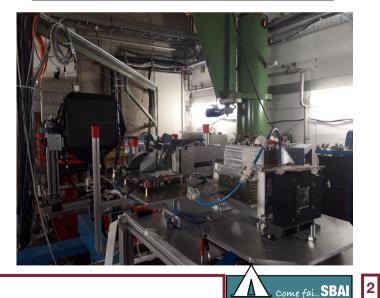


1

Cross section measurement of ${}^{16}O + C$ from 2019 GSI data taking

XI Foot General Meeting

Angelica De Gregorio, Marco Toppi 29/11/2021


Angelica De Gregorio

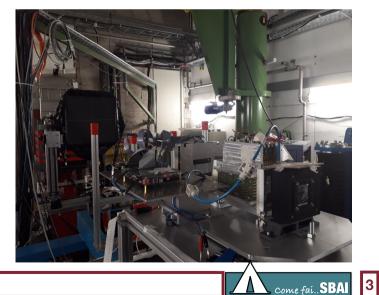
Steps for cross sections measurement

^{16}O beam @ 400 MeV/u on a 5 mm C target

Very low statistics and no detectors for mass identification

Run	Type	Target	Events
2210	$\operatorname{calibration}$	no	20463
2211	calibration	no	62782
2212	$\operatorname{calibration}$	no	116349
2242	calibration	no	202728
2239	physics	\mathbf{C}	20821
2240	physics	\mathbf{C}	20004
2241	physics	\mathbf{C}	20041
2251	physics	\mathbf{C}	6863

Angelica De Gregorio


Steps for cross sections measurement

^{16}O beam @ 400 MeV/u on a 5 mm C target

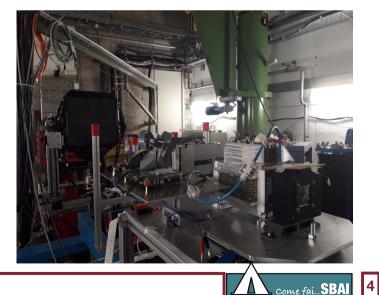
Cross section integrated in angular and kinetic energy interval is feasible

$$\sigma(Z) = \int_{E_{min}}^{E_{max}} \int_{0}^{\Delta \theta} \left(\frac{\partial^2 \sigma}{\partial \theta \partial E_{kin}} d\theta dE_{kin} \right) = \frac{N_{frag}(Z)}{N_{prim} \cdot N_{TG} \cdot \epsilon(Z)}$$

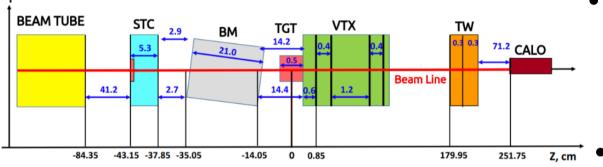
Run	Type	Target	Events
2210	calibration	no	20463
2211	calibration	no	62782
2212	$\operatorname{calibration}$	no	116349
2242	calibration	no	202728
2239	physics	\mathbf{C}	20821
2240	physics	\mathbf{C}	20004
2241	physics	\mathbf{C}	20041
2251	physics	\mathbf{C}	6863

Angelica De Gregorio

Steps for cross sections measurement


^{16}O beam @ 400 MeV/u on a 5 mm C target

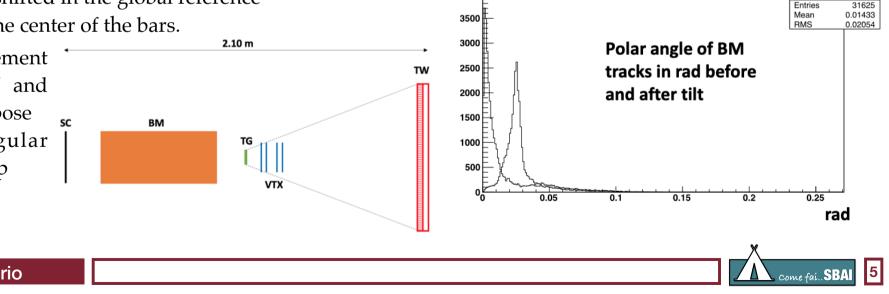
Cross section integrated in angular and kinetic energy interval is feasible


