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Introduction and Scope
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● This is a 2 days course for beginners dipping toes into ML for the first time!

○ Goal: introduce basic concepts (a small subset of topics)
■ Starting point for experimenting and playing with ideas 

■ Build upon physicist language/background 

■ Pre-requisites: linear algebra, multivariate calculus, probability theory, MC-methods, (some) python…  

○ Lectures are accompanied by simple hands-on sessions and real-world 
examples

○ References 

● Course indico: https://agenda.infn.it/event/28573/
● Lectures, exercises: https://github.com/cfteach/ml4hep
● A high bias, low-variance introduction to Machine Learning [hblvi2ML]: 

https://arxiv.org/abs/1803.08823 
● “A Living Review of Machine Learning for Particle Physics”: 

https://iml-wg.github.io/HEPML-LivingReview/   arXiv:2102.02770 (2021)
● “Artificial Intelligence and Machine Learning in Nuclear Physics”: arXiv:2112.02309 (2021)

Which these slides largely draw from.

https://agenda.infn.it/event/28573/
https://github.com/cfteach/ml4hep
https://arxiv.org/abs/1803.08823
https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2102.02770
https://arxiv.org/abs/2112.02309


A program that can sense, reason, 
act, and adapt

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING

Algorithms that learn patterns in 
data over time

Multilayered neural networks 
learn from vast amount of data

Data Science blends data 
analytics, computer science and 

business domain expertise to solve 
problems.

Data Analytics is the practice of 
using Machine Learning 

algorithms and visualization to 
derive insights.

1950s

2010s -

Bayesian methods
Genetic Algorithms, 
Rules-based system,
...

Random Forest,
Support Vector Machines,
XGBoost,
...

CNN, RNN, GAN, ...

AI

ML

DL

DS

3

Use of AI/ML/DL in HEP 
becoming ubiquitous

I. Goodfellow, Y. Bengio, and A. Courville 
(2016), Deep Learning (MIT Press) 
http://www.deeplearningbook.org.
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UNSUPERVISED SUPERVISED

REINFORCEMENT

ML

Supervised learning is 
the machine learning 

task of learning a 
function that maps an 

input to an output based 
on example input-output 
pairs. It infers a function 

from labeled training 
data consisting of a set 

of training examples

Reinforcement learning is concerned with how intelligent agents ought to take actions in an 
environment in order to maximize the notion of cumulative reward and make informed choices. 

Unsupervised learning is 
a type of machine 
learning in which the 
algorithm is not provided 
with any pre-assigned 
labels or scores for the 
training data. 
Unsupervised learning 
algorithms must first 
self-discover any 
naturally occurring 
patterns in that training 
data set.

R. S. Sutton, and A. G Barto (1998), Reinforcement learning: An introduction, Vol. 1 (MIT press Cambridge) 
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UNSUPERVISED SUPERVISED

REINFORCEMENT

ML
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  Deep Learning

DL
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● The real magic about NN is the 
result of an optimization technique: 
back-propagation (how a NN works 
to improve its output over time)

 
● DL (more hidden layers) nets are 

good in learning non-linear functions 
(heavy processing tasks)

● Based on old school NN revitalized 
by augmented capabilities (e.g. 
GPU) and a plethora of new 
architectures (RNN, CNN, 
autoencoders, GAN, etc.)

Forward Propagation

Error
Estimation

Backward Propagation

DL
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NIPS 2016: “Iÿ intelliĀence is a cake, 
the bulk oÿ the cake is unsupervised learninĀ, 
the icinĀ on the cake is supervised learninĀ, 
and the cherry on the cake is reinÿorcement learninĀ”

LeCun, Turing award 2018
VP and Chief AI Scientist, Facebook

 DeepMind

Deep Q-learning 
playing Atari Breakout

Mnih et al, 1312.5602 
Nature, 518.7540 (2015)

Unsupervised/Supervised/Reinforcement



Timetable/Overview
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timetable can change a bit as needed



Structure and Disclaimer

● ML is broad and interdisciplinary and draw on ideas from many fields 

● In these 2 days we can only cover very few ideas 

● In some cases I will just give the gist of the theoretical foundation behind these 
concepts but I won’t have time to go into the details.  

