Laser Alignment System Status Update

Outline

- VIM Modifications
- System Installation
- Interface Update
- Test of the System
- Next Steps

VIM Modifications

Check of the VIM Movements

Measures the deformation of the flange with respect to the rod

Measures the displacement of the rod with respect to the rail

Deformations up to 0.08 mm Displacements up to 0.06 mm

Some modifications to the flange are needed to limit unwanted movements

Flange Modifications

Fixed end

- Rod extension bolted independently
- Added pins to uniquely define the coupling

Free end

- Rod extension bolted independently
- Cut openings for the stud bolts
- Added PTFE shims to reduce friction
- Lubricated using WD-40

The free end nuts must only be accosted and not tightened The free end must be kept lubricated, CR safe lubrication needed for final commissioning

11/14/2022

A Word of Caution

The modifications greatly reduce flange deformation: <0.01 mm over a ~70 cm travel

This still largely depends on careful handling of the flange's free end!!!

Rod displacement with respect to the rail was not addressed Still uncertain if due to real movement or to the rail's uneven surface

System Installation

Cabling

To do list:

Better grounding connection for laser controllers and optical line visualizer

Enclose controllers and the extra length of the cables in an **electrical box** for more cleanliness when in CR

Sensor mounting

This insulation should be here according to the instruction manual but I do not know why

Bad sensor placement, not an issue for the bottom lasers such as this one

Check top lasers position when reinstalling

Stefano Gramigna

Minimum Top Lasers' Positioning Requirements Alignment

Ideal Top Lasers' Positioning Requirements

Interface Update

Alignment Tab

Profile Tab

Test of the System

Thermal Drift

The lasers cannot be used right away after turning them on:

	Thermal Drift				
	After 30'	After 30' more			
ΔX	0.048	0.003			
ΔY	0.068	0.000			

Necessary to wait at least 30-45 minutes after turning the lasers on before starting to measure

Lasers VS Comparators

Measured on the PTFE surface

Slightly different path for the two instruments

Going Downward				
	Comparators	Lasers		
ΔΧ	-0.303	-0.275		
ΔY	ΔY -0.20			
Going Upward				
	Comparators	Lasers		
ΔX	0.306	0.262		
ΔY	0.19	0.138		

Laser Alignment Test

- Zeroed on the mold's bottom black end
- Moved upward towards the mold's top black end
- Adjusted the tilt control screws at the base
- Moved downward towards the mold's bottom black end
- Checked the results of the alignment

	Laser Alignment Test		
		Before	After
7	ΔX	0.362	-0.004
,	ΔY	0.15	0.006

Laser Alignment Check		
ΔΧ	ΔΥ	
-0.031	-0.062	

The alignment is within the acceptable tolerance, still I expected better repeatability

Measurements taken on the anodized aluminum surfaces show much more variance than the ones taken on the Teflon surface...

Surface roughness? Reflectivity? Can it be mitigated with better grounding of the sensors?

Variance and Profiles

Next steps

- Check variance when measuring on different roughness/reflectivity surfaces Tape different materials on the molds and collect profiles
- Check variance when moving at slower speed
 Take a profile on the anodized and PTFE-coated surfaces using the VIM control software to move
- Alignment repeatability test and assessment of the positioning error Lift the mold, place it back down, is it still aligned?
- Proceed to the XY alignment test

Using the top lasers, the mold's top black end, and some sort of mechanical aid (or a caliper)

• Alignment of the other molds

Remove the shims from under the flanges, place them in the VIM, are they already aligned?

Backup

VIM Parts and Movements

<section-header>

ROTATION

System Schematics

Stefano Gramigna - PhD Student, University of Ferrara

Network and Serial Settings

The computer's IP is set to 192.168.0.0

The TCP/IP adapter's IP is set to 192.168.0.1

The **serial port** used for the optical line is **COM1**