$$\sigma(Z) = \int_{E_{min}}^{E_{max}} \int_{0}^{\Delta \theta} \left(\frac{\partial^2 \sigma}{\partial \theta \partial E_{kin}} d\theta dE_{kin} \right) = \frac{N_{frag}(Z)}{N_{prim} \cdot N_{TG} \cdot \epsilon(Z)}$$

- Align FOOT detectors at GSI and select **angular acceptance** for cross section integration;
- •Extract the **fragments yields** from Charge Identification and Clustering algorithms;
- Compute **MC efficiencies** for each fragment;
- Estimate **fragmentation out of target** for background subtraction;
- Systematics studies.

Run	Type	Target	Events
2210	$\operatorname{calibration}$	no	20463
2211	calibration	no	62782
2212	$\operatorname{calibration}$	no	116349
2242	calibration	no	202728
2239	physics	\mathbf{C}	20821
2240	physics	\mathbf{C}	20004
2241	physics	\mathbf{C}	20041
2251	physics	\mathbf{C}	6863

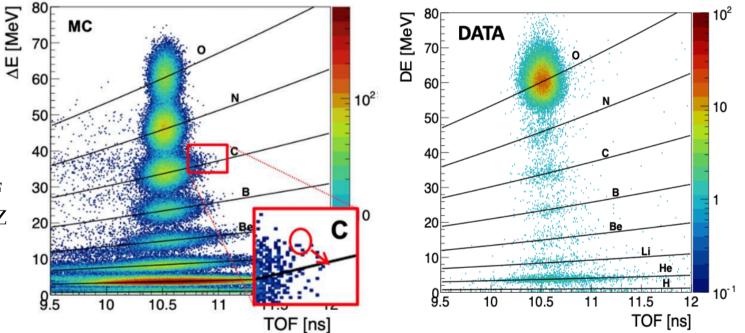
Beam and Beam Monitor at GSI


• The TW detector was shifted in the global reference frame to irradiate at the center of the bars.

This relative displacement between TG and TW and the beam structure impose a limit on the angular acceptance of the set-up

$$\Delta \theta = 5.7$$
 °

Angelica De Gregorio

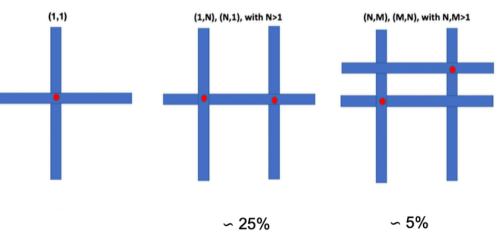

- To correctly measure the angles of the emitted tracks and estimate the angular acceptance the detectors must be properly aligned taking into account small shifts and rotations with respect to the global FOOT reference.
- To align BM and TW, the projection of the traces of the BM on the TG and TW planes was exploited.

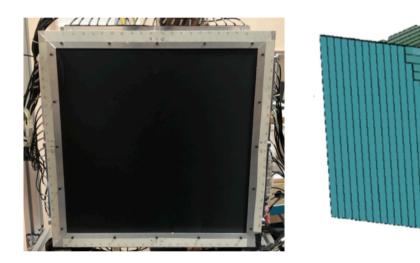
Charge identification algorithm (ZID)

For each TW hit (Eloss, ToF) the ZID algorithm assigns a fragment charge Z

- For each region (and so for each charge) the distribution was fitted with Bethe-Bloch formula.
- Plotting the TW hits on an ΔE vs TOF plain, we can assign to each one the Z corresponding to the closest Bethe-Bloch curve.

