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1 MR JT gravity a crash course

[Teitelboim 83, Jackiw 85]
In two dimensions the Einstein—Hilbert action

1 1
Iy = — | da? /g R+ — dz Vh
EH 47T/zx\/§ +27T N xVhE

computes the Euler characteristic y(25)=2-2g-n and thus does not provide any e.o.m for the
meftric.
To obtain non-trivial equation of motion we have to include a scalar d.o.f. (dilation field @)

]JT:_SOIEH_%/de2\/§¢(R+2)_/ dCIZ\/EQb(HJ—l)

0%

K IS the extrinsic curvature of the boundary

So topological coupling similar to gs

L 0% = boundary of X
Motivations:

2 Dimensional reduction of s-wave 3d gravity (A < 0)
2 Near-horizon limit of near-extremal higher-dimensional black holes
2 Low-energy dynamics of the SYK model

2 Solvable example of quantum gravity!
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[ Y JT gravity a crash course

The egs. of motion of the theory:
D: R+2=0

9w’ (ViVy =g ) =0

The dilaton field acts as a Lagrange multiplier fixing R = -2. In 2d fixing the scalar
curvature is equivalent to fix the local geometry. In our case the local geometry is (E)AdS:.

The solution can be anyway non-ftrivial, for instance we can have BH geometries:

dr?

5 .2
n

ds® = (r* —r3)dt* —

,

Dirichlet boundary conditions: The path integral is performed over field configurations that
obey two constraints:

1. We fix the length of the boundary of > to be | (fixing the metric along the boundary)
2. The dilation is taken to be constant along the boundary blos = o

! Quantizing the (euclidean) theory: We consider the
simplest case the disk (g=0, n=1)

Our euclidean path integral runs over all the distinct way of
[ embedding a non self intersecting circle (the boundary) in
S (E) AdS:»
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8 Quantizing JT gravity

The case of infinite cut-off:.
When we perform the integration over the dilaton, we fix the metric to be (E)AdS:.
,  dt* + dz?
ds® = 5
Z
The AdS-conformal boundary of (E)AdS: is at z=0. We fix our boundary 0% along the curve
(t(u),z(u)). We fix the induced metric along 0% as:

. =
Next we fix the value of the dilation along 0Xx:

on="

€
The parameter € controls the position > with respect to the asymptotic boundary of AdS:

For € approaching O the boundary JX becomes closer
and closer to the conformal boundary (blue circle).

We interpret 1/€ as a cut-off and study first the
theory in the limit -0
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In this limit we can easily solve the boundary condition: [Maldacena,Stanford '16]
PP+ W1

and find that
z(u) = et’ (u) + O(e?)

If we substitute back into the original action the bulk term vanishes (the metric is locally AdS2)
and we left just with the boundary term:

/ duvVho(k—1) = /6 du ﬂ(l + €*Sch(t, u) + O(e?) — 1) = ¢, /ﬁ du Sch(t,u) + O(e)
5)> 0 0

€2

All the dynamics of the theory is carried by t(u) which is governed by a Schwarzian action. We
can understand this result in terms of symmetries:

Asymptotic (E)AdS. geometries: Sponfaneous breaking (E)AdS2 geometry:
asymptotic symmetries —eeeeeee Exact symmetry
Diff(SY) t(u) Goldstone mode SL(2,R)
[Mignemi, Cadoni ‘99] at(uw) + b

ct(u) +d
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[ Y p Quantizing JT gravity

We remain with a path-integral over t(u) and each t(u) is weighted by the value of the
Schwarzian action. Can we compute the partition function? (Disk partition function)

Stanford Witten [2017] have shown that the Schwarzian quantum mechanics is one-loop exact,
namely localise. The partition function is

disk __ ¢7?3 2772¢r
7 WB@XP( E )

This expression also admits the following integral representation:

Z:/ 1E Slnh(zﬂ'\/E) BB
0

472 ¢

We have ®.=1/2 for convenience. This representation view the partition function as a thermal
partition function where the temperature is 8 and the density of states is

sinh(27vV'E)

42

p(E) =

Positive but not normalizable.
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! Hie The holographic puzzle

ISETN

Let us try to read this result in the language of AdS/CFT:

Naively the boundary theory is a quantum mechanics (Schwarzian theory). The partition
function of the gravity on the disk should be the partition function of the quantum mechanics
at finite temperature:

Z:/ dE Slnh(27T\/_) _ E:TI' (G_BHQM) .
0

A2

Hovewer a quantum mechanics where the IT (e_BHQM) exists and it is finite must have a
discrete spectrum! and thus cannot have a continuous density of states.