● We will try to provide/point to tools to start using ML in practical problems 

○ Jupyter notebooks 

○ Numerous of great software packages 

● Datasets:

○ SUSY dataset (5M MC samples) 

○ Higgs dataset (11M)

○ Artificially created datasets 

10

Following [hblvi2ML] we will cover:
● Regression 
● “Decision trees” 
● Clustering
● (Intro to) Deep Learning 
● Optimization 



M
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Notebooks are available at [hblvi2ml]. 
In these 2 days we will cover explicitly only few exercises, spanning supervised 
classification tasks, unsupervised approaches for clustering and optimization. 

https://physics.bu.edu/~pankajm/MLnotebooks.html


Jupyter Notebooks
● Work with python3 
● Install jupyter in a virtual environment  

○ python3 -m venv env_ml4hep
○ source ./env_ml4hep/bin/activate 
○ pip install jupyter   (you can also install with anaconda if you are more familiar)

● How to change/add the kernel of a jupyter notebook in a virtual environment? 
○  ipython kernel install --name "env_ml4hep" --user 

● To start notebook (from terminal, virtual environment):
○ jupyter notebook  

12

We will also use 
colab later

https://queirozf.com/entries/jupyter-kernels-how-to-add-change-remove


What is ML? 
● ML, data science and statistics are fields describing how to learn from and make predictions about 

data. 

● Techniques in ML tend to be more focused on predictions than estimation. Methods from ML tend to 
be applied to more complex high-dimensional problems.

● Estimation and prediction problems can be cast into a common conceptual framework related to 
some parameters θ of a model p(x|θ) that describes the probability of observing x given θ

● Fitting the model involves finding θ* providing best explanation for data. If fitting refers to the method 
of least squares, the estimated parameters maximize  θ*=argmaxθ{p(x|θ)}. 

● Although the goals of estimation and prediction are related they often lead to different approaches:

○ Estimation problems are concerned with the accuracy of θ*. 

○ Prediction problems are concerned with the ability of the model to predict new observations. 
We will focus on prediction.  

13
MacKay, David JC (2003), Information theory, inference and learning algorithms (Cambridge university press)

Problems in ML typically involve inference about complex systems where we do not 
know the exact form of the mathematical model that describes the system.



Why is ML ubiquitous
● Last three decades unprecedented ability to generate 

and analyze large data sets: big data revolution 
spurred by exponential increase of computing power 
and memory  

● Computations that were unthinkable can now be 
routinely performed on laptops. 

● Specialized computing machines (e.g., GPU-based) 
are continuing this trend towards cheap, large scale 
computation. 

[source]

● Physicists are uniquely situated to benefit from and contribute to ML. Many core concepts in ML have their 
origin in physics: MC methods, variational methods, simulated annealing, energy based models etc 

● HEP has been at the forefront of using big data. 
○ LHC experiments produce data at a rate of 1PB/sec; after data reduction (zero suppression, custom compression 

algorithms) 50TB/s resulting in as much data every hour as Facebook collects globally in a year 
○ At LHCb, 70% of all data retained are classified by ML and all charged particle tracks are vetted by NNs.  

14

A. Radovic, et al. "Machine learning at the energy and intensity frontiers of particle physics." Nature 560.7716 (2018): 41-48.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AMoore%2527s_Law_over_120_Years.png&psig=AOvVaw2KM0Yr8qB72jwPaw88xcdB&ust=1639655269723000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCKCWp4Pe5fQCFQAAAAAdAAAAABAN


Why is ML ubiquitous
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C. Fanelli, ML in the online data acquisition, INFN Machine Learning school, 2019

HW Trigger Muon ID 
@CMS

Ghost tracks killer, 
HLT2 Topological Trigger @LHCb

https://agenda.infn.it/event/18113/contributions/85370/attachments/63473/76423/ML_online_data_acquisition-C.Fanelli.pdf


IML
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https://iml.web.cern.ch



AI4EIC
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https://eic.ai
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https://eic.ai

AI4EIC WorkinĀ Groups
● DesiĀn 
● Simulations
● Data Reco & Analysis 
● Controls 
● Detector SRO 
● ComputinĀ ÿrontiers 
● Theory and phenomenoloĀy

EIC Schedule and Role of AI

C. Fanelli



W
hy

 is
 M

L 
di

ffi
cu

lt



Typical Problem
● Ingredients:

○ Dataset D(X,y): X matrix of independent variables, y dependent variables 

○ Model f(X;θ) where f: X→y is a function of the parameters θ 

○ Cost function C(y,f(X;θ)) to judge how well the model performs on the observations y

● The model is fit to find θ that minimize the cost function; commonly used cost is squared error 
(method of least squares)  

● Recipe for prediction problems:

20

1. Randomly divide the dataset D into mutually exclusive Dtrain (typically 90%) and Dtest (10%)

2. Model is fit on training data θ*=argminθ{C(ytrain,f(Xtrain;θ))}

3. The performance of the model is evaluated on C(ytest,f(Xtest;θ*))

● Splitting data provides an unbiased estimate for the predictive performance (known as cross-validation)