Angelica De Gregorio

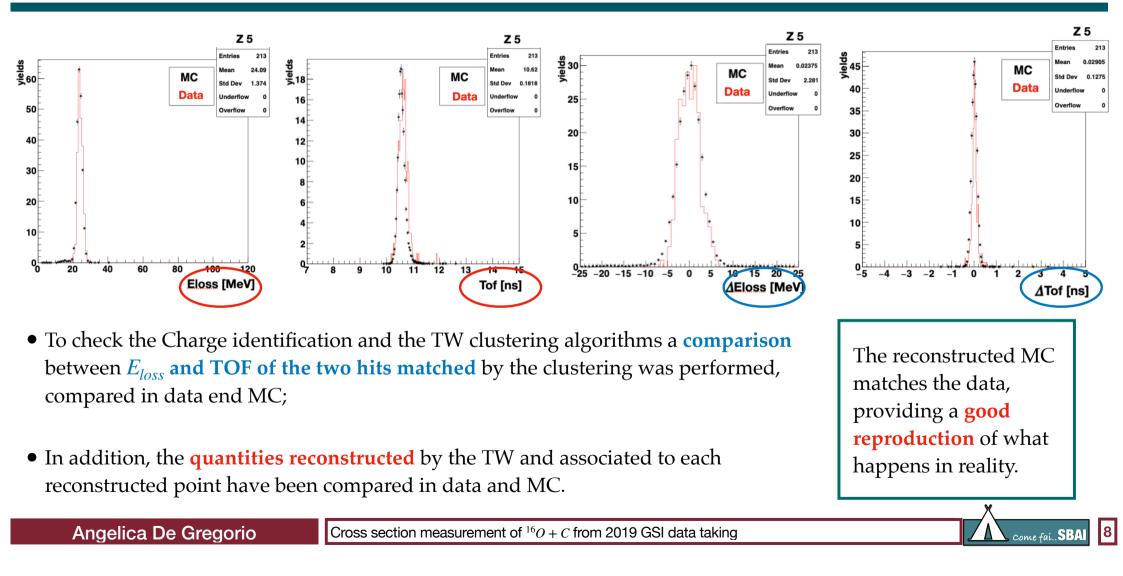

Cross section measurement of ${}^{16}O + C$ from 2019 GSI data taking


e fai..SBAI 6

TW clustering algorithm

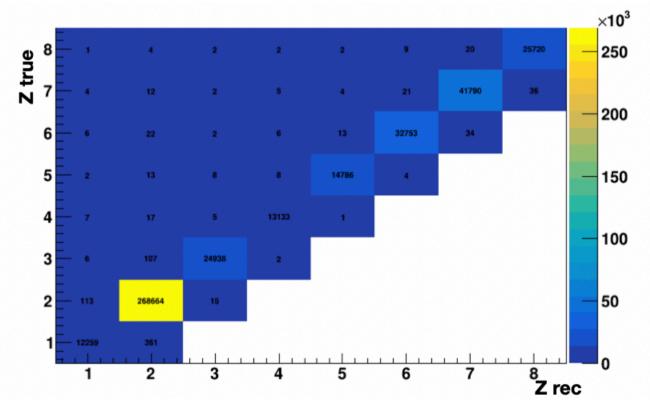
To reconstruct a fragment track impinging on the detector, the front and rear TW hits have to be clusterized.

• The clustering algorithm has the task of **joining pairs of hits released in the two layers** corresponding to the same fragment in a unique TW point.



• The clustering algorithm drives the TW point reconstruction, dynamically, with the **hits from the TW layer with the higher occupancy**, in a given event in order to disentangle from multi hit in the same bar.

