Recent jet measurements from ALICE

Ezra D. Lesser

UC Berkeley / LBNL

11 November 2021

Introduction

Quantum Chromodynamics (QCD) is the theory of strong interactions

- We study high-energy QCD interactions using collider experiments
 - Small length scales ($\lambda \lesssim$ fm)
 - Color confinement

• High temperature nuclear matter

Theoretical challenges

- $\alpha_{\rm S}$ runs from divergence to $\Lambda_{\rm QCD} \approx 200$ MeV to **asymptotic freedom**
- Some physics cannot be calculated via perturbative techniques

Gross/Politzer/Wilczek: 2004 Nobel Prize in Physics

- Interesting probe for various scales of strong interactions:
 - Initial, hard (high- Q^2) scattering
 - Parton shower
 - Fragmentation into hadrons
- Experimentally reconstructed from grouped hadrons
- Dynamically recombined, tunable objects which can be sensitive to either/both perturbative and nonperturbative physics

 $(E, \vec{p})_{\text{jet}}$

 $\Delta R_{jet,i}$

Calculating jet observables

- Jet observables are useful because they can also be compared to first-principles QCD using **factorization theorems**
 - Ability to calculate physics at different scales separately, then combine

- Proven valid at leading power of $Q^{[1]}$ and for leading power corrections
- Allows tests of **universal physics** throughout various measurements
- These steps can also be implemented into statistical generators for creating Monte Carlo simulations

Measurements of the inclusive jet cross section

- Jets reconstructed with small to moderate jet radius *R*
- Increasing *R* shifts spectrum to the right
- Slight tension at low p_{T}

Higher-order theoretical predictions work well to describe the data over a range of $p_{\rm T}$ and R

Theory: *X. Liu, S. Moch, F. Ringer* Phys. Rev. D 97 (2018) 056026

Ratios of the inclusive jet cross section

 Taking ratios allows cancellation of most correlated systematic uncertainties ^[1]

 Large uncertainties on NLO+NLL+NP from scale variations

Inclusive jet predictions agree well with experimental data within the given uncertainties

Higher order calculations can lessen the systematic uncertainty on theory calculations

E.D. Lesser

ALICE Collab.: Phys. Rev. C 101 (2020) 034911

AI TCF

Going deeper using jet substructure

- Tagging jets of particular origin
 - Boosted objects (Higgs/BSM searches: $H \rightarrow b \overline{b}$)^[2]
 - Quark vs. gluon jets

- Precision tests of perturbative QCD and factorization
 - We will discuss this first
- Probing the quark-gluon plasma in heavy-ion collisions
 - We will discuss this later

ALICE detector during Run 2

- **Central barrel**: silicon inner tracking system (ITS), gas TPC, EM calos.
- Measurement of charged-particle jets (ITS + TPC) and full jets (ITS + TPC + EMCal)
- High-precision spatial and momentum resolution, excellent for substructure measurements, plus strong PID capability
- Measurement of tracks with $p_{\rm T}$ > 150 MeV/c study low- $p_{\rm T}$ tracks at LHC energies
- Great for low/moderate-p_T (< 150 GeV/c) jets at mid-rapidity

Generalized jet angularities

- Class of substructure observables dependent on $p_{\rm T}$ and angular distributions of tracks within jets

- IRC-safe* observable for $\kappa = 1$, $\alpha > 0 \rightarrow$ directly calculable from pQCD
- Each (κ, α) defines a different observable capable of probing jet structure and providing systematic constraints on theory
- Can be further varied with jet resolution parameter R

What is IRC safety?

$$\mathbf{a}_{\alpha}^{\kappa} \equiv \sum_{i \in jet} \left(\frac{p_{\mathrm{T},i}}{p_{\mathrm{T},jet}} \right)^{\kappa} \left(\frac{\Delta R_{jet,i}}{R} \right)^{\alpha} \equiv \sum_{i \in jet} z_{i}^{\kappa} \theta_{i}^{\alpha}$$