● In-sample error: Ein = C(ytrain,f(Xtrain;θ)); out-of-sample error: Eout = C(ytest,f(Xtest;θ)) 

● Eout is always larger than Ein , Eout ≥ Ein 

https://machinelearningmastery.com/difference-test-validation-datasets/


Bias/Variance

● The model that provides the best explanation for the current dataset will probably not provide the 
best explanation for future datasets 

● The discrepancy between Ein , Eout grows with the complexity of our data and of our model 
(increased model parameters, high dimensional space, curse of dimensionality) 

● For these reasons (and for complicated models), predicting and fitting can be different things. Need 
to pay attention to out-of-sample performance. Fitting existing data well is fundamentally different 
from making predictions about new data.  

● Let’s see this starting from simple one-dimensional problem: we want to fit data with polynomials of 
different orders. 

● Our ability to predict depends on the number of data points, the noise in the data, and our prior 
knowledge about the system   

21
Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.



Fitting vs Predicting

● Consider probabilistic process that assigns a label yi to an observation xi. Data are generated from 

○ yi = f(xi) +ηi  where ηi is a gaussian uncorrelated noise variable such that <ηi>=0 and <ηiηj>=δijσ
2

● To make predictions we consider a family of functions fα(x;θα) (different model complexity):

○ Polynomial of order 1: f1(x;θ1) → 2 pars

○ Polynomial of order 3: f3(x;θ3) → 4 pars

○ Polynomial of order 10: f10(x;θ10) → 11 pars

● Using a more complex model class may give us better prediction power but only if we have a large 
enough sample size to accurately learn the model parameters 

● To learn θα we use a training dataset and test the effectiveness of the model on the test dataset

● Obviously the more data and less noise we have the better the predictions are

22



Fitting vs Predicting
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● We utilize a test interval [0,1.2] 
which is larger than the training 
interval [0,1.0] 

● Data sampled from 

○ f(x) = 2x 

○ f(x) = 2x -10x5 + 15x10

● In absence of noise, even with a 
small training set 
(Ntrain=10<Ntest=20) the model 
class that generated the data 
provides the best fit and also the 
best out-of-the sample 
prediction. 

same linear model

polynomial order 10

same polynomial order 10

Training Data Test Data

linear model



Fitting vs Predicting
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● We utilize a test interval [0,1.2] 
which is larger than the training 
interval [0,1.0] 

● Data sampled from 

○ f(x) = 2x 

○ f(x) = 2x -10x5 + 15x10

● Noise =1; training set 
(Ntrain=100>Ntest=20); even when 
the model class that generated the 
data is a 10 order polynomial, the 
linear and 3rd order polynomials 
give better out-of-sample 
predictions.

● At small sample sizes, noise can 
create fluctuations in the data that 
look like genuine patterns.

Training Data Test Data

better

worse

polynomial order 10

linear model

worse

better



Bias/Variance Tradeoff
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● We utilize a test interval [0,1.2] 
which is larger than the training 
interval [0,1.0] 

● Data sampled from 

○ f(x) = 2x 

○ f(x) = 2x -10x5 + 15x10

● Noise =1; let’s increase the 
training set to Ntrain=104

Training Data Test Data

polynomial order 10

● The 10 polynomial model gives both the best fit ad the most predictive power over the entire range 
[0,1] and actually slightly beyond up to ~1.05, but then the predictive power quickly degrades

● This is our first experience with the bias-variance tradeoff: where the amount of data is limited, we 
often get better predictive performance by using a less expressive model (lower order polynomial)

○ The simpler model has more bias but is less dependent on the particular realization of the 
training set, i.e. has less variance.



ML is difficult

● Last one was a good example where we are good at interpolating but not at extrapolating.
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● Fitting is not predicting. 
○ Fitting existing data well is fundamentally different from making predictions about new data

● Using a complex model can result in overfitting
○ Better result on training data; when data size is small and the data are noise, this results in 

overfitting and degrade predictive performance 

● For complex datasets and small training sets, simple models can be better at 
predicting than complex ones due to the bias-variance tradeoff 

○ Even though the correct model (less bias) has better predictive performance for an infinite 
amount of training data, the training errors stemming from finite-size sampling (variance) can 
cause simpler models to outperform the more complex model

● It is difficult to generalize beyond what seen in the training dataset.