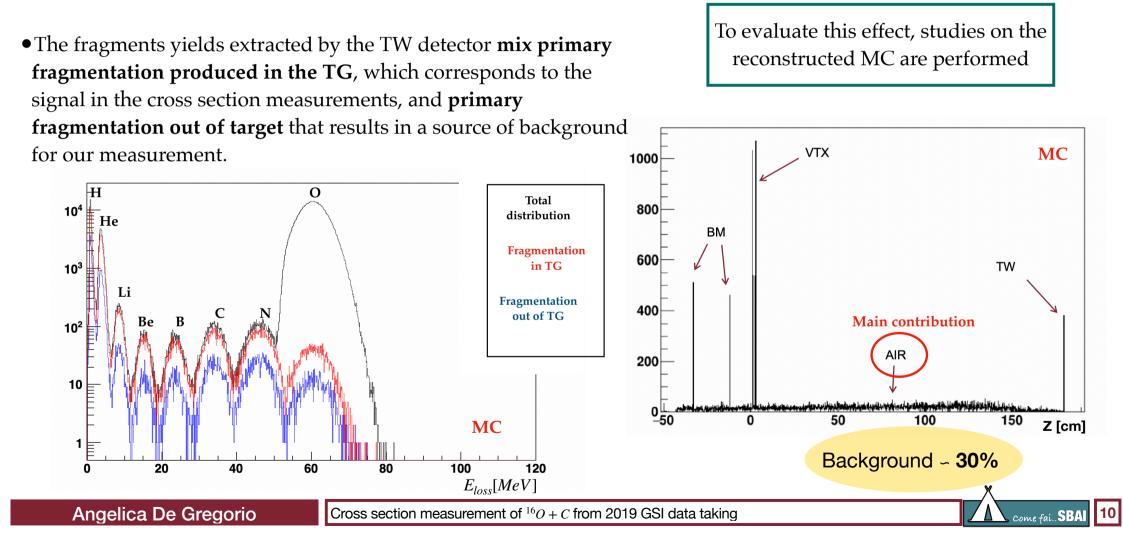
Angelica De Gregorio



Fragments identification with TW

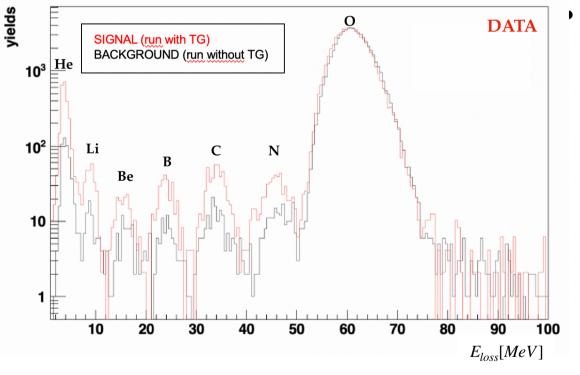
TW algorithm performances

It is possible to correlate in a charge mixing matrix (CMM) the reconstructed charge to the real one (for MC truth).



- The CMM is useful to observe when the charge identification algorithm assigns a fragment to a wrong Z.
- It's almost **perfectly diagonal**: some charge mixed events in the region above the diagonal.
- This is a good confirmation that the charge identification and the clustering algorithms are able to identify efficiently the different Z fragment populations.

