Phase Measurement

BESIII P&S Meeting

Intro

- \circ The aim of the "task force" is to join the efforts and share the available expertise inside <code>BESIII</code>
- The "first mission" is to create a "fertile environment" to make these analyses blooming and to reach common good practices and to stimulate dedicated discussion.
- The group meetings are scheduled usually once a month
- \odot They have started in March.
- The list and material of the meetings are available @ <u>https://indico.ihep.ac.cn/category/820/</u>
- Zoom meetings (till now Simone, Alessio, Giulio, Rinaldo invited)->if interested, please ask!!!

• Relative phase angle measurement for: $\gg J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^ \succ J/\psi \rightarrow \Sigma^0 \overline{\Sigma}^0$ $\succ \psi$ (2S)-> $\Sigma^0 \overline{\Sigma}^0$ $\succ \psi$ (2S)-> $\Sigma^+ \overline{\Sigma}^-$ **≻**ψ (2S)->K⁺K⁻ \gg ψ (2S)-> pi+pi-J/psi $\succ \psi$ (2S)-> $\wedge \overline{\wedge}$

 $\Psi(2S) \rightarrow \Xi^{+}\overline{\Xi}^{-}$ $\mathbb{P}J/\psi \rightarrow \pi^{0} \omega \text{ ALESSIO}$ $\mathbb{P}J/\psi \rightarrow_{p} \overline{p} \text{ (in RC)}$ $\mathbb{P}J/\psi \rightarrow_{K^{+}K^{-}} \text{ (in standby)}$

Status of of J/ $\psi \rightarrow \Sigma^+ \overline{\Sigma}^- Decay$

By Jiajun Liu

Fittano 15 punti alla jpsi ..manca 3079.649. check needed!

- Channel: $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-$ (Subsequent Decays: $\Sigma^+ \rightarrow p\pi^0$; $\overline{\Sigma}^- \rightarrow \overline{p}\pi^0$)
- 2C fit imposed by missing π^0 to get the signal efficiency

• Fitting Result

PDG: (1.50±0.24)*10⁻³ This Work: (1.21±0.04)*10⁻³

Solu tion	Strong	Continuum	$\Delta \Phi_{3g,\gamma}^{\circ}$	S _e (MeV)	BF(J/ψ→ Σ ⁺ Σ¯ [−])	χ^2/ndf
posi tive	686.9±35.6	919.3±81.3	101.2±14.7	0.92±0.03	(1.21±0.04)*10 ⁻³	4.0/11.0

Normalization unclear

Summary and next to do:

- □ The phase study of $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$ is partially completed and the current BF result is deviated from PDG value but consistent with BESIII within 2 σ .
- □ Systematic uncertainty is on-going.
- Memo is being prepared.

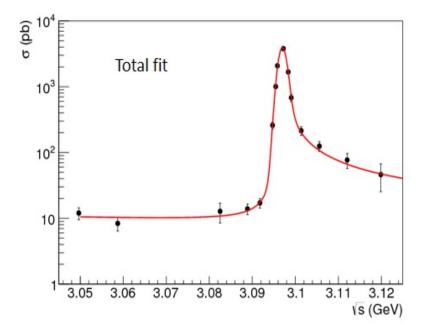


Table 6. Approximate values of moduli of the ratios between sub-amplitudes $\mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{\gamma}$ and $\mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{ggg}$ (second column), and between $\mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{gg\gamma}$ and $\mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{ggg}$ (third column).

				n
		$ \mathscr{A}^{gg\gamma}_{\mathscr{B}\overline{\mathscr{B}}}/\mathscr{A}^{ggg}_{\mathscr{B}\overline{\mathscr{B}}} $	$ \mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{\gamma} / \mathscr{A}_{\mathscr{B}\overline{\mathscr{B}}}^{ggg} $	$\mathscr{B}\overline{\mathscr{B}}$
		0	~0.09	$\Sigma^0 \overline{\Sigma}^0$
		0	~0.07	$\Lambda\overline{\Lambda}$
		~0.1	~0.20	$p\overline{p}$
hould influence these studies	W/o sh	0	~0.14	$n\overline{n}$
nould influence these studies	VVC 311	~0.1	~0.25	$\Sigma^+\overline{\Sigma}^-$
	S/C	~0.1	~0.07	$\Sigma^-\overline{\Sigma}^+$
	5/0	0	~0.15	$\Xi^0 \overline{\Xi}^0$
		~0.1	~0.06	$\Xi^-\overline{\Xi}^+$

Strong and electromagnetic amplitudes of the J/ψ decays into baryons and their relative phase

https://arxiv.org/abs/1905.01069v1 Simone, Alessio, Rinaldo et al

TABLE VII. Moduli of sub-amplitudes $S_{\mathcal{B}\overline{\mathcal{B}}}$, $\mathcal{A}^{\gamma}_{\mathcal{B}\overline{\mathcal{B}}}$ and phase $\varphi_{\mathcal{B}\overline{\mathcal{B}}}$, defined in Eq. (6).

$\mathcal{B}\overline{\mathcal{B}}$	$ \mathcal{S}_{\mathcal{B}\overline{\mathcal{B}}} imes 10^3$	$ \mathcal{A}^{\gamma}_{\mathcal{B}\overline{\mathcal{B}}} imes 10^4$	$\varphi_{\mathcal{B}\overline{\mathcal{B}}}$
$\Sigma^0\overline{\Sigma}^0$	4.987 ± 0.065	4.52 ± 0.19	arphi
$\Lambda\overline{\Lambda}$	6.483 ± 0.065	4.52 ± 0.19	$\pi - arphi$
$\Lambda \overline{\Sigma}^0 + { m c.c.}$	0	7.83 ± 0.33	arphi
$p\overline{p}$	5.74 ± 0.14	12.43 ± 0.65	arphi
$n\overline{n}$	6.351 ± 0.037	9.04 ± 0.38	$\pi - arphi$
$\Sigma^+\overline{\Sigma}^{$	4.50 ± 0.12	12.43 ± 0.65	arphi
$\Sigma^{-}\overline{\Sigma}^{+}$	4.50 ± 0.12	3.39 ± 0.65	$\pi - arphi$
$\Xi^0\overline{\Xi}^0$	5.867 ± 0.037	9.04 ± 0.38	$\pi - arphi$
$\Xi^-\overline{\Xi}^+$	5.30 ± 0.13	3.39 ± 0.65	$\pi - arphi$

Prediction for strong and Em amplitudes available (Simone? Alessio?) And on phase sign??

Strong and electromagnetic amplitudes of the J/ ψ decays into baryons and their relative phase

We can argue the same continuum amplitude for sigma 0 sigma0bar and lambda lambdabar Same continuum for ppbar and sigma+ sigma-bar???

Other result from BESIII (Liang Liu et al USTC)

A mDIY MC are generated according to the $\alpha_{J/\psi}$, $\Delta \Phi$ and α_{\pm} to estimate the selection efficiecny. The efficiency is corrected to the real data according to w_{total} .

The branching fraction of $J/\psi \to \Sigma^- \bar{\Sigma}^+$ is calculated according to

$$\mathscr{B}(J/\psi \to \Sigma^{-} \bar{\Sigma}^{+}) = rac{N_{\mathrm{sig}}}{\varepsilon \times N_{\mathrm{total}} \times \Pi_{i} \mathscr{B}_{i}} = (15.055 \pm 0.016) \times 10^{-4}$$

O anche

The updated result with new method are consistent with our previous result $\mathscr{B}(J/\psi \to \Sigma^- \bar{\Sigma}^+) = (1.481 \pm 0.0012 \pm 0.03) \times 10^{-3}$.