Statistical Learning Theory
● We summarize here the sense in which learning is possible with focus on supervised learning 

● We begin from an unknown function y=f(x) and fix a hypothesis set H of all functions we want to 
consider 

● f(x) produces a set of pairs (xi, yi), i=1,...,N, which serve as he observable data. Our goal is to 
select a function from the hypothesis set  h ∈ H that approximates f(x) as best as possible, such 
that h ≈ f 

● If that is possible we say we learnt f(x) 

● But if the function f(x) can, in principle, take any value on unobserved inputs, how is it possible to 
learn in any meaningful sense?   

27

The relationship between the in-sample error Ein and the out-of-sample (or generalization) error is 
the domain of statistical learning theory 



Bias/Variance
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● (1) The more data we train on, the more the sampling noise 
decreases and the training data becomes representative of the true 
distribution. For this reason Eout and Ein approach the same bias.  

● The more data we train on, the more the sampling noise decreases 
and the training data becomes representative of the true distribution. 
For this reason Eout and Ein approach the same value called bias. The 
bias represents the best our model can do if we had an infinite 
amount of data. 

● The more complex the model we use, the smaller the bias. However 
we do not have an infinite amount of data. 

Assumptions:
● Eout and Ein as a function of the size of training data
● We assume data come from a complicated distribution 

(so we won’t exactly learn f(x))

● For this reason the best predictive power is get by minimizing the Eout. Eout is decomposed in a bias and a variance, 
which measures the errors in training our model due to sampling noise

● The difference between Eout and Ein measures the difference between fitting and predicting. 



Bias/Variance
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Assumptions:
● Eout and Ein as a function of the size of training data
● We assume data come from a complicated 

distribution (so we won’t exactly learn f(x))

● Model complexity is a subtle concept which can in many cases be related to 
the number of parameters needed to approximate the true function f(x)

● Eout will be in general a non-monotonic function of the model complexity. 

● It is generally minimized for intermediate complexity.  

● Even though using a complicated model always reduces bias, at some point the model becomes too complex for the amount 
of training data that the generalization error becomes large due to high variance 

● Thus it may be more suitable to use a more biased model with small variance.  

● Bias measures the deviation of the expectation value of our 
estimator (asymptotic value in the infinite data limit) from 
the true value

● Variance measures how much our estimator fluctuates due 
to finite-sample effects 

It can be 
shown that:
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Gradient Descent

● Almost every problem in ML starts with the same ingredients: a 
dataset X, a model g(θ) which is function of parameters θ, and a 
cost function C(X,g(θ)) describing how well the model explains 
the observations. 

● The model is fit by minimizing the cost function.

● Gradient descent is a powerful approach to do so.   

31

● Following this approach the training procedure ensures that the parameters flow towards a minimum of 
the cost function. 

● GD in practice is full of surprises: the cost functions in ML are usually complicated, non-convex functions 
in a high-dimensional space with many local minima. 

● Furthermore we almost never access the true function that we wish to minimize (we do not know it at the 
ground truth). 

● In modern applications the number of parameters to fit is often enormous (millions of parameters and 
examples).  



Gradient Descent
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● Let’s call the function we want to minimize. 

● This energy function can be written in terms of n data points 

● In the simplest GD algorithm we iteratively update the parameters as:

(ηt) learning rate: controls how big a step we should take in the direction of the gradient 

● The learning rate could be adapted using the inverse of the Hessian matrix (see 
Newton’s method), so that larger steps are taken in flat directions and smaller 
steps in steep directions. 

● In the case of a single parameter quadratic energy function we can easily 
identify four regimes depending on an ηopt as in the figure.  In a 
multidimensional case, one could determine the largest eigenvalue λmax of the 
Hessian and use a single learning rate for all parameters. Convergence requires 
η<2/λmax

● For sufficiently small ηt we would converge to a local minimum, but this comes at a huge 
computational cost   

● If too large we can overshoot the minimum. 
● In practice we need to specify a “schedule” that decreases ηt at long times.



Limitations and Alternatives: Stochastic Gradient Descent
● Limitations of the simple GD approach: 

○ GD finds local minima 
○ Gradients are computationally expensive to calculate for large datasets (sum over all data points)  
○ Unlike in Newton’s method, GD treats all directions in the parameter uniformly. We need to keep track 

of Hessian but it is computationally expensive) 
○ GD is sensitive to initial conditions and can take exponential time to escape saddle points 
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● Stochastic Gradient Descent (SGD) is one of the most applied variants of the GD. The algorithm is stochastic. 