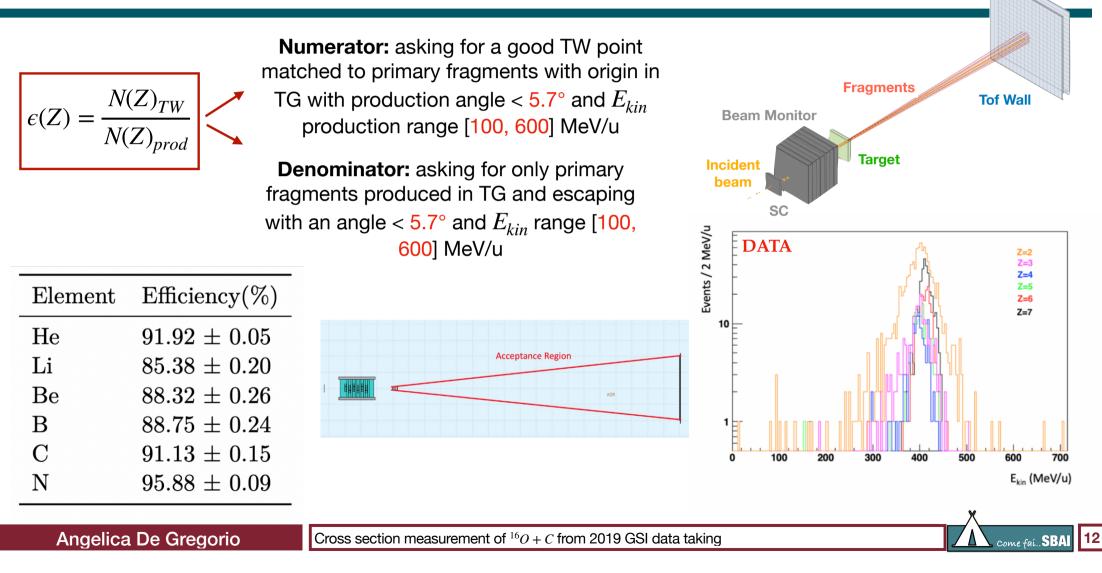
Angelica De Gregorio

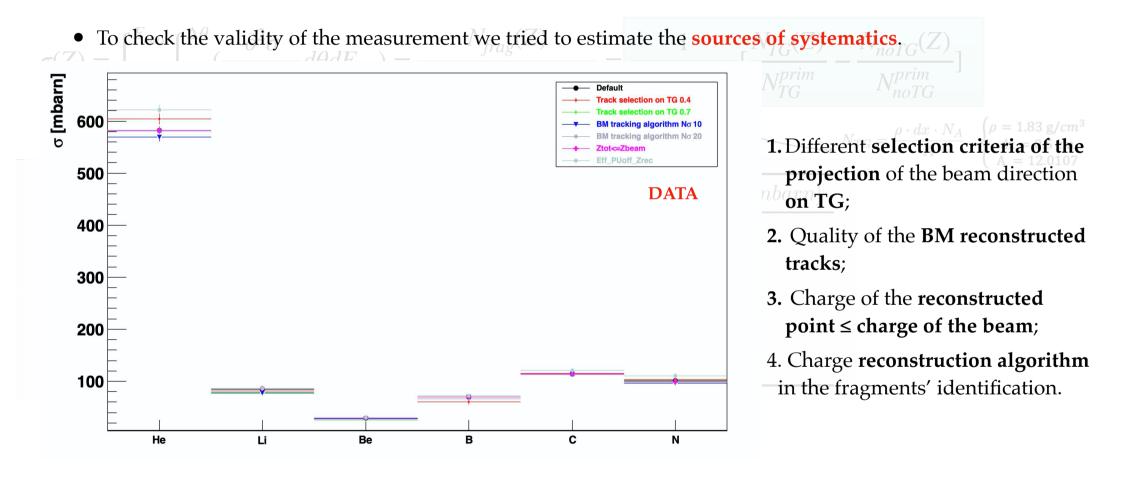


Background subtraction

Yields extraction

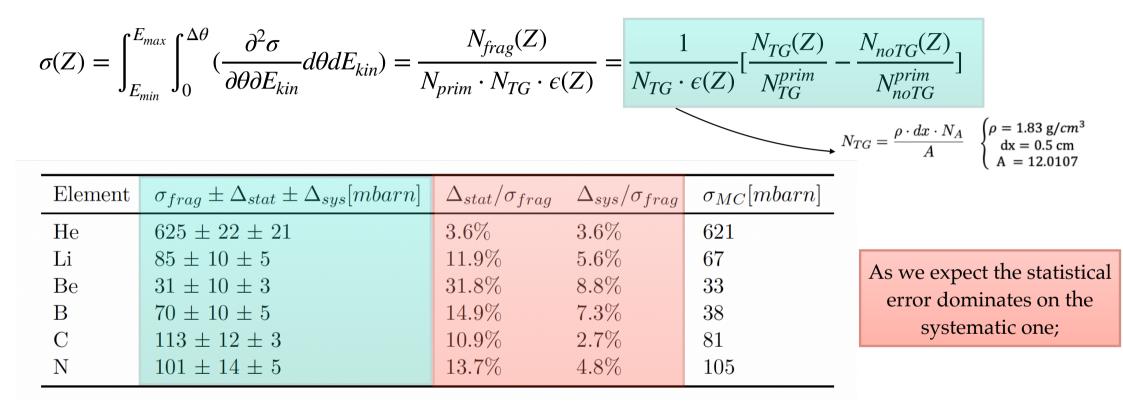
• The **count of primary ions** of the beam interacting with the target is provided by the **Start Counter** (with a minimum bias trigger implemented as the majority of 4 channels of the detector).