- Stands for Infra-Red and Collinear (IRC) safety
- Class of reconstruction algorithms & observables which satisfy certain conditions in order to avoid singularities from appearing in a welldefined path towards theoretical calculation

Infra-Red safety: the observable should not change if an infinitely-low-momentum particle is added to the event/jet

Collinear safety: the observable should not change if one particle splits into two collinear particles

Some jet angularity measurements

all figures available from: ALICE Collab. <u>arXiv:2107.11303</u> [nucl-ex]

- Calculable way of **probing the** $p_{\rm T}$ **structure of jets**

- Distributions shift to the left for higher α , $p_{\rm T,jet}^{\rm ch}$, and R
- Reasonable consistency is seen with MC predictions
 - Residuals become even smaller with Soft Drop grooming
 - PYTHIA shower + fragmentation function model works in this regime

Going deeper: jet grooming

- Removal of soft, wide-angle radiation to enhance the influence of perturbative effects
- One popular algorithm is Soft Drop grooming ^[3]
- Recluster jet into ordered tree using Cambridge-Aachen algorithm and then trim branches until the Soft Drop condition is satisfied

R

IRC-safe → repeatable on theoretical predictions

13

 $p_{\rm T,subleading}$

 $p_{\rm T,leading} + p_{\rm T,subleading}$

 $R_{\rm g} = \sqrt{\Delta y^2 + \Delta \varphi^2}$

 $z_g \equiv$

 $\theta_{\rm g} \equiv \frac{R_{\rm g}}{R}$

ອ ອຸ10⁷ ALICE <u>α</u> = 1 $\alpha = 1$ dq Syst. uncertainty • *α* = 1.5 • α = 1.5 (×0.5) PYTHIA8 Monash 2013

Ungroomed vs. Groomed angularities (R = 0.2)

- pp $\sqrt{s} = 5.02 \text{ TeV}$ charged jets anti- k_{T} -lp $+ \alpha = 2$ $+ \alpha = 2 (\times 0.2)$ Herwig7 10*⊢ R* = 0.2 < 0.7 $\eta_{\rm o}$ • α = 3 (×0.5) • α = 3 (×0.03) Soft Drop $z_{cut} = 0.2 \beta = 0$ 10^{3} $40 < p_{-}^{ch jet} < 60 \text{ GeV/}c$ 10² $40 < p_{-}^{ch jet}$ < 60 GeV/*c* 10 10^{-1} 10^{-2} Data PYTHIA8 1.5 0.5 0.50.5 0.2 0.5 0.1 0.2 0.3 0.4 0.1 0.3 0.4 $\lambda_{\alpha,g}^{\kappa=1}$ $\lambda_{\alpha}^{\kappa=1}$ ALI-PUB-495590 ALI-PUB-495580
- Better agreement seen after grooming
- **Removing some** nonperturbative effects from data and models increases the agreement, as would be expected

Similar improvement in agreement is seen for all α , R, and $p_{\rm T}^{\rm ch\,jet}$ bins

14

Theoretical calculations

- We use theoretical predictions for inclusive parton jets ^[6] calculated at Next-to-Leading Log (NLL') perturbative accuracy
 - New calculations also exist for Z+jets ^[7]
- Carried out in Soft Collinear Effective Theory

$$\frac{d\sigma^{pp \to (\text{jet }\tau_a)X}}{d\eta dp_T d\tau_a} = \sum_{abc} f_a(x_a, \mu) \otimes f_b(x_b, \mu) \otimes H^c_{ab}(x_a, x_b, \eta, p_T/z, \mu) \otimes \mathcal{G}_c(z, p_T, R, \tau_a, \mu)$$

Definitional difference:

al

$$\tau_a \equiv \tau_a^{pp} \equiv \frac{1}{p_T} \sum_{i \in J} p_T^i \left(\Delta \mathcal{R}_{iJ} \right)^{2-a} \equiv \lambda_{\beta=2-a}^{\kappa=1} * R^{2-a}$$