● Where do we introduce stochasticity? It is incorporated by randomly selecting data points at each step to calculate 
the gradients. In other words, by approximating the gradient on a subset of the data called minibatch of size M 
(traditionally SGD was reserved for each data point, that is minibatch of size 1), Bk=1,..,n/M   size M:(32, 64, 128, 256, …)

● A full iteration over all n data points, i.e. n/M minibatches, is called an epoch. 

● Benefits:
○ Stochasticity reduces chance to get stuck in local minima 
○ It speeds up calculation 

SGD
algorithm



Gradient Descent with Momentum

● SGD is almost always used with a “momentum” or inertia term (*)

34

(*) this is demonstrated by the physical 
analogy with the equation of motion for a 
mass m moving in a viscous medium with 
damping coefficient and potential

● vt is a running average of recently encountered gradients. It is possible to demonstrate 
that the characteristic timescale for the memory used in the averaging procedure is:

● Why is momentum useful? SGD momentum helps the GD algorithm gain speed in directions with 
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in 
high-curvature directions.  Empirical studies show benefits in the transient phase of training, rather than 
during fine-tuning 

● These benefits are sometimes even more pronounced in a slight modification called Nesterov Accelerated 
Gradient (NAG), which calculates the gradient at the expected value of the parameters  

(γ) momentum parameter



Gradient Descent with Second Moment
● RMSprop  

35

● ADAM

D.P. Kingma, J.L. Ba, ADAM, A method for Stochastic optimization, https://arxiv.org/pdf/1412.6980.pdf 2014 (>90k citations)

β = 0.9
learning rate ηt ~10-3 (can be larger than previous methods due to the adaptive step 
size)
ε ~10-8 

β1 = 0.9
β2 = 0.99

The learning rate is reduced in directions where the gradient is 
consistently large 

ADAM performs an additional bias correction to account for the 
fact that we are estimating the first two moments of the gradient 
using a running average (denoted with a hat)

It’s possible to rewrite formulas as:  
We adapt learning rate proportional 
to signal-to-noise ratio, for example 
if widely fluctuating, σ>>mt 

https://arxiv.org/pdf/1412.6980.pdf


Practical tips and Further Reading

● Randomize data when making mini-batches 

● Standardize inputs (learning becomes difficult when it has a mixture of steep 
and flat directions) 

● Monitor the out-of-sample performance — validation set 

● Adaptive optimization methods (ADAM, RMSprop) do not always have good 
generalization 

○ Suffer when number of parameters exceeds number of data points [1]

○ Outperform with deep networks such as generative adversarial networks [2]   

36

hblvi2ML Sec IV
[1] A. Wilson, et al .(2017), “The marginal value of adaptive gradient methods in machine learning,” arXiv preprint arXiv:1705.08292.
[2] I. Goodfellow, et al.(2014), “Generative adversarial nets,” in Advances in neural information processing systems, pp. 2672– 2680
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Due to limited time no exercises on this part. Notebooks are available at [hblvi2ml].

https://physics.bu.edu/~pankajm/MLnotebooks.html


Regression: the problem

● Given a dataset with n samples 

● Assume every sample has p features

● Let f be the true function that generated these samples via 

where                  and is some i.i.d. white noise with zero mean and finite variance. 

  

38

scalar response

● One can cast the samples into an n x p matrix, called the design matrix            

with rows being observations   

and the columns     being the measured features   

● The function f is unknown explicitly and we presume its functional form. 

● For example, in linear regression we assume

for some unknown but fixed  



Linear Regression
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● We want to find a function g with parameters w fitting to the data D that can best approximate f

~

● When this is done, we can use this g to make predictions about the response y0 for a new data point 
x0.  

● Let’s introduce the Lp norm which is helpful in regression. For any real number p ≥ 1, we define the 
Lp norm of a vector   to be   



● This leads to the solution

where we assume XTX is invertible, which is often the case when n 
≥ p. Formally if rank(X) = p, the columns of X are linearly 
independent, then wLS is unique.  

● When rank(X)<p XTX is singular, implying there are infinitely many 
solutions to the least-squares problem (if w0 is a solution, w0+η is 
also a solution for any η such that Xη=0.

Least-square Regression

● Ordinary least squares linear regression (OLS) is defined as the minimization of the L2 norm of the 
difference between the response yi and the predictor g(x(i);w) = wT x(i):  

40

● We need to determine w that minimizes the L2 error 

● Geometrically speaking, the predictor g(x(i);w) = wT x(i) defines an hyperplane in Rp.  



Least-square Regression
● Having determined the least squares solution, we can 

calculate the best fit to our data as:

41

where

● Notice that we found the solution wLS in one shot, without 
any iterative optimization as seen e.g. for gradient descent. 

