Search for the Z_c(4430) (in Y(4660) decay)

Marco Scodeggio

Dipartimento di Fisica e Scienze della Terra

Preamble

What and Why

Study of two exotic states through the chain

 $\begin{array}{c} e^+e^- \rightarrow (Y(4660) \rightarrow) \, Z_c(4430) \, \pi \rightarrow \psi(2S) \, \pi \, \pi \rightarrow \\ J/\psi \, \pi \, \pi \, \pi \, \pi \rightarrow 2\ell \, 4\pi \end{array}$

Z⁺_c(4430) was **observed** and studied in the B meson decays in the πψ(2S) invariant mass **by BELLE** [PRD **88**, 074026] (and by LHCb [PRL **112**, 222002])

Y(4660), already observed by BaBar [PRD 89, 111103(R)] and BELLE [PRD 91, 112007], was hypothesised to be a baryonium

How

The study will make use of the **~5 fb-1** data $@\sqrt{s} > 4.6 \text{ GeV}$

No Z⁺_c(4430) signal was observed in the monoenergetic datasets, so the main idea is to merge all the data

 $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

2

Signal MC Studies Y and Z_c Resonant

noPhotos	_
<pre>Decay dummy00_1 0.5000 dummy10_1 pi- PHSP; 0.5000 anti-dummy10_1 pi+ PHSP; Enddecay</pre>	N
<pre>Decay dummy10_1 1.0000 pi+ psi(2S) PHSP; Enddecay</pre>	
Decay anti-dummy10_1 1.0000 pi- psi(2S) PHSP; Enddecay	
Decay psi(2S) 1.0000 pi+ pi- J/psi PHSP; Enddecay	
Decay J/psi 0.5000 e+ e- PHSP; 0.5000 mu+ mu- PHSP; Enddecay	
End	

Y(4660) $I_{\rm Y} = 4633 \pm 7 \, {\rm MeV}$ $\sigma_{\rm Y}$ = 64 ± 9 MeV $Z_{c}(4430)$ $M_{\rm Y} = 4478^{+15}_{-18} \, {\rm MeV}$ $\sigma_{\rm Y} = 181 \pm 31 \, {\rm MeV}$

Signal MC sample 300k events

(Signal) MC Studies Non-resonant Continuum

noPhotos

Decay dummy00_1
 1 5000 dummy10_1 pi- PHSP;
 0.5000 anti-dummy10_1 pi+ PHSP;
Enddecay
Decay dummy10.
 1.0000 pi+ psi(2S) PHSP;
Enddecay

```
Decay anti-dummy10_1
1 0000 pi- psi(2S) PHSP;
Enddecay
```

```
Decay psi(2S)
    1.0000 pi+ pi- J/psi PHSP;
Enddecay
```

```
Decay J/psi
0.5000 e+ e- PHSP;
0.5000 mu+ mu- PHSP;
Enddecay
```

End

MC samples 300k events

```
Particle vpho 4.633 0
Decay vpho
  1.0000 pi+ pi- psi(2S) PHSP;
Enddecay
Decay psi(2S)
  1.0000 pi+ pi- J/psi PHSP;
Enddecay
Decay J/psi
  0.5000 e+ e- PHSP;
  0.5000 \text{ mu} + \text{mu} - \text{PHSP};
Enddecay
End
```

noPhotos

Search for the $Z_c(4430)$ in Y(4660) decay - M. Scodeggio

Charged Tracks

Search for the $Z_c(4430)$ in Y(4660) decay - M. Scodeggio

Continuum vs Resonant Comparison

Continuum vs Resonant Comparison

Search for the $Z_c(4430)$ in Y(4660) decay - M. Scodeggio

Signal MC Studies **Event Selection (1)**

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies **Event Selection (1)**

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies **Event Selection (1)**

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

11

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies **Event Selection (1)** Event/10MeV 30000 25000 20000 μ е 15000 10000 5000 0 L 0 0.4 0.8 0.2 0.6 1.2 1.4 1.6 1.8 2 E/p 2 topologies $2\ell 3\pi$ $2\ell 4\pi$

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies **Event Selection (1)**

 $2\ell 3\pi$

 $2\ell 4\pi$

Topology dependent KALMAN Fits

5C Kalman fit

4C on the $p_{Tot} = (0.051, 0, 0, M_{Y(4660)})$ 1C on the $M_{\psi(2S)}$

The $\pi\pi$ couples are selected via the best chi2

Search for the Z_c(4430) in Y(4660) decay - M. Scodeggio

Signal MC Studies **Event Selection (2)**

$2\ell 3\pi$

2C Kalman fit

1C on the $M_{J/\psi}$ 1C on the **ptot**

 π_{Miss} can come either from the Zc- $\psi(2S)$ system (i.e. Y(4660) decay) or from the $\psi(2S)$ decay

The $\pi\pi$ and $\pi\pi_{Miss}$ couples are selected by minimising the $M^{Reco}_{\psi(2S)}$ - $M^{PDG}_{\psi(2S)}$ difference

Topology dependent KALMAN Fits

5C Kalman fit

4C on the $p_{Tot} = (0.051, 0, 0, M_{Y(4660)})$ 1C on the $M_{\psi(2S)}$

The $\pi\pi$ couples are selected via the best chi2

Search for the $Z_c(4430)$ in Y(4660) decay - M. Scodeggio

Signal MC Studies **Event Selection (2)**

$2\ell 4\pi$

ERROR 1.95290e+01	STEP SIZE 2.30776e-01	FIRST DERIVATIVE 4.54423e-05
1.35545e-04 1.18192e-04	2.21035e-06 1.44009e-05	7.44838e+00 6.64915e-01
		Reconstructed total invariant mass The distribution follows a gaussian shape
∟∟⊥⊥⊥ 4.85 M(√ s) (0	4.9 GeV/ <i>c</i> ²)	

Reconstructed Z_c resonance invariant mass

Reconstructed Z_c resonance invariant mass

Signal MC Studies Event Selection (2)

Topology dependent KALMAN Fits

$2\ell 3\pi$

2C Kalman fit

1C on the $M_{J/\psi}$ 1C on the $|\mathbf{p_{Tot}}|$

 π_{Miss} can come either from the Zc- ψ (2S) system (i.e. Y(4660) decay) or from the ψ (2S) decay

The $\pi\pi$ and $\pi\pi_{Miss}$ couples are selected by minimising the $M^{Reco}_{\psi(2S)}$ - $M^{PDG}_{\psi(2S)}$ difference

Reconstructed total invariant mass

A peculiar feature at low energies and a long tail at high momenta were found

Signal MC Studies 2ℓ3π

Reconstructed Z_c resonance invariant mass

Summary

- A search for the Z_c(4430) state via the Y(4660) decay was started
- Aim of the analysis is to confirm BELLE's findings and to investigate a possible connection **between** the **Z**_c(4430) **and Y**(4660) states
 - The analysis will use the ~5 fb⁻¹ data $@\sqrt{s} > 4.6$ GeV
 - The event and topology selection can be considered finalised
 - **Off-peak datasets** (e.g. $\sqrt{s} = 4.6/4.7$ GeV) are **under study**
 - Now one can move towards the **background studies**

Thanks for your attention!