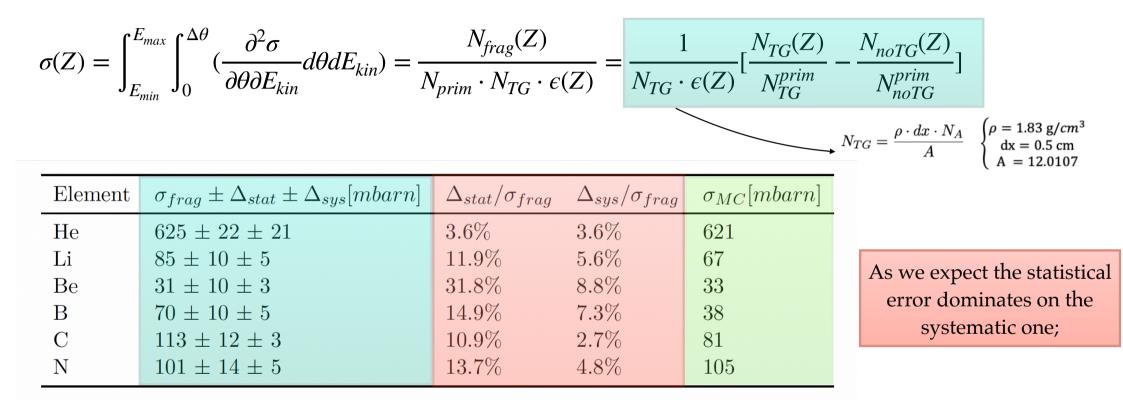

 Requiring events with single tracks in BM with projection on the target within [-1,1] cm and θ < 5.7° for all the emitted fragments we got the total number of primaries selected for the cross section measurement.


Elemen	t $Yields_{signal}$	$(Yields_{bkg})$
N_{prim}	31660	61516
He	484 ± 22	1087 ± 33
Li	89 ± 9	152 ± 12
Be	73 ± 9	77 ± 9
В	88 ± 9	136 ± 12
С	156 ± 13	231 ± 16
Ν	207 ± 14	248 ± 16

come fai..SBA

Angelica De Gregorio


Reconstructed efficiencies



Cross section measurement of ${}^{16}O + C$ from 2019 GSI data taking

$\sigma(Z) = \int_{E_{min}}^{E_{max}} \int_{0}^{\Delta \theta} \left(\frac{\partial^2 \sigma}{\partial \theta \partial E_{kin}} d\theta dE_{kin} \right) = \frac{N_{frag}(Z)}{N_{prim} \cdot N_{TG} \cdot \epsilon(Z)} = \frac{1}{N_{TG} \cdot \epsilon(Z)} \left[\frac{N_{TG}(Z)}{N_{TG}^{prim}} - \frac{N_{noTG}(Z)}{N_{noTG}^{prim}} \right]$						
					$N_{TG} = \frac{\rho \cdot dx \cdot N_A}{A} \left\{ \begin{array}{c} \end{array} \right.$	$ ho = 1.83 \text{ g/cm}^3$ m dx = 0.5 cm m A = 12.0107
Element	$\sigma_{frag} \pm \Delta_{stat} \pm \Delta_{sys}[mbarn]$	$\Delta_{stat}/\sigma_{frag}$	$\Delta_{sys}/\sigma_{frag}$	$\sigma_{MC}[mbarn]$		
He	$625 \pm 22 \pm 21$	3.6%	3.6%	621		
Li	$85 \pm 10 \pm 5$	11.9%	5.6%	67		
Be	$31 \pm 10 \pm 3$	31.8%	8.8%	33		
В	$70 \pm 10 \pm 5$	14.9%	7.3%	38		
\mathbf{C}	$113 \pm 12 \pm 3$	10.9%	2.7%	81		
Ν	$101 \pm 14 \pm 5$	13.7%	4.8%	105	<u>.</u>	