● As already discussed the difference between learning and fitting lies in the prediction on unseen data. 
It is therefore necessary to examine the out-of-sample error. The reader can find Jupyter notebooks in 
[hblvi2ml] 

● It can be shown that the average errors are: If we have p ≫ n (i.e. high-dimensional data) the 
generalization error is extremely large and the model 
is not learning. Even when p ≈ n we might still not 
learn well due to the intrinsic noise σ2.

To ameliorate this we use regularization and we will 
briefly mention two forms: 
Ridge (L2 penalty) and LASSO (L1 penalty).(provided we obtain the least squares solution wLS from i.i.d. 

samples X and y generated through y = X wtrue+ε)

https://physics.bu.edu/~pankajm/MLnotebooks.html


meaning for any t ≥ 0 and solution wRidge of (2), there exists a λ ≥ 0 such that wRidge solves (1) — and vice 
versa. With the regularization term we are constraining the magnitude of the parameter vector learnt from the 
data. 

● When X is orthogonal: 

  

Ridge-Regression
● We add to the least squares loss function a regularizer defined as L2 norm of the parameter vector 

we wish to optimize over. The penalized Ridge regression problem is:  

42

● Equivalent to the constrained optimization problem:

(1)

(2)

[hblvi2ml, Sec VI] Note that the equivalence between the penalized and the constrained (regularized) form of LSO does not always hold. It holds for Ridge and LASSO,

It is possible to demonstrate that both Ridge and LS linear regression have to 
project y to the column space of X. Ridge further shrinks each basis component 
by a factor dj

2/(dj
2+λ2), as can be obtained from singular value decomposition.



LASSO

● LASSO in the penalized form is defined by  

43

Least absolute shrinkage and selection operator

[hblvi2ml, Sec VI] As in Ridge, LASSO can be written in its constrained optimization form. However to get the analytic solution of LASSO, we cannot take the gradient of (1) with respect to w, 
since the L1-regularizer is not everywhere differentiable. Nonetheless, LASSO is a convex problem and we can invoke the subgradient optimality condition to get the solution. 

(1)

Rockafellar, Ralph Tyrell (2015), Convex analysis (Princeton university press).

● Assuming X is orthogonal, it is possible to demonstrate that: 

where ()+ indicates the positive part and wj
LS is the j-th component of the LS solution. 

LASSO vs RidĀe

LASSO tends to give sparse solutions, 
i.e. many components of wLASSO are zero. 
The L1 regularizer of LASSO has sharp 
protrusions, the intersection of the 
regressor contours tend to occur at the 
vertex of the feasibility region, implying 
the solution vector will be sparse. 



In practice

44

[hblvi2ml] Notebook3: Linear Regression

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB3_CVI-linreg_diabetes.html


Coefficient of Determination
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The better the linear regression (on the right) fits the data in comparison to the 
simple average (on the left graph), the closer the value of  is to 1. 

The areas of the blue squares represent the squared residuals with respect to the 
linear regression. The areas of the red squares represent the squared residuals 

with respect to the average value. Taken from here.
● In the best case, the modeled values exactly 

match the observed values, which results in 
SSres =0 and R2=1. 

● A baseline model which always predicts the 
average y, will have R2=0.

● Models that have worse predictions than this 
baseline will have a negative R2.

● The regularization parameter λ affects Ridge 
and LASSO regressions. A good practice is 
check the performance as a function of λ.

SSres

SStot

Example taken from [hblvi2ml] for the Isospin regression problem. Notice that 
LASSO test curve is not monotonic and there is a sweet spot.

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB4_CVI-linreg_ising.html


Convexity and elastic net
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● A simple inspection reveals that both LASSO and Ridge 
regression are convex in w. 

● A function Rn → R is called convex if its domain is a convex 
set and for any x,y in the domain, and t ∈ [0,1]:

● For convex functions, any local minimizer is a global 
minimizer: as long as we're “going down the hill” and we stop 
when we can't go any further, then we've hit the global 
minimum. ● Ridge is actually a strictly convex problem (assuming λ>0) due to presence of L2 penalty. In fact, this is 
always true regardless of X and the solution is always well-defined.