^[6] Z. Kang, K. Lee, F. Ringer JHEP 1804 (2018) 110 BERKELEY

^[7] S. Caletti, O. Fedkevych, S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes JHEP 07 (2021) 076

We can compare ALICE data to first-principles predictions from theory

11 Nov 2021

Comparing to pQCD predictions with SCET

- Parton jet calculations cannot be directly matched to experimental data
- Must apply a "forward folding" procedure to correct for multi-parton interactions (MPI), hadronization, and **charged-particle** jets

• There is a model dependence introduced, which we address by repeating the folding procedure with both Herwig and PYTHIA

Determining regions of interest

- Nonperturbative effects in the calculation are larger at low $p_{\mathrm{T}}^{\mathrm{jet}}$ and small R
 - Become dominant when soft-collinear scale becomes small:

$$R_{\alpha}^{\text{NP region}} \lesssim \Lambda / (p_{\text{T}}^{\text{jet}} R)$$
 (we use $\Lambda = 1 \text{ GeV}$)

- Parton-to-charged response is largely non-diagonal for small R, low $p_{\rm T}^{\rm jet}$
 - Due primarily to hadronization
 - Corresponds to an increased dependence on the choice of hadronization model and tuning
 - These regions can be used for testing & tuning MC models

small R is more susceptible to boundary effects

E.D. Lesser

11 Nov 2021

18

ALICE

11 Nov 2021

pQCD predictions with SCET (R = 0.2)

Data

 $\lambda^{\kappa}_{\alpha} \equiv \sum \, z^{\kappa}_i \theta^{\alpha}_i$ ALICE

-- $\lambda_{\alpha,g}^{\mathsf{NP}} \leq \mathbf{z}_{\mathsf{cut}}^{\mathsf{1-}\alpha} (\lambda_{\alpha}^{\mathsf{NP}})^{\alpha}$

SD grooming greatly increases the perturbative region for predictions

Reasonable agreement still seen within uncertainties

19

Alternate hadronization correction

- Comparisons to Monte Carlo predictions are limited in interpretation
 - Highly-tuned phenomenological models
- Apply nonperturbative shape function $F^{[8,9]}$ from first principles: $\Omega_{\alpha} = \frac{1}{\alpha 1}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}\lambda_{\alpha}} = \int \mathrm{d}k \,F(k) \frac{\mathrm{d}\sigma^{\mathrm{pert}}}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}\lambda_{\alpha}} \left(\lambda_{\alpha} - \frac{k}{p_{T}R}\right) \sim \left(F * \frac{\mathrm{d}\sigma^{\mathrm{pert}}}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}\lambda_{\alpha}}\right) (\lambda_{\alpha}) \quad \text{where} \quad F(k) = \frac{4k}{\Omega_{\alpha}^{2}} \exp\left(-\frac{2k}{\Omega_{\alpha}}\right) \left(\lambda_{\alpha} - \frac{k}{\Omega_{\alpha}}\right) \left(\lambda_{\alpha} -$$

- Single-parameter (Ω) function: hadronization effects should be described by one (unknown to pQCD) parameter, containing universal effects
- Still requires folding to charged level, which is mostly well-described p_{T} shift

pQCD predictions with SCET (R = 0.2)

Best agreement seen with smaller values of $\Omega = 0.2$ or 0.4 GeV/c

ALICE

 $\lambda_{\alpha}^{\kappa} \equiv \sum_{i \in jet} z_i^{\kappa} \theta_i^{\alpha}$

Tension with previous result of $\Omega = 3.5 \text{ GeV/}c$ (R = 0.4 full jets, higher $p_{\mathrm{T}}^{\mathrm{jet}}$, and for jet mass) ^[10]

^[10] Z. Kang, K. Lee, F. Ringer JHEP 1810 (2018) 137

Substructure of "heavy-flavor jets"