Without interference effect.... +- 2S(gamma/2)C/D and +-2SE

$$\delta \mathcal{B} = 2 \sqrt{\frac{\sigma_0}{\sigma_{\psi}}} A_s \sin \varphi. \tag{10}$$

1.5 e-7 (??+-3 e-6)

Status of $J/\psi(\psi(2S) \rightarrow \Sigma^0 \overline{\Sigma}^0)$

$\Box J/\psi ightarrow \Sigma^0 \overline{\Sigma}^0$

			This Work			
• In PDG: BF =	- 0	For +ve ph	ase: BF	For -	ve phase: BF	
(1.172 ± 0.031) :	$\times 10^{-3}$	$=(1.403\pm0.0)$	$86) \times 10^{-3}$	=(1.42	$21\pm0.083)\times10^{-3}$	
• Parameters are floating in fit such as; Strong, Continuum, $\Phi_{3g,\gamma}$ and S_E						
	A. J. (0)	CE (MAN)	$\mathbf{DP}(\mathbf{I}) \to \mathbf{D}^{0}$	50)	2/- 10	

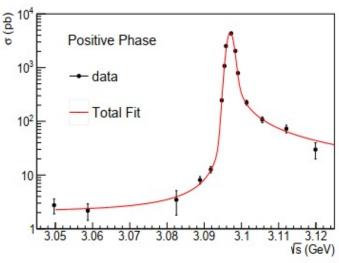
Solution	$\Delta\Phi_{3g,\gamma}(^{\circ})$	SE (MeV)	$\mathbf{BF}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
 Sol-I	144.7 ± 33.7	0.885 ± 0.015	$(1.403 \pm 0.086) \times 10^{-3}$	20.6/11.0
Sol-II	-144.4 ± 33.5	0.885 ± 0.015	$(1.421 \pm 0.083) \times 10^{-3}$	20.6/11.0

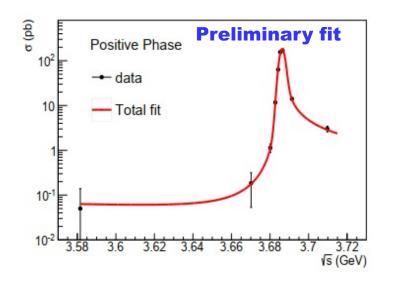
Fitting results on J/ψ lineshape from $\Sigma^0 \overline{\Sigma}^0$

Too low?

$\Box \ \psi(2S) \to \Sigma^0 \overline{\Sigma}{}^0$

• In PDG: BF = $(2.35 \pm 0.09) \times 10^{-4}$


- For +ve phase: BF = $(2.94 \pm 0.06) \times 10^{-4}$
- For -ve phase: BF = $(2.99 \pm 0.05) \times 10^{-4}$
- Parameters are floating in fit such as; Strong, Continuum, $\Phi_{3g,\gamma}$ and S_E


Solution	$\Delta \Phi_{3g,\gamma}(^{\circ})$	SE (MeV)	$\mathbf{BF}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
Sol-I	86.6 ± 28.0	1.36 ± 0.026	$(2.94 \pm 0.06) \times 10^{-4}$	18.09/5.0
Sol-II	86.6 ± 28.0	1.36 ± 0.026	$(2.94 \pm 0.06) \times 10^{-4}$	18.09/5.0

Fitting results on $\psi(2S)$ lineshape from $\Sigma^0 \overline{\Sigma}^0$

BF from parameters variation

They are sistematically higher than PDG (20%)

 $\mathbf{B}_{\mathbf{y}}^{\mathbf{x}}$ Muzzafar

Table 6

Strong (second column), EM (third column) and mixed (fourth column) BRs for the $\psi(2S)$ meson under the 2-*R* hypothesis.

$B\overline{B}$	$\mathrm{BR}^{ggg}_{\mathcal{B}\overline{\mathcal{B}}} imes 10^4$	$BR^{\gamma}_{\overline{BB}} \times 10^5$	$\mathrm{BR}^{gg\gamma}_{\overline{BB}} imes 10^5$
$\Sigma^0\overline{\Sigma}{}^0$	2.01 ± 0.12	0.41 ± 0.79	0
$\Lambda\overline{\Lambda}$	4.22 ± 0.18	0.43 ± 0.81	0
$\Lambda \overline{\Sigma}{}^0 + \text{ c.c.}$	0	1.25 ± 0.24	0
$p\overline{p}$	3.74 ± 0.14	0.207 ± 0.098	0.90 ± 0.33
nn	3.73 ± 0.14	1.85 ± 0.35	0
$\Sigma^+\overline{\Sigma}^-$	2.02 ± 0.12	0.186 ± 0.088	0.043 ± 0.059
$\Sigma^{-}\overline{\Sigma}^{+}$	2.01 ± 0.12	0.73 ± 0.17	0.044 ± 0.060
$\Xi^{-}\overline{\Xi}^{+}$	3.31 ± 0.12	0.67 ± 0.16	0.80 ± 0.29
$\Xi^0 \overline{\Xi}^0$	3.33 ± 0.12	1.50 ± 0.29	0

Some cross checks

• Fist attempt test fitting bias tested with different approaches:

"Sampling Method" (old)

 $B(J/\psi \rightarrow \Sigma^0 \overline{\Sigma}{}^0) = (1.30 \pm 0.05) \times 10^{-03}$

 $\Delta \Phi = 136 \pm 25.9$

Analytic Approach (to be refined)

$$B(J/\psi \rightarrow \Sigma^0 \overline{\Sigma}{}^0) = (1.33 \pm 0.86) < 10^{-03}$$

 $\Delta \Phi = (144.1 \pm 34.3)^{o}$

The different approches seem topoint in the same direction. (NDR or the error is propagated)

 \Box For $J/\psi \rightarrow \Sigma^0 \overline{\Sigma}^0$ study is completed. .

 \Box Efficiency optimization for $\psi(2S) \rightarrow \Sigma^0 \overline{\Sigma}^0$ analysis is done.

□ Systematic study is on-going.

□ Memo is being prepared.

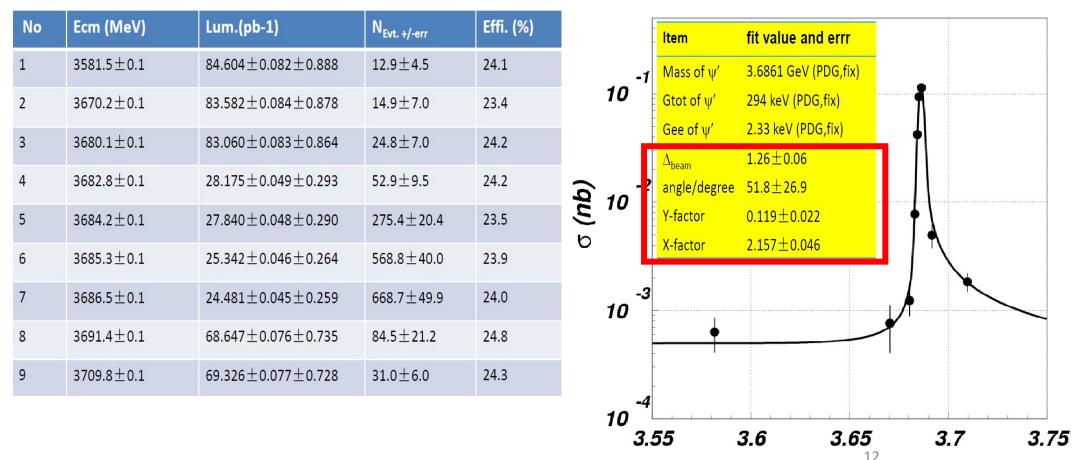
The systematic difference in B needs further investigation I/O check forseen

Private communication with Muzaffar.. On thursday

- 1 BR 1.41830e-03
- 2 phi_s 154.434
- 3 c_cn 1.88201e+00
- 4 spread 9.00378e-04

Copying parametrization from Marco's memo REFERENCE is very important

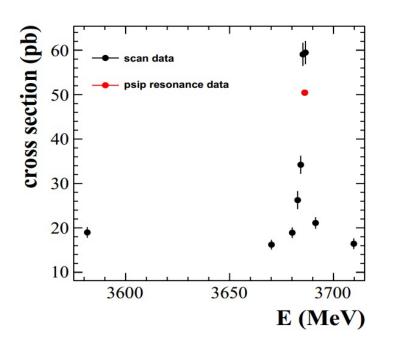
Incertezza sul continuo al 100%

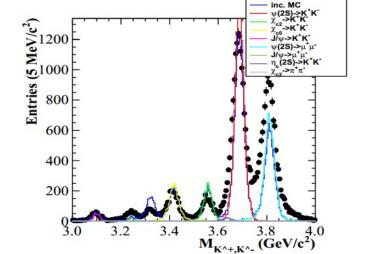

Status of $e^+e^- \rightarrow \Lambda \Lambda$ using ψ' scan data Preliminary results

X/Y=S/E

Needed S/C for comparisons..

BR is not given. Asked for, no answer!

