TOF-Wall performance and new developments

Matteo Morrocchi

XI Collaboration Meeting

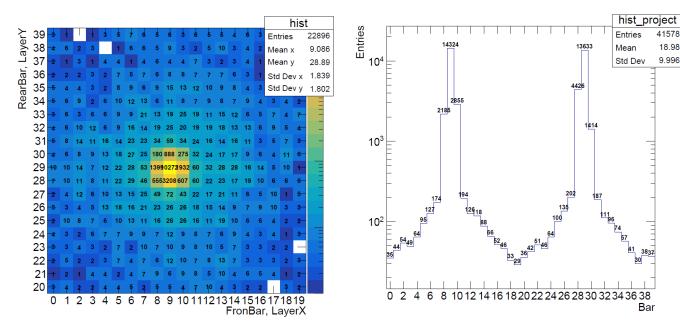
CNAO – Pavia

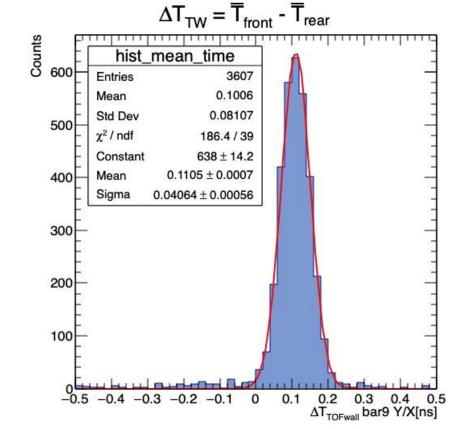
29/30 November 2021

Detector Status

- The detector is completed and tested
- The motion system for the scan of the detector has been completed and used at GSI
- The WaveDaq system can already host all the channels of SC, TW, Calorimeter and additional detectors (such as neutron detectors).
- The board that distributes the voltage in the WaveDaq has been improved, reducing the noise level

Detector calibration

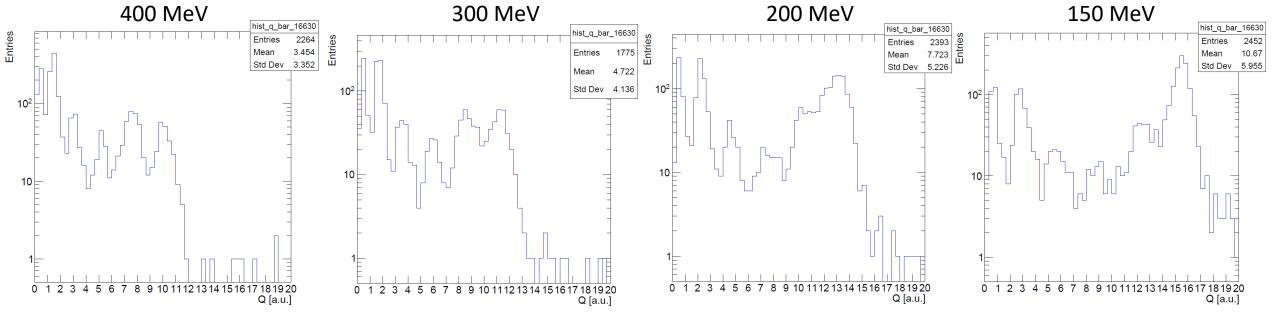

- Up to now we have performed a full scan of the detector using oxygen beam at GSI
 - 20 minutes scan, all the 400 intersections were irradiated
 - \rightarrow See Roberto Zarrella presentation
- We have irradiated the center of the detector with 4 carbon energies using a carbon target for fragmentation
 - It was not possible to move the detector in treatment room
 - Another scan of the detector could be performed in the future in the experimental room at CNAO



- The set-up was composed of:
 - Start counter
 - Target
 - TOF-Wall
 - Calorimeter module
 - Phoswitch detector (off-beam)

- Data acquired with carbon beam (200 MeV/u)
 - C target
 - 2,7 Mevents minimum bias, 2,5 Mevents fragmentation trigger
 - Polyethilene target
 - 1,5 Mevents minimum bias, 6,2 Mevents fragmentation trigger (higher prescaling)
- Data acquired with C target using different energies (carbon beam)
 - 150.71 MeV/u (500k m.b. + 800k f.t.)
 - 200.61 MeV/u
 - 301.44 MeV/u (400k m.b. + 400k f.t.)
 - 398.84 MeV/u (600k m.b. + 700k f.t.)