- Jets from quarks of heavy flavor (e.g. charm, bottom)
 - Much higher mass ($m_c = 1.3 \text{ GeV}/c^2$, $m_b = 4.2 \text{ GeV}/c^2 \gg m_{u,d} \sim \text{few MeV}/c^2$)
- Primarily created from an initial hard scattering
 - Can be used to probe long timescales in the QGP
- Can be used to **boost the proportion of quark jets** over gluon jets
- Candidate jets are "tagged" based on decays and vertexing
 - Nontrivial corrections (efficiency, purity) are often required

c and b hadronize, then quickly decay into more stable particles

11

 K^+

Ī

 π^{-}

d

ū

22

 D^0

Measuring the dead-cone effect in QCD

 \sim

11 Nov 2021

- Gluon radiation is suppressed within an angle m/E from the emitting particle [11]
 - Radiation should be more suppressed for heavy flavor quarks
- Challenges of measurement:

E.D. Lesser

- 1) Identifying gluon radiation
 - Background contributions from hadronization, heavy hadron decays, ...
- 2) Determining dynamic direction of heavy quark throughout the shower

Solution: use declustering procedure with Cambridge/Aachen algorithm

L. Cunqueiro, M. Płoskoń Phys. Rev. D 99 (2019) 074027

First direct observation of dead-cone effect

11 Nov 2021

• Calculate ratio of the splitting angle (θ) for D^0 -tagged vs. inclusive jets, vs. $E_{radiator}$

$$R(\theta) = \frac{1}{N^{D^0 \text{ jets}}} \frac{\mathrm{d}n^{D^0 \text{ jets}}}{\mathrm{d}\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{\mathrm{d}n^{\text{inclusive jets}}}{\mathrm{d}\ln(1/\theta)} \bigg|_{k_{\mathrm{T}}, E_{\mathrm{Radiator}}}$$

- 1) Reconstruct Lund Plane for inclusive and D⁰-tagged jets
- 2) Project onto the angular axis, and take the ratio D⁰-tagged / inclusive
- Significant suppression is seen, and is enhanced at lower $E_{radiator}$

Motivation for Pb-Pb studies

- Quark-Gluon Plasma (QGP) believed to form in heavy ion collisions
- Modifies jet interactions:
 - Jet quenching (see figure on right)
 - Momentum broadening
 - Open questions:
 - Lumpy or smooth? What are the d.o.f.? q / g fraction? Hadronization? Factorization breaking? ...
- How else does the QGP modify the jets we observe?
 - \rightarrow how can we study the QGP using jet observables?

Finite temperature QCD on the lattice

- Lack of sharp phase transition
 - e.g. ionization of an atomic plasma
- What carries the extra energy?
 - Complex *q*+*g* states?
 - "Strongly coupled" plasma effects?

S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. Katz, S. Krieg, C. Ratti, K. Szabo JHEP 1011 (2010) 077

ALTCE

Modification of jet cross section in Pb-Pb

Jet yield in AA (here Pb-Pb) collisions

No modification $\leftrightarrow R_{AA} = 1$

- Strong suppression of jet yield emulated by all of the quenching models
- Hints of disagreement with some models
 - Can we use **substructure measurements** to place stronger limits on some?

ALICE Collab.: Phys. Rev. C 101 (2020) 034911

Grooming settings in Pb-Pb

- Mistagging of the primary splitting occurs in jets in heavy-ion collisions due to the increased background
- Higher values of $z_{cut} \ge 0.2$ (Soft Drop) increase the tagging purity in highbackground environments ^[12]

^[12] J. Mulligan, M. Płoskoń Phys. Rev. C 102, 044913 (2020)

$z_{\rm g}$ and $R_{\rm g}$ in pp compared to Pb-Pb

• Stronger grooming conditions ($z_{cut} = 0.2$) allows fully-corrected groomed jet observables, and enabled the first measurement of θ_g in Pb-Pb data

Conclusions

- ALICE has many **new and developing analyses** with novel comparisons to first-principles pQCD predictions
 - Stay tuned for new upcoming results!
- Folding approach to nonperturbative corrections can be used to constrain theory and Monte Carlo hadronization models
- Some new approaches to mitigating large backgrounds which appear in heavy-ion collisions
- Comparing measurements with and without grooming allows an approach to study soft effects
 - Grooming settings must be chosen in pp to maximize calculability and Pb-Pb comparisons