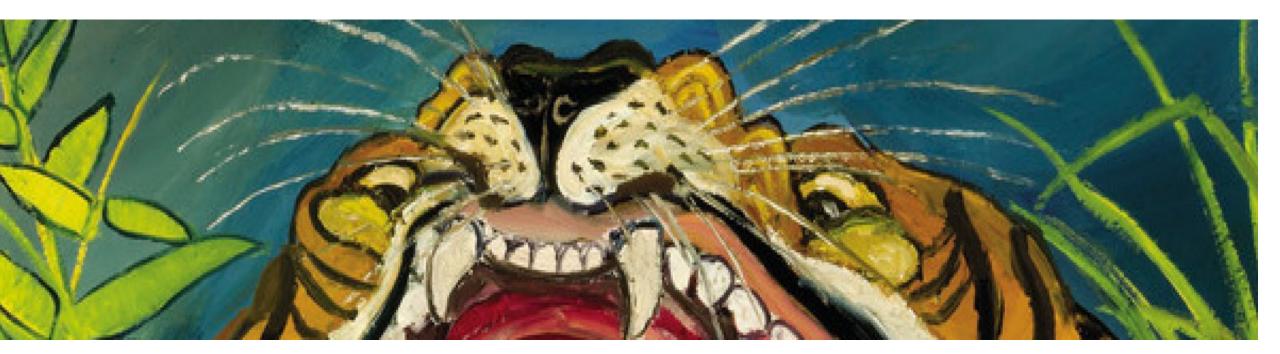



Optimization of event selection and systematic uncertainty are in progress

Status of $\psi(2S)$ ->K+K⁻

By Yadi (Wang)

- Background analysis has been finished
- •Bhabha, $\mu^+\mu^-$, $q\overline{q}$, $\pi^+\pi^-$, $p\overline{p}$ are analysed, only $\mu^+\mu^-$ contributes
- •From inclusive MC, J/ψ , $\chi_{c0,c2}$, $\eta_c(2S)$ $\rightarrow K^+K^-$ and $J/\psi \rightarrow \mu^+\mu^-$ contribute

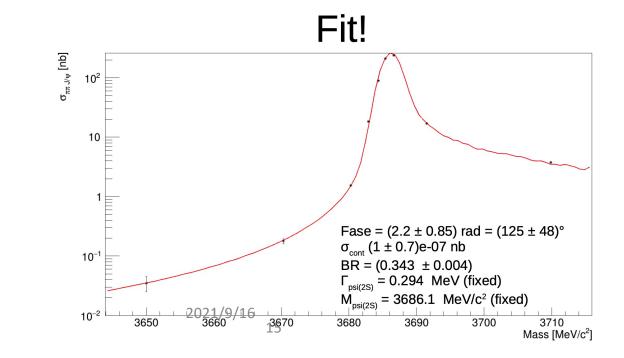


· data

The first tuning MC sample are generated, and more iteration are needed

• It should be interesting for comparison purposes with K+K- by J/psi

Status of ψ (2S)-> π^+ π^- J/ ψ


By Giulio (Mezzadri)

•Based on the experience at the J/psi, we know that, measured the cross sections, one shall be able to fit the data to the nominal values of mass and width of ψ (2S) •Two parameters ought to be optimized to do so:

-Center of mass spread

-Global shift

PRESENTATION TODAY WITH THE UPDATES!!!

Found values: Center of mass spread = 1.26 MeV Global shift = 0.127 MeV

SE in agreement with $\Lambda\overline{\Lambda}$

Towards the best practice

- studies of generators (KKMC+Evtgen/Conexc/Babayaga....)
- study and comparison of the measurement methods \rightarrow
- towards a strict collaboration and sharing.
- Up to now 3 methods, at least, available with differences in the chosen output parameters.
- The modified Babayga (not available for all channels) allows
- to iterate with the output parameters (FF, phase...)
- ISR, VP, Beam Energy spread at generator level can be important
- Yadi's check with the old sampling method (Rinaldo's fatherhood, Marco's development) shows compatible, but less precise results for the parameters after fitting.

Formalisms

- Different formalisms
- Same physical content
- Different ISR treatments (sampling, analytical-various approx)
- Different continuum treatment (power law, analytical)

BORN CROSS SECTION

The starting formula is the Born cross section of the process $e^+e^- \to h$

 $\sigma(W) = |\mathscr{A}(W)|^2,$

with the amplitude

$$\mathscr{A}(w) = D \frac{Se^{i\phi} + E}{M - W - iG} - C \left(\frac{3 \text{ GeV}}{W}\right)^{\text{PWW}},$$

and the real and positive parameters

$$G = \Gamma/2$$
, $D = \frac{\Gamma/2}{M} \sqrt{12\pi B_{\text{in}}}$, $C = \sqrt{\sigma_{\text{cont}}}$, $E = \sqrt{C^2 \frac{B_{\text{in}}}{\sigma_{\mu\mu}}} = \sqrt{\frac{\sigma_{\text{cont}}B_{\text{in}}}{\sigma_{\mu\mu}}}$.

Continuum by power law

 $\sigma_0 = (3000)^{PWW} \sigma(3000)$

Used by italian groups and USTC

PWW depends on the final state

Credits: Simone Pacetti

$$\begin{aligned} \sigma(W; B_{\text{out}}, \phi, \sigma_{\text{cont}}) &= \operatorname{Re}^{2} \left[\mathscr{A}(W) \right] + \operatorname{Im}^{2} \left[\mathscr{A}(W) \right] \\ &= \left\{ D \frac{\left[\left(\sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \cos(\phi) + E \right] (M - W)}{(M - W)^{2} + G^{2}} \right. \end{aligned}$$

$$- D \frac{\left(\sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \sin(\phi) G}{(M - W)^{2} + G^{2}} - \sqrt{\sigma_{\text{cont}}} \left(\frac{3 \operatorname{GeV}}{W} \right)^{3} \right\}^{2} \\ &+ \left\{ D \frac{\left(\sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \sin(\phi) (M - W)}{(M - W)^{2} + G^{2}} \right. \\ &+ D \frac{\left[\left(\sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \cos(\phi) + E \right] G}{(M - W)^{2} + G^{2}} \right\}^{2}. \end{aligned}$$

10 4

Sampling method (but from Babayaga simulation)

For each $W = W_{ISR}$ the $\sigma(W_{ISR})$ is obtained from the formula previously defined and the visible cross section at the nominal energy *E* is obtained as

$$\sigma_{vis}^{calc}(E) = \frac{\sum_{i}^{N_s} \sigma(W_{ISR}^i) * w_{BB}^i}{N_{gen}}$$

where N_s is the number of selected events, N_{gen} is the number of generated events and w_{i BB} is the weight of the ith event obtained from MC sample (BB used for J/psi).

Fit of the visible cross section, efficiency taken into account inside the fitting algorithm.

To Fit the Line-Shape: To incorporating the the effect of radiative function F(x, W) and Energy Spread S_E in the fit, the dressed Born cross section is modified as;

1. Incorporating the radiative correction F(x, W):

$$\sigma'(W) = \int_0^{1 - \left(\frac{W_{\min}}{W}\right)^2} dx F(x, W) \sigma(W\sqrt{1 - x})$$
 Not found in the algorithm

2. Energy spread S_E is included by convolving with Gaussian function by set the width of S_E . The Born cross section becomes: $\sigma''(W) = \int_{W-nS_E}^{W+nS_E} \frac{1}{\sqrt{2\pi}S_E} \exp\left(\frac{-(W-W')^2}{2S_E^2}\right) \sigma'(W') \, dW \qquad \text{Observed xs}$

Minimization Function: The fitting parameters are obtained by means of χ^2 -minimization as:

$$\chi_{\min}^{2} = \sum_{i=1}^{15} \frac{\left(\sigma_{i}^{\text{obs}} - \sigma''\left(W_{i}\right)\right)^{2}}{\left(\Delta\sigma_{i}^{\text{obs}}\right)^{2} + \left[\left(\sigma''\left(W_{i} + \frac{\Delta W_{i}}{2}\right) - \sigma''\left(W_{i} - \frac{\Delta W_{i}}{2}\right)\right)\right]^{2}},$$

where error along X-axis, is projected along the Y-axis.