● LASSO is not always strictly convex and hence by convexity theory, it need not have a unique solution. The 
LASSO solution is unique under general conditions, e.g., when X has columns in general position (see 
Tibshirani 2013). To mitigate this, one can define a modified problem called the elastic net such that the 
function we want to minimize is always strictly convex:

The elastic net combines some of the desirable 
properties of Ridge regression (e.g., prediction) with 
the sparsity properties of LASSO.

https://arxiv.org/abs/1206.0313
https://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Logistic regression
● Problems like classification are concerned with outcomes taking discrete variables (i.e. categories):

○ Signal vs bkgd, Phase of a system, etc  

● Logistic regression deals with dichotomous outcome (True or False, 1 or 0, etc) 

● The inner workings of logistic regression are valuable in the study of modern supervised deep neural 
networks 

● In what follows:

○ Define logistic regress 

○ Derive cost function (cross entropy) using a Bayesian approach 

○ Discuss its minimization  

○ Generalize logistic regression in the case of multiple categories (called SoftMax regression)

● We focus on the SUSY dataset of [hblvi2ml]
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https://www.sciencedirect.com/science/article/pii/S0370157319300766


Categorize
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● Before delving into logistic regression, it is helpful to consider a simple linear classifier that 
categorizes examples using a weighted linear-combination of the features and an additive offset

● We use the short-hand notation

This function takes values on the entire real axis. In the case of logistic regression, however, the 
labels yi are discrete variables. 

● One could use a sign function for a binary classifier:  

commonly known as the Perceptron

https://en.wikipedia.org/wiki/Perceptron


Logistic (sigmoid) function

● Perceptron is an example of “hard classification”, i.e. each datapoint is assigned a category (0 or 1) 

● It is favorable in many cases to have a “soft classifier”, that outputs the probability of a given category 
(given xi, the classifier returns the probability of being in category m)

● Logistic (or sigmoid) function:     where 

 

49

● In logistic regression, the probability that a point xi belongs to a category yi = {0,1} is given by:

Here θ are the weights we want to learn



Cross-entropy as cost function for logistic regression
● We now use Maximum Likelihood Estimation (MLE) to define the cost function for logistic regression. 

In MLE we choose parameters to maximize the probability of seeing the observed data. 

● Consider a dataset D={(yi,xi)} with binary labels yi ∈ {0,1} from which the data points are drawn 
independently. The likelihood of observing the data under our model is:  
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● We can compute the log-likelihood: 

● The maximum likelihood estimator is defined as:

●

● The cost (error) function for logistic regression 
is defined as the negative log-likelihood:

commonly known as the Cross-entropy

We note that, just as in linear regression, in practice we usually supplement the cross-entropy with 
additional regularization terms, usually L1 and L2 regularization

https://en.wikipedia.org/wiki/Cross_entropy


Minimization of the cross-entropy
● The cross-entropy is a convex function of the weights w and therefore any local minimizer is a global 

minimizer. 

● Minimizing the cost function leads to:
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where we made use of the logistic function identity  

● The cross-entropy is a convex function of the weights w and therefore any local minimizer is a global 
minimizer. 

● The above is a transcendental equation for w, the solution of which unlike linear regression, cannot 
be written in closed form. This is the case where we need to utilize the numerical methods 
previously introduced, such as gradient descent. 

● Notice that Scikit’s logistic regression solvers have in-built regularizers. Their role is fundamental in 
general to prevent overfitting. 



SoftMax Regression
● So far we focused only on binary classification. We can generalize logistic regression to multi-class 

classification (multinomial logistic regression). The softmax in machine learning is related to the 
Boltzmann distribution in physics:  
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pi is the probability of a state; 
M is the number of accessible states

● In ML, can be formulated as:

Notice that for M=1 we recover the cross-entropy 
of the logistic regression.

where        means the sample xi belongs to class 1, and yim’ is the m’-th 
component of the vector yi. From the above, it’s possible to build a likelihood and define the cost:

https://en.wikipedia.org/wiki/Boltzmann_distribution


Practical tips and Further Reading

● OLS can be optimized with gradient descent, Newton's method, or in closed form. 
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[1] https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
[2] https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
 

● Ridge has a closed form too. 

● Read scikit-learn documentation to see details on implementation 

● “Polynomial” regression  

● The most commonly used loss function for Linear Regression is 
Least Squared Error, and its cost function is also known as Mean 
Squared Error(MSE) [The terms cost and loss functions almost refer to the same meaning. But, 
loss function mainly applies for a single training set as compared to the cost function which deals with a 
penalty for a number of training sets or the complete batch]

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82


Practical tips and Further Reading

● Categories: one-hot encoder One-hot encoding ensures that machine learning does not assume that higher 
numbers are more important. For example, the value '8' is bigger than the value '1', but that does not make '8' 
more important than '1'. The same is true for words: the value 'laughter' is not more important than 'laugh'.