Hadrons

Backup

ALICE Inner Tracking System (ITS)

- 6 layers (two each of pixel, drift, and strip detectors)
- SSD & SDD can measure charge $\rightarrow \frac{dE}{dx}$

ALICE TPC

- HV electrode creates high-gradient \vec{E}
- Ionization electrons drift to wire chamber readout

- Drift time gives \vec{z}
- Amount of charge (pulse height) correlates to the energy
- The first TPC was invented by David Nygren at LBNL

David Nygren

ALICE data (so far)

System	Year(s)	$\sqrt{s_{ m NN}}$ (TeV)	L _{int}
рр	2009-2013	0.9	200 µb ⁻¹
		2.76	100 nb ⁻¹
		7	1.5 pb ⁻¹
		8	2.5 pb ⁻¹
	2015, 2017	5.02	1.3 pb ⁻¹
	2015-2018	13	36 pb ⁻¹
pPb	2013	5.02	15 nb ⁻¹
	2016	5.02	3 nb ⁻¹
		8.16	25 nb ⁻¹
Xe-Xe	2017	5.44	0.3 µb⁻¹
Pb-Pb	2010-2011	2.76	75 μb⁻¹
	2015, 2018	5.02	800 µb⁻¹

compiled by: Yaxian Mao, Hard Probes 2020

- As of November 2021, the ALICE Collaboration has 322 physics publications published in refereed journals
- Of those, 29 are published jet measurements (<u>link</u>)
- The large integrated luminosity in Run 2 allows precise new measurements and new observables

Recent ALICE pp jet substructure measurements

- Generalized jet angularities (with and without grooming)
- Inclusive jet Lund Plane: <u>https://alice-figure.web.cern.ch/node/18640</u>
- First direct observation of the dead-cone effect: Nucl. Phys. A (Jan 2021) 121905
- Groomed z_g and R_g (Soft Drop & dynamical grooming): <u>ALICE-PUBLIC-2020-006</u>
- First measurement of D^0 -tagged Soft Drop $z_g/R_g/n_{SD}$: <u>ALICE-PUBLIC-2020-002</u>
- Jet-axis differences: https://alice-figure.web.cern.ch/node/19522
- Fully-corrected *N*-subjettiness in pp and Pb-Pb: <u>CERN-EP-2021-082</u>
- Inclusive/leading subjet z_r: <u>https://alice-figure.web.cern.ch/node/19990</u>
- Using ML to reduce jet background: https://alice-figure.web.cern.ch/node/16909

Jet reconstruction

- Jets are reconstructed from charged particle tracks using the anti- $k_{\rm T}$ sequential recombination algorithm ^[5]
 - From an IRC-safe class of algorithms
 - **Soft-resilient**: shape is not strongly affected by soft, wide-angle radiation

$$d_{ij} = \min \left(k_{\mathrm{T}i}^{2p}, k_{\mathrm{T}j}^{2p} \right) \frac{\Delta_{ij}^2}{R^2} \qquad p = \begin{cases} 1, & (\text{"inclusive"}) \ k_{\mathrm{T}} \\ 0, & \text{Cambridge/Aachen} \\ -1, & \text{anti} \ k_{\mathrm{T}} \end{cases}$$

• **E-scheme** recombination (adding four vectors):

$$(E, \vec{p})_{jet} = \sum_{i \in jet} (E, \vec{p})_i$$

E.D. Lesser

4

R_{jet}

 $\Delta R_{\text{jet},i}$

 (E, \vec{p})

What is IRC safety?

$$\mathcal{A}_{\beta}^{\kappa} \equiv \sum_{i \in jet} \left(\frac{p_{\mathrm{T},i}}{p_{\mathrm{T},jet}} \right)^{\kappa} \left(\frac{\Delta R_{jet,i}}{R} \right)^{\alpha} \equiv \sum_{i \in jet} z_{i}^{\kappa} \theta_{i}^{\alpha}$$