Born Cross section:

$$\sigma^{0}(W) = \left(\frac{\mathcal{A}}{W^{2}}\right)^{2} \frac{4\pi\alpha^{2}}{W^{2}} \left|1 + \frac{3W^{2}\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}(1 + \mathcal{C}e^{i\Phi_{g,\text{EM}}})}{\alpha M(W^{2} - M^{2} + iM\Gamma)}\right|^{2}$$

Decay width J/psi to BBar

 $\frac{A}{W^2}$ is the form factor

where C is the ratio of $\frac{|A_g|}{|A_v|}$

 $(\frac{\mathcal{A}}{W^2})^2 \Gamma_{\mu\mu} |\mathcal{C}e^{i\Phi_{g,EM}} + 1|^2$

Branching Fraction:

$$B(J/\psi \to B\overline{B}) = \Gamma_{BB}/\Gamma$$

Chi-square for Minimization:

$$\chi^2 = \sum_{i=1}^{16} \frac{\left[\sigma_i^{\text{obs}} - f\sigma''(W_i)\right]^2}{(\Delta \sigma_i^{\text{obs}})^2 + \left[\Delta W_i \cdot \frac{d\sigma''(W)}{dW}\right]^2} + \left(\frac{1-f}{\Delta f}\right)^2$$

Analytic Formula of radiation corrected cross section can be found

BESIII P&S Meeting

Another approach

$$\sigma_{r.c.}(s) = \int_{0}^{x_m} dx F(x,s) \frac{\sigma_{Born}(s(1-x))}{|1 - \Pi(s(1-x))|^2}$$

 $a_c(s) = \frac{Y}{c}$

$$\sigma_{obs}(W) = \int_{0}^{\infty} dW' \sigma_{r.c.}(W') G(W', W)$$

$$\sigma_B(s) = \frac{4\pi\alpha^2}{3s} |a_{3g}(s)e^{i\varphi} + a_{\gamma}(s) + a_c(s)|^2 P(s)$$

Chosen + sign

$$\mathcal{P} = v(3-v^2)/2 , \quad v \equiv \sqrt{1 - \frac{(m_{B1} + m_{\bar{B}2})^2}{s}}$$

* *

X/Y= S/E More complicated S/C for comparison purposes

https://arxiv.org/abs/1505.03930v2

23

$$a_{\gamma}(s) = \frac{3Y\Gamma_{ee}/(\alpha\sqrt{s})}{s - M^2 + iM\Gamma_t}$$

$$a_{3g}(s) = \frac{3X\Gamma_{ee}/(\alpha\sqrt{s})}{s-M^2+iM\Gamma_t}$$

ISR HANDLING

 $par{p}\gamma$ analysis used

$$egin{aligned} rac{d\sigma_{par{p}\gamma}(q^2)}{dq^2} &= rac{1}{s}W(s,x)\sigma_{par{p}}(q^2), \ W(s,x) &= rac{lpha}{\pi x}(\lnrac{s}{m_e^2}-1)(2-2x+x^2), \ x &= rac{2E_\gamma^*}{\sqrt{s}} = 1-rac{q^2}{s}, \end{aligned}$$

where E_{γ}^{*} is the ISR photon energy in the $e^{+}e^{-}$ c.m. frame, W(s, x) [21] is the radiator function which gives the probability of ISR photon emission and m_{e} is the electron mass.

wangping

$$\sigma'(W) = \int_{0}^{1-\left(\frac{W\min}{W}\right)^2} dx F(x, W) \sigma^0(W\sqrt{1-x}),$$

where W_{\min} is the minimum invariant mass of the $\mu^+\mu^-$ system, $x = \frac{2E_{\gamma}}{\sqrt{s}}$, E_{γ} is the energy of the radiation photon, and F(x, W) is approximated as [36]:

$$F(x, W) = x^{\beta - 1} \beta \cdot (1 + \delta) - \beta (1 - \frac{x}{2}) + \frac{1}{8} \beta^2 \bigg[4(2 - x) \ln \frac{1}{x} - \frac{1 + 3(1 - x)^2}{x} \ln(1 - x) - 6 + x \bigg],$$

with $\delta = \frac{3}{4}\beta + \frac{\alpha}{\pi} (\frac{\pi^2}{3} - \frac{1}{2}) + \beta^2 (\frac{9}{32} - \frac{\pi^2}{12})$ and $\beta = \frac{2\alpha}{\pi} (2 \ln \frac{W}{m_e} - 1).$

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$$
 analysis used

The effective luminosity is related to the mass spectrum through

$$\frac{dL}{dm} = \frac{2 \cdot m}{s} \cdot F(s,m) \cdot L, \tag{8}$$

Credits (yadi)

where m is the $\pi^+\pi^-\pi^0$ mass, $s = 4E^2$, E is the beam energy, L is The integrated luminosity, and F(s,m) is the probability function of the photon emission which can be written as [11]

$$\beta = \frac{2 \cdot \alpha}{\pi} \cdot [\ln(\frac{s}{m_e^2}) - 1],$$

$$x = 1 - \frac{m^2}{s},$$

$$\frac{dL}{dm} = \{\beta x^{\beta - 1} [1 + \frac{\alpha}{\pi} (\frac{\pi^2}{3} - \frac{1}{2}) + \frac{3}{4}\beta + \beta^2 (\frac{37}{96} - \frac{\pi^2}{12} - \frac{1}{72} ln \frac{s}{m_e^2})] - \beta (1 - \frac{1}{2}x)$$

$$+ \frac{1}{8} \beta^2 \cdot [4(2 - x)ln \frac{1}{x} - \frac{1 + 3(1 - x)^2}{x} \cdot ln(1 - x) - 6 + x]\} \cdot L,$$
(9)

where, $\alpha = \frac{1}{137}$ is the fine structure constant, $m_e = 0.5110034 \times 10^{-3} \text{ GeV}/c^2$ is the mass for electron, $\sqrt{s} = 3.773 \text{ GeV}$ is the center of mass energy for the primary e^+e^- system, s' is that after the ISR, and L is the total integrated luminosity.

Phase measurement (wangyadi)

hotons. Let
$$1 + \delta = 1 + \frac{\alpha}{\pi} (\frac{\pi^2}{3} - \frac{1}{2}) + \frac{3}{4}t + t^2 (\frac{9}{32} - \frac{\pi^2}{12})$$
. $t = \frac{2\alpha}{\pi} (\ln \frac{s}{m_e^2} - 1)$.

$$F(x,s) = x^{t-1} \cdot t(1+\delta) + x^t(-t - \frac{t^2}{4}) + x^{t+1}(\frac{t}{2} - \frac{3}{8}t^2)$$

$$\begin{aligned} & \text{ConExc (pingronggang)} \\ & W(s,x) = \Delta \cdot \beta x^{\beta-1} - \frac{\beta}{2} (2-x) + \frac{\beta^2}{8} \{ (2-x) [3\ln(1-x) - 4\ln x] - 4\frac{\ln(1-x)}{x} - 6 + x \}, \\ & L = 2\ln\frac{\sqrt{s}}{m_e}, \\ & \Delta = 1 + \frac{\alpha}{\pi} (\frac{3}{2}L + \frac{1}{3}\pi^2 - 2) + (\frac{\alpha}{\pi})^2 \delta_2, \\ & \delta_2 = (\frac{9}{8} - 2\xi_2)L^2 - (\frac{45}{16} - \frac{11}{2}\xi_2 - 3\xi_3)L - \frac{6}{5}\xi_2^2 - \frac{9}{2}\xi_3 - 6\xi_2\ln 2 + \frac{3}{8}\xi_2 + \frac{57}{12}, \\ & \beta = \frac{2\alpha}{\pi} (L-1), \ \xi_2 = 1.64493407, \ \xi_3 = 1.2020569. \end{aligned}$$

Radiator function comparison

- ConExc phase_fit F(x) phase_fitl pp ISR 10^{-2} - π⁺π⁻π⁰ ISR Except the model used in 10^{-3} ppbar ISR analysis, the others are almost the same 10^{-4} 0.5 0.0 1.0 х

By yadi

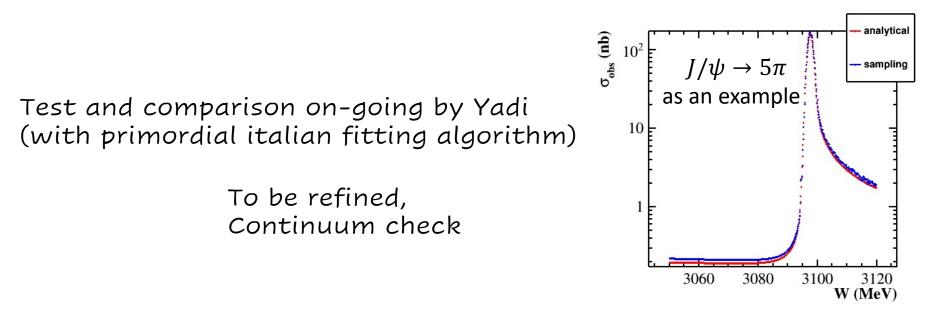
BR, σ_0 can be compared with literature

ITALIAN outputs: BR, phase, σ_0 (3000 MeV), SE (fixed for J/psi)