In other words, we cannot interpret the partition function of JT gravity over the disk as the
partition function of a quantum mechanics. So what is the dual of JT?

JT is not dual to a specific quantum mechanics but to an ensemble of QM over which
we have averaged! (For instance a large N limit of a matrix model)
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d,g TN Going beyond the disk

Can we compute the partition function/correlators on generic surface of genus g with n
boundaries.

We can consider:

2 Dirichlet boundaries: they possess nontrivial dynamics described by the boundary
Schwarzian action

2 Geodesic boundaries: vanishing extrinsic curvature; the boundary action is trivial.

_ L —Iyp _ L S
Zgm = / Vol(Diff) 49l¢ " = / Vol(Diff) O+ 2)e

For a given topology, if we have only geodesics boundaries, this integral counts the number of
inequivalent hyperbolic Riemann surfavces, namely the volume of the moduli space of Riemann
surfaces with Hyperbolice metric. [Weyl-Petersson volume]

The Weyl-Petersson volume Vg, (by,....bn) is a polynomial of degree 3g-3+n in bi,..., bn2. A
general method, via recursion relation, was provided by [Mirzakhani]. So we can consider
their expression as known.
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We consider an explicit example Z;:. La funzione di partizione a genus 1 con un boundary di
Dirichlet. We can cut the surface in two parts by inserting a geodesic boundary of length b.

~
AR
21\

) \

\
Vi1

B

|
1
|
I
I
I
I

I
Q) I

A\ /
N

The first piece is a Riemann surface of genus 1 with a geodesic boundary of length b Its
contribution to the partition function is simply Vi(b).

The second contribution is a surface with two boundaries one geodesic and one Dirichlet. We

usudally refer to this surface as the trumpet. The partition function of this surface can be
computed similarly to the case of the disk:

27?\/@

[Saad, Shenker, Stanford ‘19][Mertens, Turiaci ‘'19] -

Ztrumpet _ /OO dE COS(b\/E) 6_6E b 5/63
0 .'
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rireNze 1he case of Dirichlet Boundary

We can glue together the two contribution to get Z,; by integrating over the geodesic length
b with the right measure

Z11(8) = /O db b Vi 1 (b) 21 mPet (8. )

In general with n Dirichlet boundaries

Zg,n(ﬁl,...,ﬁn)zf db, bl.../ dby, by Vi (b, ..., by)
0 0
X ZTPCY (B by) L 2PN (B, by, )

The amplitudes obtained in this way are fully quantum. None of these topologies are
associated to classical solutions of eq. of motion (except disk and trumpet). Eq. of motion JT
gravities implies the existence of a Killing vector; this surface in general do not have Killing
vectors!

Summing over topologies:
Remember, there is a topological action (EH), that weights different topologies.

o0

(Z(B1,...,Bn)) = e N =250 7. (8, B,)

g=0
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94 |fininze Matrix Model Origin of the Picture

Consider an integral over N x N Hermitian matrices

Z(V,N) = / VOI(%[—([N)) exp(—NtrV(H)) .

Any matrix model admits a large N expansion of ’rhe form

log Z(V, N) ZN2 29 F(

The fundamental quantities governing the matrix model are the resolvent and its Laplace
transform:

1

R(E) =1t
() =tr |

Z(B) =tre PH

from which we can define the density of eigenvalues:

Disc R(F) = —27ip(F) , p(E) = 25(E — i)
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FIRENZE Double Scaling

We would like to view H as the putative Hamiltonian of our dual theory and Z(3) (the Laplace
transform of the resolvent) as our gravitational partition function.