- Stands for Infra-Red and Collinear (IRC) safety
- Class of reconstruction algorithms & observables which satisfy certain conditions in order to avoid singularities from appearing in a welldefined path towards theoretical calculation

Infra-Red safety: the observable should not change if an infinitely-low-momentum particle is added to the event/jet

Collinear safety: the observable should not change if one particle splits into two collinear particles

$$\lambda_{\alpha,\text{new}}^{\kappa} = \sum_{\substack{(i \neq j) \in \text{jet}}} z_i^{\kappa} \theta_i^{\alpha} + (\lambda z_j)^{\kappa} \theta_j^{\alpha} + [(1 - \lambda) z_j]^{\kappa} \theta_j^{\alpha}$$

Need $\lambda^{\kappa} + (1 - \lambda)^{\kappa} = 1 \quad \forall \{\lambda \in [0, 1]\} \rightarrow \kappa = 1$

Consider 1-particle jet:
$$\lambda_{\alpha,\text{new}}^{\kappa} = (\lambda z_j)^{\kappa} \theta_j^{\alpha} + [(1 - \lambda) z_j]^{\kappa} \theta_j^{\alpha}$$

 $\theta_j = 0 \rightarrow z_j^{\kappa} \theta_j^{\alpha} = 0 \quad (\alpha > 0)$

Charged-particle jet observables

- Charged-particle jets are useful for substructure observables since tracking detectors give enhanced spatial precision
- However, track-based observables are IRC-unsafe
- Formalism to calculate these observables using track functions ^[5]
- Currently we use the IRC-safe observables to motivate our measurements, and then apply nonperturbative corrections using different methods

Going deeper: jet grooming

- Recluster jet into ordered tree using Cambridge-Aachen algor
- Trim branches, using one of two different algorithms:
 - Soft Drop grooming ^[3]
 - Removes soft, wide-angle radiation
 - Dynamical grooming ^[4]
 - Identifies the "hardest" splitting
- IRC or Sudakov safe ^[5]
 - Repeatable on theoretical predictions

 $\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A \ seq.}} \left| z_i (1 - z_i) \, p_{\mathrm{T},i} \left(\frac{\theta_i}{R} \right)^a \right|$

11 Nov 2021

"Hardness":

39

¹³ A. Larkoski, S. Marzani, G. Soyez, J. Thaler JHEP 1405 (2014) 146

 $p_{\rm T,subleading}$

 $p_{\rm T,leading} + p_{\rm T,subleading}$

Soft Drop Condition:
$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)$$

 $Z_{\sigma} \equiv$

 $R_{\sigma} = \sqrt{\Delta y^2}$

ithm

$$\theta_{g} \equiv \frac{R_{g}}{R}$$

 n
 $\min(p_{T1}, p_{T2})$ (Δ

$z_{\rm g}$ and $R_{\rm g}$ with Soft Drop grooming

• Comparisons to PYTHIA show stronger modification with larger eta

First measurement with Dynamical Grooming

ALICE

First measurement of $z_g/R_g/n_{SD}$ in D^0 -tagged jets

- n_{SD} is the number of splittings which pass the Soft Drop grooming condition
 - Follows the hardest branch
- **D⁰-tagged jets have fewer splittings** than inclusive jets
- Consistent with quark jets being harder with fewer emissions than gluon jets

First measurement of $z_g/R_g/n_{SD}$ in D^0 -tagged jets

- Reconstruct D^0 mesons through $D^0 \to K^- \pi^+$ decay channel
- Calculate substructure observable in signal and both sideband regions

- Apply statistical subtraction to obtain the measurement for "pure" signal
- Any differences probe influence of heavy quark mass and parton flavor of the jet

jet axis is given by its leading constituent

- Calculate the angular separation: $\Delta R_{axis} = \sqrt{\Delta y^2 + \Delta \phi^2}$
- IRC-safe observable sensitive to soft radiation, TMDs, and PDFs [5]

44

First measurement of the jet-axis differences

• Slight tension seen between data and MC for standard versus SD axis

- Standard and SD axes are strongly correlated
- Seems mostly independent of grooming parameters
- Will be useful for tuning MC generators
- pQCD comparisons are coming soon!