USTC outputs: C, S, phase, SE \rightarrow BR from parameters variation

IHEP outputs: X, Y, phase, SE

YADI outputs: C, A, phase, SE

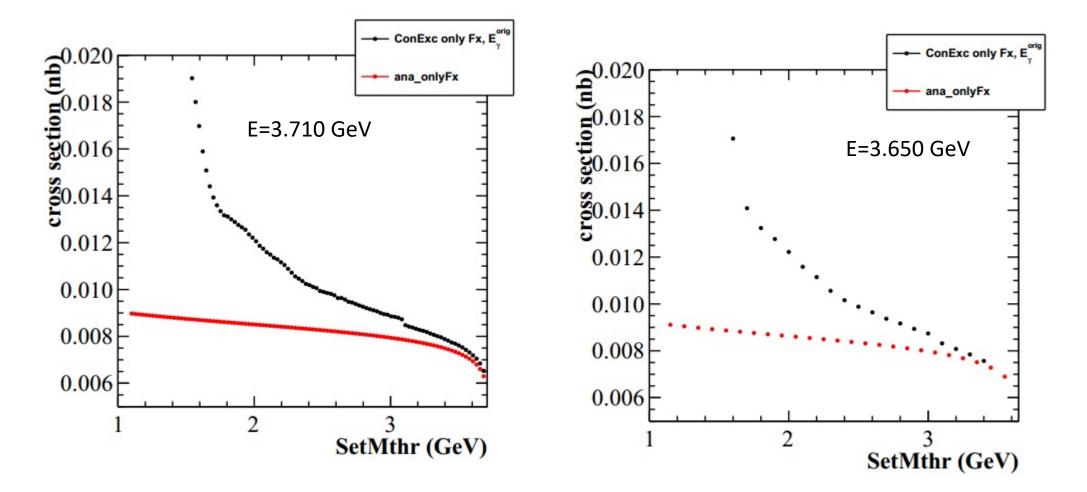

ITALIAN way

-past and preliminary pipijpsi - Monte-Carlo method It accounts for gaussian beam

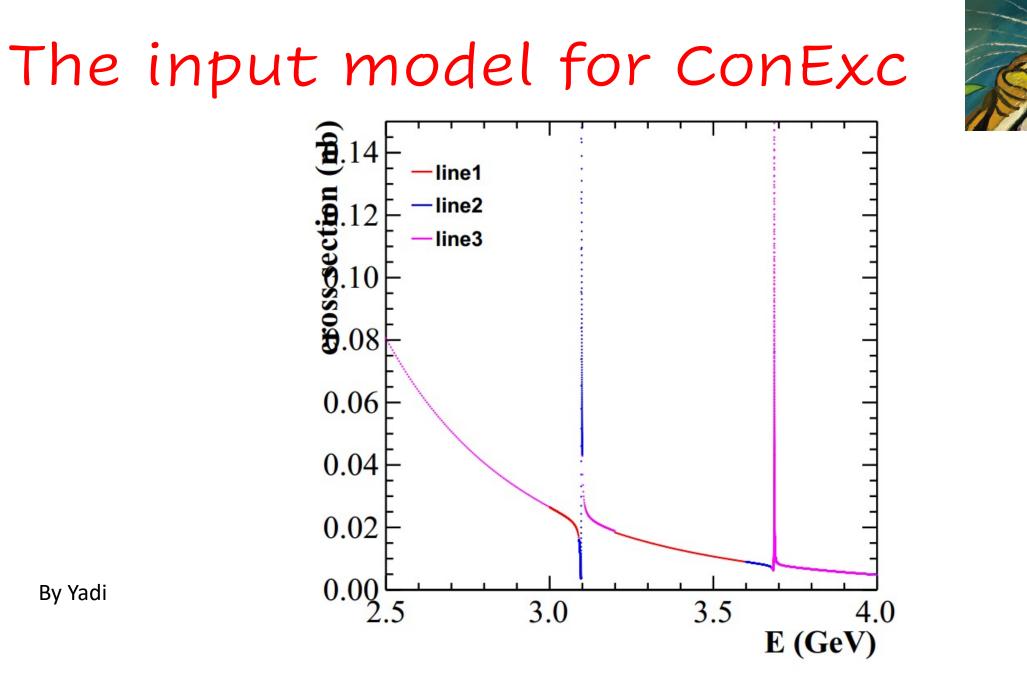
spread (0.93 MeV) and ISR with max radiation 100 MeV

-more recent \rightarrow BabaYaga as generator for ISR and BES \rightarrow sampling

PWW-power low estimated (but in the energy range may not be crucial)

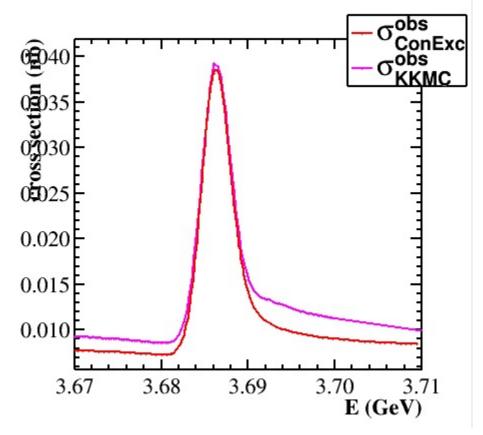

ISR/VP with ConExc and analytical fitting program

```
#include "$OFFLINEEVENTLOOPMGRROOT/share/OfflineEventLoopMgr Option.txt"
       Composition hotision
                                                               ConExc without VP
                                                               #include "$BESEVTGENROOT/share/BesEvtGen.txt"
                                                               EvtDecay.userDecayTableName = "kk.dec";
   0.045
                                              ConExc with VP
cross section (nb)
                                                               EvtDecay ParentParticle = "vnho".
                                                               EvtDecay.SetMthrForConExc = 1.7;
                                             analytical
   0.040
                                                               ApplicationMgr.DLLs += { "BesServices"};
                                                               0.035
                                                               BesRndmGenSvc.RndmSeed = 1000;
                  KK
                                                               0.030
                                                               //#include "$BESSIMROOT/share/G4Svc BesSim.txt"
                                                               ////configure for calibration constants
   0.025
                                                               //#include "$CALIBSVCROOT/share/calibConfig_sim.txt"
                                                               // run ID
   0.020
                                                               RealizationSvc.RunIdList = {55375,0,55461};
                                                               // OUTPUT PRINTOUT LEVEL
                                                               // Set output level threshold (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL )
   0.015
                                                               MessageSvc.OutputLevel = 6;
                                                               // Number of events to be processed (default is 10)
   0.010
                                                               ApplicationMgr.EvtMax = 100000;
                                                               //#include "$ROOTIOROOT/share/jobOptions Digi2Root.txt"
   0.005
                                                               //RootCnvSvc.digiRootOutputFile = "kk_10.rtraw";
                                                      3.70
                       3.68
                                       3.69
        3.67
                                              W (GeV)
```


By YAdi The VP from Berends is used currently, maybe substituted by the VP from Jegerlehner Deep understanding of the different ISR dealing method is needed vadi

By yadi

Difference ConExc and analytical


Going to threshold for generation in Conexc close to the resonance (\rightarrow 3.3 GeV) \rightarrow differences acceptable (around 6%)

Comparison between ConExc and KKMC

• There is a discrepancy between, the reason is under hunting.