We are both averaging over the Hamiltonian with a potential V(H) and taking the large N limit
to get a continuous spectrum.

We would like to reinterpret the disk partition function as

(Z(B))o = / AE (p(E))o e°F

But (po(E)) = =0 Siﬂh(Qﬂ'\/E)/47T2 cannot be viewed as a usual density

Double scaling: }v\/e have fo zoom around one of the endpoint of the interval supporting the
density of eigenvalues [Saad, Shenker, Stanford ‘19]

O a i». PRI R TERINEE GNP MS AR. TI INR I  TS G Ay I SN A PIEG. IS, » "
W

So

We also scale the normalisation €7 in the same way as N.

Moreover, we have also to tune the potential in order fo obtain the correct functional form
of the eigenvalue density
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On general ground, we can state that the correlator of the double scaled matrix model

. . . S
organised as series in ¢~
©.@)

(Z(B1) - .- Z(Bn))conn. = €27 N " e729% 7 (B1,..., Bn)
g=0

(R(E1) ... R(Ep))conn. = €275 N " e729% Ry (Ey, ..., Ey)
g=0

We dont need to worry about the precise details of the limit and of the form of the
potential fo compute these quantities in the matrix model because we can use Schwinger-

Dyson-like identities (loop equations) to recursively compute any correlator starting from
R01(E1)and Roz(E1,E2).

Topological recursion formula: (Eynard,Orantin) Independent of
the potential. Miracle
Define E=-z2 and inftroduce the following objects: of one-cut matrix model!
: 2
Woa(z1) = —2im z1 p(—27) , X
Waa(en,22) = 4 (Roal#h~) = = ) o o=
| | (21 — 23)? (21 — 22)?

Won(zi,oooy2n) = (=2)"21... 2, Rg,n(—z%, o, —22)
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FIRENZE Topological recursion relations

All other W s can be obtained with this recursion formula

Wyn(z1,...,2n) = Res K(21, 2) [Wg_l,n_|_1(z, — 2,29,y Zn)

z—0

+ Y Whyasn (2 1) Wiy 141, (—2, L)

hi1+ha=g
[HUlo,=J

The recursion kernel K that appears above is defined as

1 zZ
Ko, 2) = 2[Wo,1(2) + Wo,1(—2)] /—z de2 Wo (21, 22)

This amplitudes computed starting from the matrix model coincide, at the perturbative level,

with those compute from the path-integral with the topological Feynman-rule discussed
previously

This is not a coincidence! As already stressed by Eynard and Orantin, the recursion relation

computing the volume of Petersson moduli space obtained by Mirzakhani can be viewed as
recursion in a suitable matrix model
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£ | o stuoi The matrix model picture

The matrix model picture making sense also for finite N suggests a “possible ultraviolet
completion” of JT gravity (non-unique). [Saad, Shenker, Stanford ‘19]

» one-eigenvalue instanton: This corresponds to configuration where one out of the N
eigenvalues has been displaced away from the rest. [Similar to ZZ brane in Liouville gravityl].
Geometrically, the spacetime is allowed to end at a new type of boundary associated to the
location of the eigenvalue.

» The second type of effect corresponds to adding a “probe brane”. This corresponds to
consider the insertion of det(E-H) in the matrix integral. Geometrically, it corresponds to
consider an infinite set of disconnected space-time. [Similar to FZZT brane in Liouville
gravity]
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£ | o stu JT gravity: TT deformation

» TT-deformation (integrable) of 2D CFTs is dual to a sharp radial cut-off in AdSs [McGough,
Mezei, Verlinde ‘16]

2 A dimensional reduction of the above duality relates a deformed Schwarzian theory to JT
gravity at finite cutoff, at the classical level. [Gross, Kruthoff, Rolph, Shaghoulian 19]

Therefore investigating the TT-deformation of the Schwarzian theory provides a controlled
framework where to explore finite cut-off effect in JT gravity. (Why is it interesting?)