There is also a good agreement with the cross sections calculated with the reconstructed MC

Angelica De Gregorio

Cross section measurement of ${}^{16}O + C$ from 2019 GSI data taking

We are going to publish!

Almost ready to be submitted to Jinst

Contents

1. Experimental setup

- Start Counter
- -Beam Monitor
- -Target and Vertex detector -TOF Wall
- 2. Data sample and MC simulation
 - -Geometrical setup
 - -GSI data taking trigger and event multiplicity -FLUKA simulation
- 3. Analysis strategy and results
 - -Event Reconstruction
 - Cross section calculation

PREPARED FOR SUBMISSION TO JINST

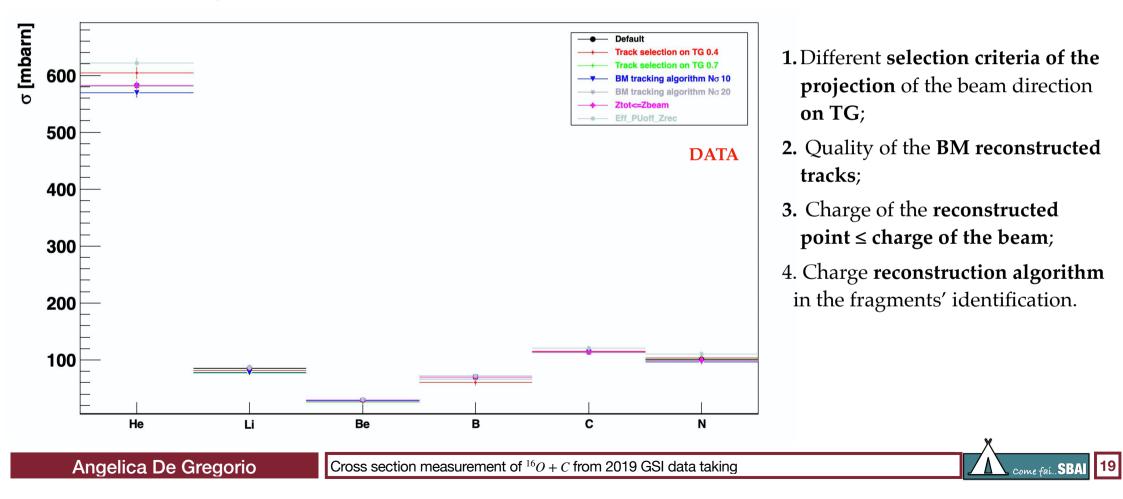
Charge changing cross sections measured by the FOOT collaboration using 400 MeV/u $^{16}{\rm O}$ ions impinging on a graphite target.