By Yadi

Phase masurements ghosts

Branching Ratio:

FROM CLEO-c (2.86+-0.21) X10⁻⁴ ($\psi(2S) \rightarrow J/\psi\pi\pi$.. interference free) FROM BABAR(PRD92,072008 (2015)) BR=3.50+-0.20+-0.12 X10⁻⁴ (with interference correction \rightarrow 3.36 is measured) BR=3.22+-0.20+-0.12 X10⁻⁴

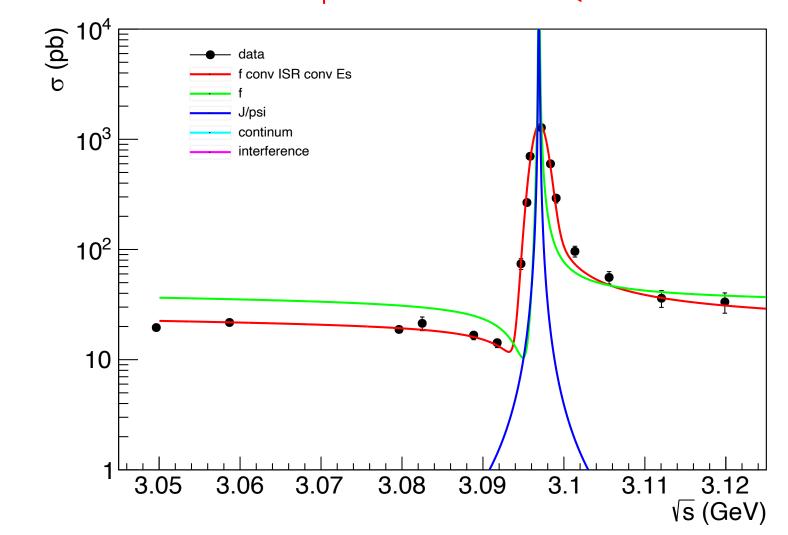
First attempt with USTC code

- I tried to understand it
- First Fit with their parametrization → BR is not from fit (sampling the parameters)
- I modified the parametrization (sigma(3.0 GeV), phase, BR) And other little errors
- Second attempt to fit

Redo sigma0antisigma0 (probably)

c_s = 790.254 +/- 12.6799 phi_s = 83.9544 +/- 11.5485 c_cn = 1169.6 +/- 87.7741 it is not the amplitude, from algorithm spread = 0.000955622 +/- 3.11048e-05 790.254, 83.9544, 1169.6, number of points is 15

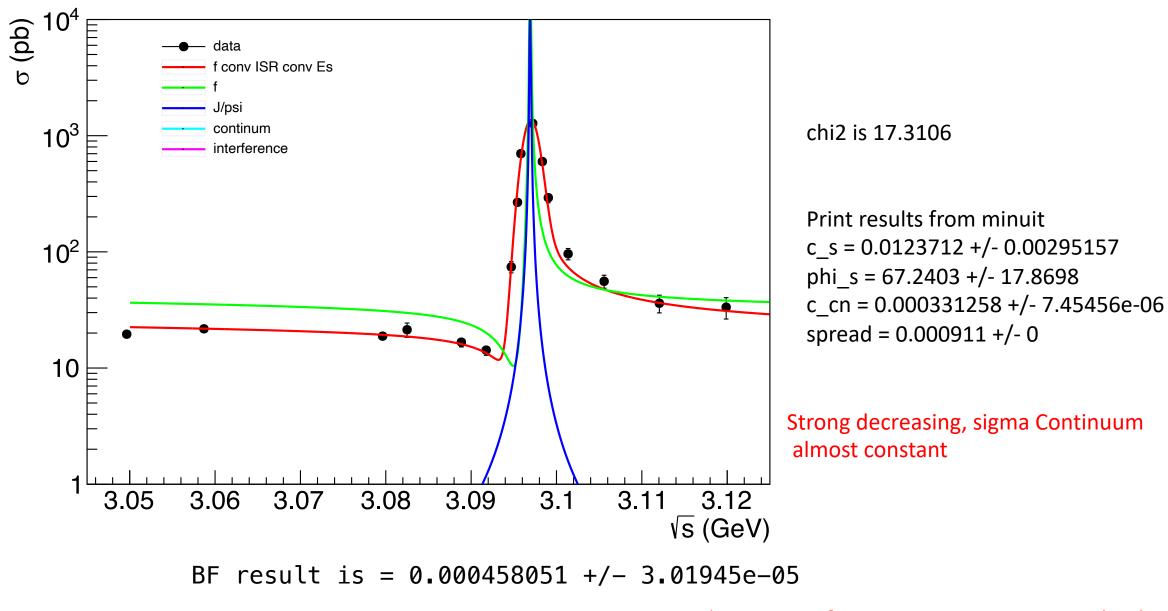
BF result is = 0.00160889 + - 5.22237e - 05




```
// Calculate Prob of Egaama at x[0]
// unit MeV, prob not normalized
double ProbISR(double *x, double *par) {
    double Ecm = par[0];
    double kk = x[0];//yadi aveva la frazione Egamma/Eecm
```

```
double Ee = Ecm/2.0;
double beta = Beta(Ee);
double k=k/Ee;
double pk = beta*pow(k,beta-1);
```

return pk/Ee*0.5;}

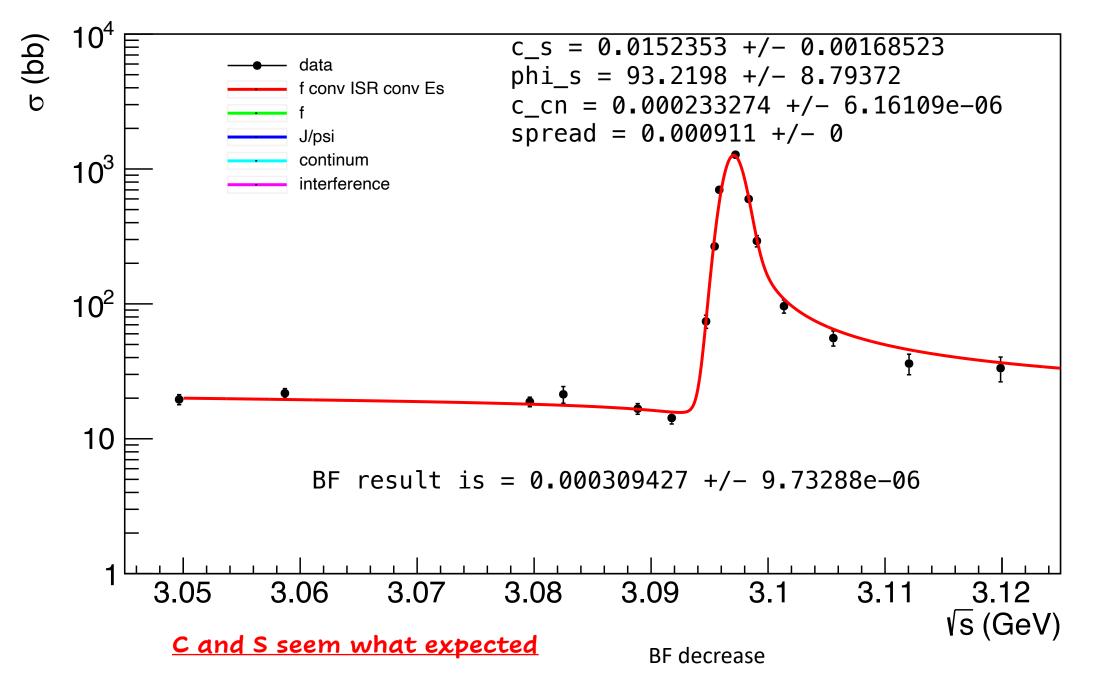

USTC FIT with their parametrization (for our KK channel in psi scan)

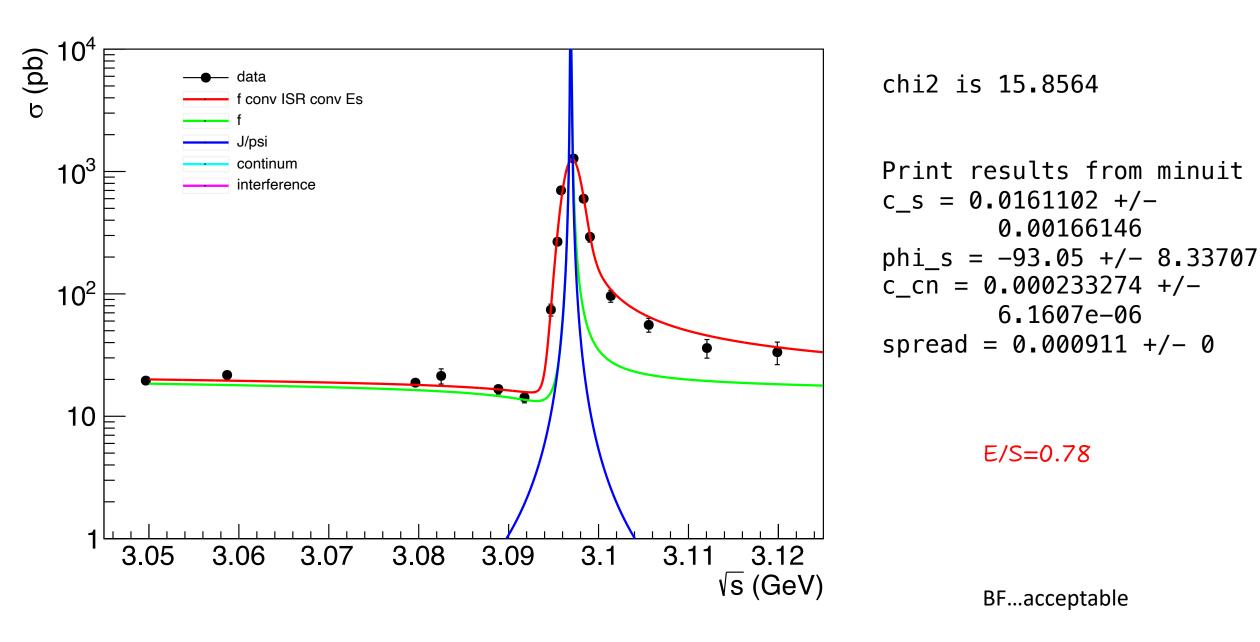
Strong = 0.0135322 +/- 0.00305914 phi_s = -69.3123 +/- 15.8484 c_cn = 0.00033125 +/- 7.44956e-06 spread = 0.000911 +/- 0