The effect of the deformation is modify the Hamiltonian and thus the spectrum of the theory
according to the equation

H2

20, H =
Or 2 _tH

The solutions has two branches .
Hy(t) =7 (1 FV1-— tE)

however, only H.(t) reproduces the expected undeformed limit for t — 0

Z:/OOOdE sinh(2mVE) eXp<% (1_¢1_tE)>

472 t
[Iliesiu, Kruthoff, Turiaci, Verlinde ‘20] argued that the connection with finite cut-off also

holds at quantum level if we set t=4¢€2.



UNIVERSITA

£ | o stu JT gravity: disk transeries

The integral

7 = /OOO dE Sinhig\@) exp<25 (1- V1= tE))

is ill-defined diverges and the integrand becomes complex! The spectrum is not real! However

if we formally expand in t the intfegrand around t=0, we obtained a real perturbative series
in t

Z = i wn(B) " Y e SiAI1 i w, ()
1 n=0

- e Do)

The result carries instant corrections in t that appear as trans-series terms

Resurgence theory: the information on the instantonic corrections is encoded in the
perfurbative expansion.
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[ i Borel resummation

We start from an asymptotic series

Z(t):antn, W ~ !

1.Borel Transform
Define a new series with a finite radius of convergence

_ G"
BIZ](¢) = an ol
n

This defines an analytic function around ¢=0.

2.Directional Laplace transform
Take an integral transform along a chosen direction 6 in the complex {-plane convergence

Siz(t) = [ dce B

The directional resummation S.Z(t) defines an analytic function in the wedge Re(e+t) > O that,
upon expansion in t, reproduces the asymptotic expansion of Z(1).
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In our case, the Borel transform has a branch cut located on the positive real axis in the
range { € (48, +0).

This is known as a Stokes line at 0 = 0. When taking a directional Laplace transform at 6 = O,
one runs into an ambiguity since the results obtained by approaching the Stokes line from
above and below differ.

Im CA 80+
e e
4
So-

In the theory of resurgence, Stokes lines are associated with non-perturbative contributions,
encoded by the discontinuity (Sg+ — Sp-)Z(t)

A real result is obtained by taking the median resummation

SmedZ(t) — % (SOJr T SO_) Z(t) '
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HEs Disk at finite t

FIRENZE

Through resurgence, we have been able to fix the nonperturbative completions of the disk
partition functions with just its perturbative expansions at t+ = O as input. The full result

reads
— L[ 2VB2+n2t) .

The frans-series has the following structure

Z =2 wa(B)t" +e NG (B) " .
n=0 n=>0

Z

The non-perturbative corrections in t naturally carries information of the branch of the
spectrum H.(t). [The branch not connected to the undeformed spectrum as t->0.]
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We can rewrite the expression for the disk partition function as

7 _ B sinhfﬂz\/ﬁ) (6—5H+(t,E)_)
70

0

The above differs from the naive deformation in two ways:

1. the integration range is now capped at E = 1/4,
2. there is an additional term of instantonic origin.

We can recast the above as
4/t
7 = / dE p(E;t) e P¥
0

where the t-deformed density of states is given by

— ! _4;?/2 sinh(QW\/E(l — tE/4)>

p(E;1)

The density is negative in the range (2/1,4/1).
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FIRENZE Deformed trumpet

We can repeat the same steps done for the disk and find the deformed trumpet partition
function

N
‘, 2 —28/1 1
. grumper _ 250 ¢ I (—¢452 - b2t> .
b B/e V452 — b2t \t

We have reconstructed at finite t all the ingredient necessary at =0 to build the

perturbation expansion of the amplitfudes via fopological Feynman rules. Can we consistently
construct them?