- The system worked properly during the first night of data taking
- Fragmentation trigger was applied considering 3+3 central bars


Example of time resolution between one bar of the horizontal and one bar of the vertical layer

Preliminary plots from Lorenzo Marini

				_																ł	nist	st					
Σ	39	22	21	18	18	29	18	22	35	29	35	42	31	31	30	24	20	16	Ent	ries		38560					
Layer	38	11	31	21	21	34	30	30	29	34	51	49	37	33	36	26	33	22	Mean x		9.132						
Ľ.	37	11	14	21	24	22	28	17	37	49	49	52	37	45	34	23	30	16	Mean y		/	29.12					
Bar	36	21	13	30	20	32	39	49	49	55	77	50	73	50	46	37	37	30	Std	De	v x	3.68					
RearBar,	35	16	34	26	34	44	48	55	63	86	66	76	56	54	57	45	42	23	Std Dev y		νу	3.617					
	34	29	35	39	38	45	70	78	102	95	111	97	85	72	47	40	41	36	37	29	21	<u> </u>					
	33	3 4	34	43	50	64	80	92	98	128	124	114	74	82	74	46	54	49	34	28	26	_					
	32	27	35	54	60	74	81	109	143	170	186	153	124	111	84	64	58	45	53	40	2 2						
	31	55	37	66	61	92	114	142	199	249	348	267	183	139	91	80	69	65	44	45	34						
	30	51	53	64	82	98	115	173	290	441	1086	412	252	166	132	112	109	79	61	48	3 5	=					
	29	47	53	75	79	111	134	207	395 ⁻	1327	5345	1221	454	194	128	96	101	74	60	46	3 8	_					
	28	37	57	70	83	84	140	172	319	669 ⁻	1924	645	310	190	143	114	78	72	53	42	31	-					
	27	51	49	66	77	79	108	142	214	345	511	348	198	155	105	92	69	46	40	45	36						
	26	3 6	54	58	65	83	98	128	166	175	208	213	144	139	93	78	59	61	63	40	32						
	25	2 8	39	41	57	61	85	106	137	134	138	138	138	105	90	68	65	50	46	31	2 3						
	24																					_					
	23	20	32	29	40	47	53	60	76	89	97	91	77	60	51	36	33	25	21	21	17	_					
	22	23	28	31	43	40	39	55	62	68	68	71	53	56	58	43	37	33	38	20	1 6	_					
	21	20	19	25	24	29	50	43	45	66	50	62	52	36	48	35	33	27	19	25	1 6						
	20	1 8	18	25	18	28	26	29	30	44	45	47	27	39	31	21	18	24	10	12	10						
		0	1	2	3	4	5	6	7	8	9	10	11	12					17 , La								

- A couple of bars did not work properly in the second and third nights.
- Possible causes could be:
 - Problem in the configuration process of one of the board
 - Problem in the HV part of that board
 - Problem in one of the SiPM board of the bar
- Since all the bars worked properly in the first night of data taking and during the acquisition of cosmic rays, this issue needs to be fully understood.

The fragments peaks can be distinguished in the charge histogram for all the four energies. These peaks can be used for a more detailed study of the energy response for at least few points in the detector.

Only a subset of data is represented in the plots

- The channels that did not work properly during the last two nights at CNAO have to be checked. We must verify if this can be done directly at CNAO of if the system need to come back to Pisa.
- Some tests planned for November have been skipped and hopefully could be made in future:
 - Test of the detector with higher gain to verify the sensitivity to light fragments (mainly protons)
 - Tests with the TW positioned at a large angle
- Data taken in November need to be analyzed

Further Improvements

- Not much really, the detector is almost ready...
 - Buy SSD drive for fast data writing on the server (2022 budget, but maybe anticipated to this year)
 - Increase of 16GB the RAM of the server (a usage of about 84% of the RAM was observed during the CNAO data taking)
 - Investigate for a method to avoid the disconnection of the cabling every data taking from the WaveDAQ (to minimize the chance to damage the board connector)