Fixed SE from Physics Letters B 791 (2019) 375–384

BF result is = 0.000492999 +/- 2.74871e-05

Very large BF from parameters variation

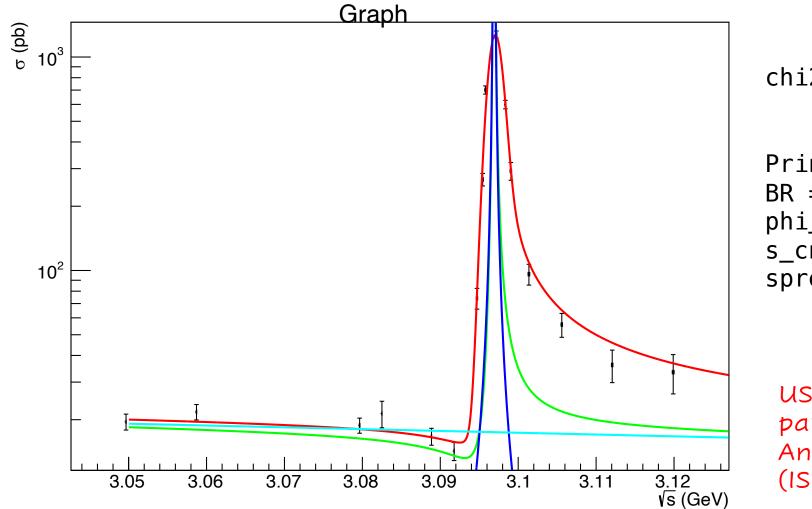



Modified prob ISR

ISR treatment

$$\begin{split} F(x,s) &= x^{\beta-1}\beta \cdot (1+\delta) + x^{\beta}(-\beta - \frac{\beta^2}{4}) + x^{\beta+1}(\frac{\beta}{2} - \frac{3}{8}\beta^2) + \mathcal{O}(x^{\beta+2}\beta^2) \\ \text{ISR2} \qquad \delta &= \frac{3}{4}\beta + \frac{\alpha}{\pi}(\frac{\pi^2}{3} - \frac{1}{2}) + \beta^2(\frac{9}{32} - \frac{\pi^2}{12}) \qquad \beta = \frac{2\alpha}{\pi}(\ln\frac{s}{m_e^2} - 1) \end{split}$$

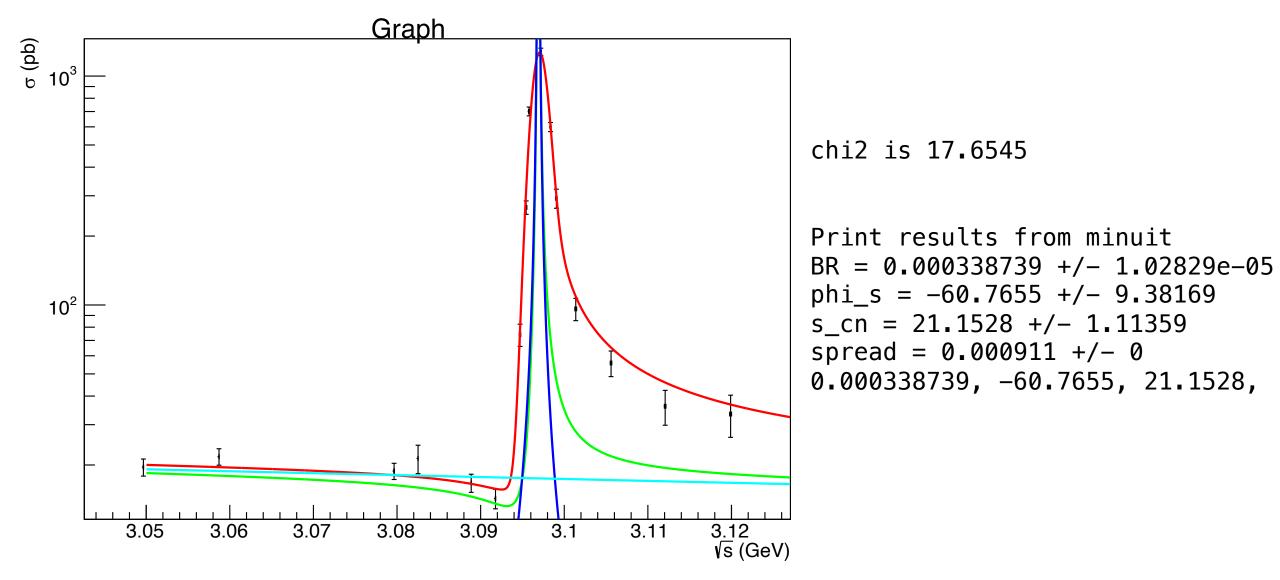
chi2 is 15.8564


BF result is = 0.000338066 + / - 1.05392e - 05


```
double xs_sqreb(double *x, double *par)
```

```
double s = pow(x[0],2); // x[0]: Ecm
double m2 = pow(jpsipar[0],2); // par[0]: mass of resonance
double BR=par[0];
```

```
if(Strong==0) return 0;
TComplex br = ((Strong*TComplex(cos(phi),sin(phi))+Em))/TComplex(jpsipar[0]-x[0],-width0/2);
TComplex M = D*br - Continum;
```



chi2 is 17.6545/(16-3)

```
Print results from minuit
BR = 0.000311388 +/- 9.57757e-06
phi_s = 59.3715 +/- 9.81403
s_cn = 21.1526 +/- 1.11367
spread = 0.000911 +/- 0
```

USTC base program with our parametrization And other modifications (ISR treatment in primis)

Not too bad, PHASE NOT 90

Negative phase

My old results (in my memo ready)

My

$\chi^2 { m def}$	Data Points	phase angle range	$B_{out} \times 10^{-4}$	ϕ	$\sigma_c(pb)$	χ^2/NDF
1	16	pos and neg	$3.40{\pm}0.08$	(-94.2±6.9)°	$23.9{\pm}1.2$	2.24
1	16	pos	$3.130{\pm}0.08$	94.5±7.4	$23.9{\pm}1.2$	2.24
1	16	neg	$3.40.0 \pm 0.08$	-94.2±6.9	$23.9{\pm}1.2$	2.24
1	15 (except 9th)	pos and neg	3.22±0.09	(-88.6±8.4)°	$24.8{\pm}~1.3$	0.44
1	15 (except 9th)	pos	2.98 ± 0.08	88.4±9.1	$24.8{\pm}1.3$	0.44
1	15 (except 9th)	neg	$3.22\pm\!0.09$	-88.6 ± 8.5	$24.8{\pm}~1.3$	0.44
1	14 (except 8th and 9th)	neg	$3.22\pm\!0.09$	-88.2±8.9	$24.8{\pm}~1.3$	0.5
2	16	pos and neg	$3.47{\pm}0.14$	(-83.6±9.7)°	$25.3{\pm}~1.3$	0.79
2	16	pos	$3.220{\pm}0.13$	83.6±9.9	$25.3{\pm}1.3$	0.79
2	16	neg	$3.470{\pm}0.14$	-83.6±9.9	$25.3{\pm}~1.3$	0.79