Caveat: The integration over the length b of the geodesic boundary also explores geodesic
boundary which are bigger than the Dirichlet boundary!
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08 - | FIRENZE Example: Cylinder at finite t
/’\\\\ /7/’\\
: Ba ‘ B1 l: 2072(517 52) — / db bZtrumpet (517 b) Ztrumpet (527 b)
CC “ 0
|‘ b ’l

By gluing two trumpets, we find the cylinder partition function:

—2(B1+B82)/t
Zyo = 515;(;2 — ) [ul Iy (Qtﬁ) I (2751> — 28, I, (Zf1> 1( f2>]
1 2
1 \/ﬁl\/62 1 1 9 51 + 62

_ 2407 .
27 (81 + B2) " D27 \/51\/52t+ 10247 (\/51\/52)3t +o)

This amplitude was also studied in [Rosso ‘20] for Bi1=82 By taking a Laplace transform we find
the resolvent

P t?[(1 — tE1/2)? + (1 — tEy/2)?]
D2 T U1 —tEy /2)2 — (1 — tEy/2)?)?
t2(1 —tE/2)(1 —tEy/2)(tE? /4 +tE3/4 — By — E»)
A[(1 —tE1/2)? — (1 — tEy/2)%)2\/—F1(1 — tE1 /4)\/—F>(1 — tEy/4)
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\.* s Topological recursion relations at finite t

Again the amplitudes constructed at finite t can be derived by the topological recursion
relations. The deformed ingredients are

2+ tzi
Wo,l(zl) — Zl( 4—|‘ Zl) Sin(ﬂzl\/4+tZ%)
7
424 t27) (2 + t23 427 + 23) + t(2] + 23
W0,2(21>Z2): 5 (22 1)( > 2)2 : 22129 + (1 2)2 (1 22)
(21 — 23)7 |4+ 121 + 23)] VA4 1222 + 23
K(z1,z2) = (24'752’%)\/4—#15,22 47TCSC(7TZ\/4+tz2)

(2 + tzQ)\/él +t2% (2% — 22) [4 + (27 + 2?)]

It is easy to show that this is a simple deformation of the Mirzakhani-Eynard-Orantin
recursion formula.

Example:

Wi1(z1) = Res K(z21,2) Wy 2(2, —2)

(24+t2%)[6 + 7222 (4 + t2?)]
327 (4 + t2%)5/2 '
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%ﬁ DR Spectral form factor

At t = 0, JT gravity was observed to reproduce the characteristic shape of a spectral form
factor associated with an ensemble of Hamiltonians with random-matrix statistics. [Saad,
Shenker, Stanford 19]

From a bulk perspective, the spectral form factor can be interpreted as a transition
amplitude in the Hilbert space of two copies of JT gravity. [Saad 19]

It is computed by the analytic continuation of two boundaries, 31-> ($+ 1, B2-> 3+ 71, which

introduces a timescale t . The quantity includes terms coming from different topologies, each
weighted by the usual topological factor,

F = e + +

where the dots correspond to subleading terms associated with higher-genus fopologies.

Different features of the spectral form factor are associated with contributions coming from
different topologies.
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The initial “slope” region comes from considering two disjoint disks. Its characteristic shape
can be observed by looking at its large-t regime,

02

201 (B +173t) Zo 1 (B —iT35t) ~

The first term gives a cubic decay that reproduces the known t — O limif, while the second
term is an oscillation of period mt/2 whose amplitude is exponentially suppressed in 1/t.
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Eventually, the slope phase will end, and other topologies will dominate the form factor. The
characteristic “ramp” region comes from the connected topology, a Euclidean wormhole
connecting the two boundaries.

5 [ ‘ T ]

0.5

The transition time is
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B Conclusions

Summary of the result at finite t:

P Resurgence gives a prescription fo determine the nonperturbative corrections to the disk
and the trumpet partition functions.

P The Weil-Petersson gluing leads to analytical results for any topology.

P The results satisfy a fopological recursion formula which is a deformation of the
Mirzakhani-Eynard-Orantin formula.

Outlooks:

P Derive the formulas for arbitrary topologies from a first-principles path-integral analysis,
including the integration measure.

P Characterize the 1d side of the duality captured by the deformed topological recursion
formula.

P Extend the finite-cutoff results to related models, e.g. JT supergravity. [Stanford, Witten 19]