Alexandrov Andrev^{10,19,33,34} Alpat Behcet¹¹ Ambrosi Giovanni¹¹ Argirò Stefano^{28,17} Arteche Diaz Raul³⁰ Barbanera Mattia¹¹ Bartosik Nazar¹⁷ Battistoni Giuseppe⁸ Belcari Nicola^{2,1} Bellinzona Elettra¹⁵ Biondi Silvia^{4,20} Bisogni Maria Giuseppina^{2,1} Bruni Graziano⁴ Carra Pietro^{2,1} Cavanna Francesca¹⁷ Cerello Piergiorgio¹⁷ Ciarrocchi Esther^{2,1} Clozza Alberto⁷ Colombi Sofia^{15,16} De Gregorio Angelica¹ De Lellis Giovanni^{10,19} Del Guerra Alberto^{2,1} De Simoni Micol^{12,26} Di Crescenzo Antonia^{10,19} Di Ruzza Benedetto¹⁵ Donetti Marco^{17,5} Dong Yunsheng^{8,23} Durante Marco^{6,32} Ferrero Veronica¹⁷ Fiandrini Emanuele^{11,24} Finck Christian¹⁴ Fiorina Elisa¹⁷ Fischetti Marta^{12,22} Francesconi Marco^{2,1} Franchini Matteo^{4,20} Franciosini Gaia^{12,26} Galati Giuliana¹⁰ Galli Luca¹ Gentile Valerio³¹ Giraudo Giuseppe¹⁷ Hetzel Ronja³ larocci Enzo⁷ Ionica Maria¹¹ Kanxheri Keida¹¹ Kraan Aafke Christine¹ La Tessa Chiara^{15,16} Laurenza Martina⁷ Lauria Adele^{10,19} Lopez Torres Ernesto^{30,17} Marafini Michela^{12,21} Massa Maurizio¹ Massimi Cristian^{4,20} Mattei Ilaria⁸ Meneghetti Alessio⁵ Mengarelli Alberto⁴ Moggi Andrea¹ Montesi Maria Cristina^{10,19} Morone Maria Cristina^{13,27} Morrocchi Matteo^{1,2} Muraro Silvia⁸ Pastore Alessandra²⁹ Pastrone Nadia¹⁷ Patera Vincenzo^{12,22} Pennazio Francesco¹⁷ Placidi Pisana^{11,25} Pullia Marco⁵ Ramello Luciano^{18,17} Reidel Claire-Anne⁶ Ridolfi Riccardo^{4,20} Rosso Valeria^{2,1} Sanelli Claudio⁷ Sarti Alessio^{12,22} Sartorelli Gabriella^{4,20} Sato Osamu⁹ Savazzi Simone⁵ Scavarda Lorenzo^{28,17} Schiavi Angelo^{12,22} Schuy Christoph⁶ Scifoni Emanuele¹⁵ Sciubba Adalberto^{7,22} Sécher Alexandre¹⁴ Selvi Marco⁴ Servoli Leonello¹¹ Silvestre Gianluigi^{11,24} Sitta Mario^{18,17} Spighi Roberto⁴ Spiriti Eleuterio⁷ Sportelli Giancarlo^{2,1} Stahl Achim³ Tomassini Sandro⁷ Tommasino Francesco^{15,16} Toppi Marco^{7,22} Traini Giacomo^{12,26} Valeri Tioukov¹⁰ Valle Serena Marta⁸ Vanstalle Marie¹⁴ Villa Mauro^{4,20} Weber Ulrich⁶ Zarrella Roberto^{4,20} Zoccoli Antonio^{4,20}

⁵Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
 ¹Jstituto Nazionale di Fisica Nucleare (INFN), Section of Pisa, Pisa, Italy
 ²University of Pisa, Department of Physics, Pisa, Italy
 ³RWTH Aachen University, Physics Institute III B, Aachen, Germany
 ⁴Istituto Nazionale di Fisica Nucleare (INFN), Section of Bologna, Bologna, Italy
 ⁶Biophysics Department, GSI Helmholtzentrum für Schwerionenforschung, Darmstadt, Germany
 ⁷Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Italy
 ⁸Istituto Nazionale di Fisica Nucleare (INFN), Section of Milano, Milano, Italy
 ⁸Nagoya University, Department of Physics, Nagoya, Japan
 ¹⁰Jstituto Nazionale di Fisica Nucleare (INFN), Section of Napoli, Italy

Angelica De Gregorio

Thank you for the attention


Angelica De Gregorio

Cross section measurement of ${}^{16}O + C$ from 2019 GSI data taking

18

Systematics

• To check the validity of the measurement we tried to estimate the **sources of systematics**.