Chi2 definition to be checked in USTC

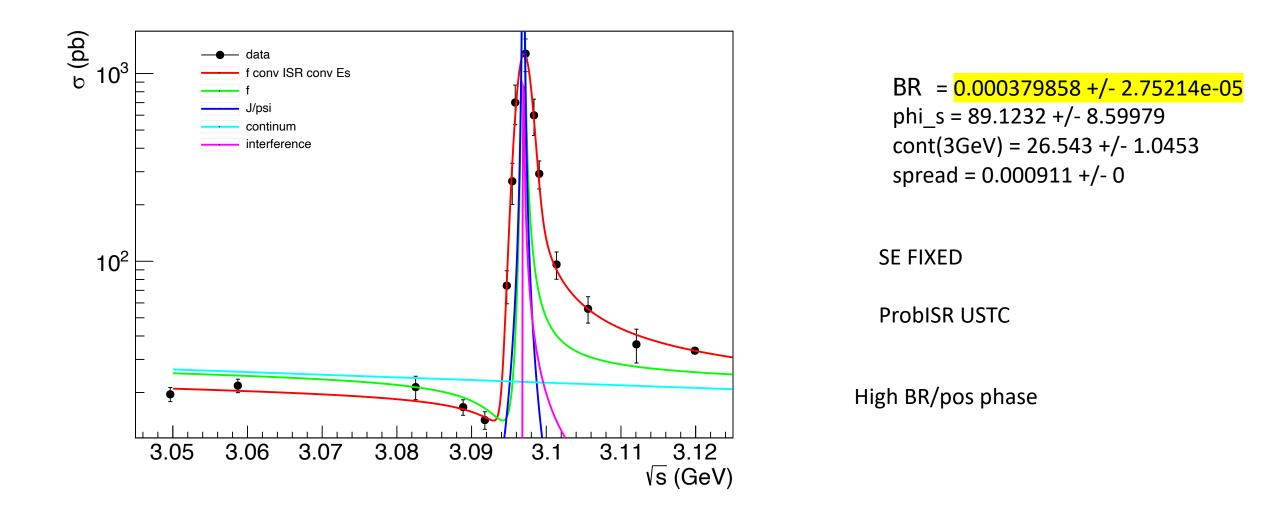
BR compatible/cont within 1 sigma To be investigated phase

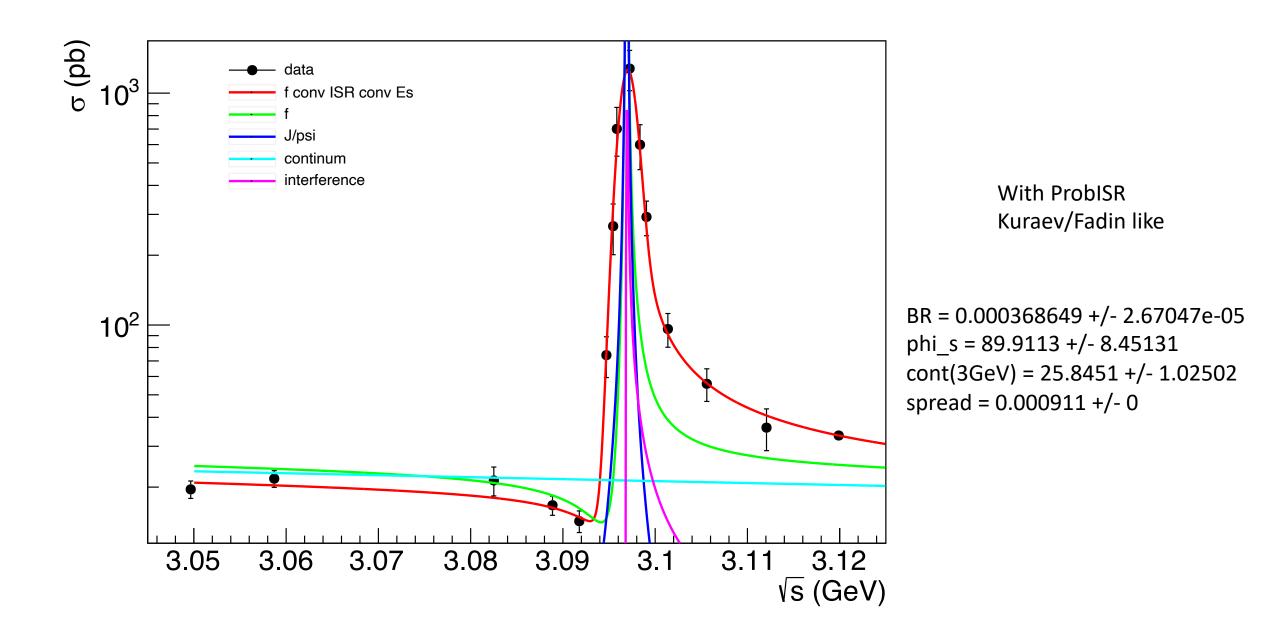
•Other checks

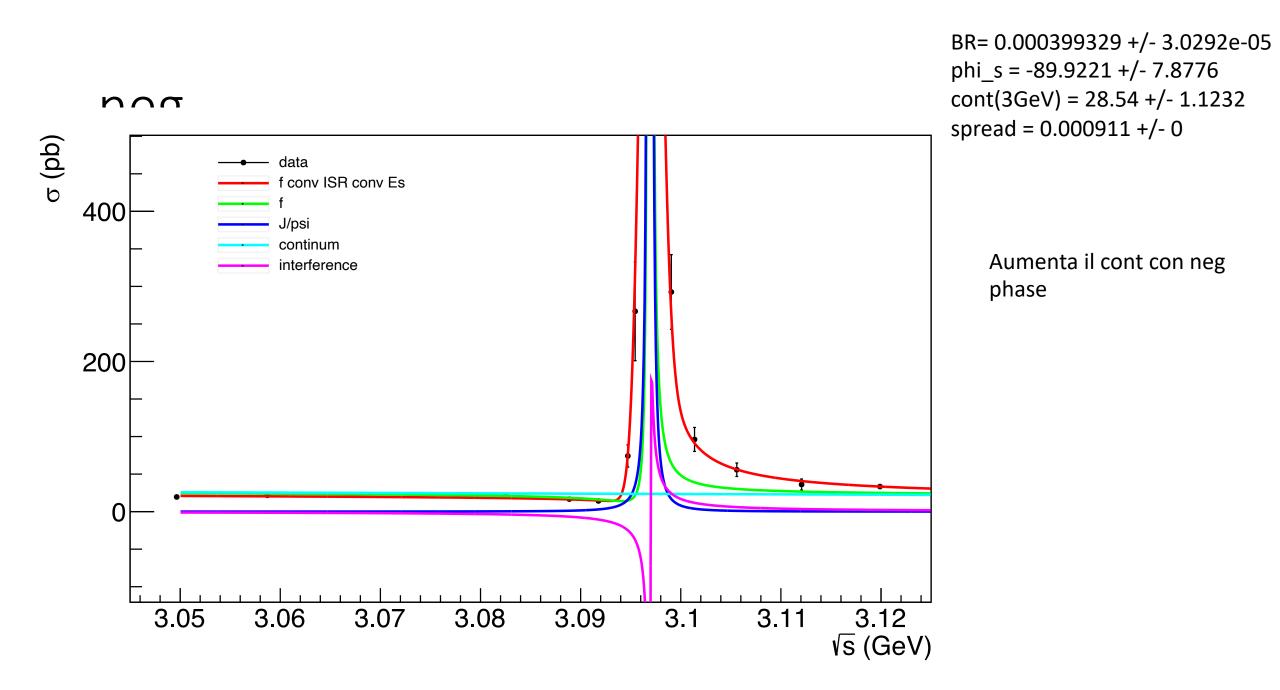
With SE=0.93

Changes about 0.006%-negligible

chi2 is 18.7846


Print results from minuit
BR = 0.000313751 +/- 9.69263e-06
phi_s = 58.7697 +/- 9.86675
s_cn = 21.239 +/- 1.11877
spread = 0.00093 +/- 0


Integral for energy spread from 5*SE to 20*SE (Yadi)


BR = 0.000313772 +/- 9.69324e-06
phi_s = 58.7705 +/- 9.86649
s_cn = 21.2393 +/- 1.1188
spread = 0.00093 +/- 0

negligible

Last attempt on Thursay (last version Muzzafar with our parametrization (from Marco's memo))

Conclusions and outlook

- <u>Disclaimer</u>: Checks have be done quickly (one week almost)
- I DECIDED to resume K+K- analysis
- It will be useful, anyway! Giulio cannot use our nominal method (BB not available)→our old algorithm till now !!
- Test useful to understand problems in USTC analysis.. (HIGH BF's first!!)
- Phase problem with our parametrization→ the error will be found ;-)
- Fitting seem in any case to be good...different outputs.. <u>Careful checks needed</u>.

The XS digged up..should be recalculated \rightarrow most of the work needed by the fitting algorithm.

It will be fun!!!!