First measurement of the jet-axis differences

• Good agreement seen with MC for a wide range of SD parameters

- WTA and standard/SD axes are less strongly aligned/correlated
 - $p_{\rm T}$ is distributed more broadly within the jet, rather than collimated along a single axis
 - PYTHIA and Herwig reproduce this trend
- Note: every curve uses the same sample of jets

Measurement of subjets

- Reconstruct inclusive jets with radius R, then recluster using anti- $k_{\rm T}$ with smaller radius r
- Can either study inclusive or leading subjets
- Sensitive to jet quenching effects from the hot, dense QCD medium formed in heavy-ion collisions
- Test of **universality of jet functions**: compare extraction of $J_{r,med}(z)$ to $J_{med}(z)$ from R_{AA} ^[6]

47

New subjet measurements in pp

Reasonable agreement is observed with respect to MC generators

E.D. Lesser

11 Nov 2021

48

Inclusive jet (primary) Lund Plane

- Triangular diagram populated by each primary splitting after Cambridge-Aachen reclustering
- Axes are related to angle and $p_{\rm T}$:

$$\Delta \equiv \Delta_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_t \equiv p_{\mathrm{T},b} \Delta_{ab}$$

• Not generally IRC-safe; perturbatively amenable for $k_t \gg \Lambda_{\rm QCD}$

Inclusive jet (primary) Lund Plane

50

ALICE

Comparing Lund Plane projections to models

• Slight tension seen with some models in different regions of phase space

11 Nov 2021

52

Choosing grooming settings

• Soft Drop: higher values of $z_{\rm cut} \ge 0.2$ increase the leading branch tagging purity in high-background environments ^[5]

• **Dynamical**: same is true for lower $a \rightarrow 0$

 $\begin{array}{ll} a \to 0 & \text{hardest } z & z_{cut} \approx e^{-a\pi/\alpha_s C_F} \\ a = 1 & \text{hardest } k_T & \ln k_t \approx -\sqrt{a} \\ a = 2 & \text{smallest } t_f & \ln k_t (R_{\text{iet}}) \approx -\sqrt{a} \end{array}$

^[5] Mulligan, Płoskoń Phys. Rev. C 102, 044913 (2020)

Modification in Pb-Pb collisions?

- Hardening at mid- z_r could point to quark/gluon fraction modification
- Soft radiation enhanced at small z_r \rightarrow competing normalization effect

Measuring the N-subjettiness in pp

- Used for tagging 1- or 2-pronged jets
 - Originally designed to tag boosted decays such as $W^{\pm} \rightarrow \overline{q}q$ or $t \rightarrow W^{+}b$
- $\tau_N \rightarrow 0$ means correlation to N subjets; $\tau_N \rightarrow 1$ means no strong correlation and suggests at least N + 1 subjets
- Low values of τ_N/τ_{N-1} are used to **discriminate** *N*-**prongness**
- τ_2/τ_1 is peaked at intermediate values \rightarrow pp jets are found to be **mostly single-cored**, as two hard substructures are not well-separated and defined

$$p_{T,jet} \times R \frac{1}{k}$$

$$f_{t} = 0.4$$

$$f_{t$$

 $\tau_N = \frac{1}{\sum} p_{\mathrm{T},k} \operatorname{minimum}(\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k})$

 $\tau_2 \tau_1$

Fully corrected *N*-subjettiness in Pb-Pb

56

• Using the **semi-inclusive hadron-jet recoil technique** ^[9] for the first time in a substructure measurement (<u>CERN-EP-2021-082</u>)

• Reduce contamination from combinatorial jets via requirement of a back-to-back high- $p_{\rm T}$ hadron, then subtracting the observable shape from a reference Trigger Track (**TT**) bin

Using ML to reduce jet background ^[10]

• May allow studying jets with lower jet p_{T} and larger R than before

11 Nov 2021