} / \mathrm{cm} 3 \rightarrow 0.44 \mathrm{~cm} 3$ of glue $\rightarrow \mathrm{T} \sim 193 \mathrm{~s} \sim 3 \mathrm{~m}$ but we have spent much more time

Pick \& Place Module

- Goal:
- pick the module from the parking position
- position the module on the HF in its nominal position
- Steps:
- pick the module with the rotation axis of the gantry passing
 through the c-point/barycenter (done a calibration rotating the module of 180° and estimated the offset between c-point and rotation axis looking at the new position of the BL corner)
- place the module
- to DO:
- the module is not planar to the Half-Ring: necessary to estimate the Z-profile of the HR and to adapt the module plane to be parallel to the HR surface