● https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html Therefore, there's no need to one-hot 
encode your data if you have the labels already provided

● Logistic regression is easier to implement, interpret, and very efficient to train. If the number of observations is 
lesser than the number of features, Logistic Regression should not be used, otherwise, it may lead to overfitting. 
Logistic regression can be thought as a special case of NN with no hidden layer, that uses the sigmoid activation 
function and softmax with cross-entropy loss. 

● A full fledged NN with hidden layers (deep network) and non-linear activation functions allows to capture highly complex 
functions of the features that could be characteristic of several problems.

● There are other techniques (e.g., SVMs not covered here) which can capture nonlinear functions. But NNs are popular 
because there are highly evolved and scalable platforms to capture more and more complex relationships by easily 
constructing a deep network and feeding in a lot of data
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[1] https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
[2] https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
 

https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
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Ensemble Methods
● One of the most powerful and widely-applied ideas in modern ML. Ensemble methods correspond to 

combining predictions from multiple — often weak — classifiers to improve the predictive performance. 

● Also in the context of NN is common to combine the predictions from multiple NNs, e.g., in complicated 
image classification problems. 

● The key to determining when ensemble methods work is the degree of correlation between the models [1].  

● Largely used ensemble methods are:

○ Boosting

○ Random forest 

○ Gradient boosted trees (e.g., XGBoost) 
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“Wisdom of the crowds”, Aristotle

[1] Louppe, Gilles (2014), “Understanding random forests: From theory to practice,” arXiv preprint arXiv:1407.7502
*E.g., the correlation coefficient between the predictions made by two randomized models based on the same training set but with different random seeds [hblvi2ml]

Importance/role oÿ correlation* between models

1. Holding the ensemble size fixed, averaging the predictions of correlated 
models reduces the variance less than averaging uncorrelated models. 

2. In some cases, correlations between models within an ensemble can 
result in an increase in bias, offsetting any potential reduction in variance 
gained from ensemble averaging. 

One of the most dramatic examples of increased bias from correlations is the 
catastrophic predictive failure of all derivative models used by Wall Street during 

the 2008 financial crisis.



● Assume we have a predictor gL(x) that gives a prediction of our model for a data point x. The estimator 
can be chosen by minimizing the cost function squared error:

Bias-Variance Decomposition for Ensambles
● The bias-variance tradeoff is discussed in the context of continuous predictions like regression, but 

many intuitions apply also for classification tasks. 

● Let’s recall the bias-variance tradeoff for a single model first. 

● Consider the dataset and let’s assume is generated from a noisy model
where noise is normally distributed with mean zero and st. deviation σε.  
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^

● We already showed that the expected generalization error can be decomposed as:

● What happens now if we have an aggregate ensemble predictor?
M is the dimension oÿ the ensemble

We assume that θ parametrize members 
oÿ the ensemble 

θ can be seen as the 
hyper-parameters oÿ models, 
they introduce stochasticity 

in the ensemble



Bias-Variance Decomposition for Ensambles
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● What happens now if we have an aggregate ensemble predictor?

M is the dimension oÿ the ensemble

● For a thorough derivation see [hblvi2ml, Sec. VIII]. 

Expectations are 
computed over the 
joint distribution oÿ 

datasets L and 
hyperparameters θ 

Intuitively this derives from 
the variance of n correlated 
variables:

Var(X) = σ2/n + (n-1)/n ρσ2     

           = ρσ2 + (1-ρ)/n σ2
● Variance of the aggregate estimator 

depends on their correlation

● For large ensemble (M→∞) variance 
is significantly reduced, and for 
completely random ensembles (ρ
(x)=0) it is maximally suppressed!

● Bias of the aggregate predictor is just 
the expected bias of a single model

https://www.sciencedirect.com/science/article/pii/S0370157319300766


Intuitions behind ensembles

Ensembles are successful for the following reasons:

1. Statistical: provided their predictions are uncorrelated, averaging several models reduces the risk of 
choosing the wrong hypothesis.

2. Computational: many learning algorithms rely on some greedy assumption or local search that may 
get stuck in local optima. An ensemble made of individual models built from many different starting 
points may provide a better approximation of the true unknown function

3. Representational power (expressivity): for a learning set of finite size, the true function cannot be 
represented by any of the candidate models in the hypothesis H. By combining several models in an 
ensemble, it may be possible to expand the space of representable functions and to better model 
the true function.

59

[1] Louppe, Gilles (2014), “Understanding random forests: From theory to practice,” arXiv preprint arXiv:1407.7502 

Using an ensemble allows one to reduce the variance by averaging the result of many independent classifiers.
This procedure works best for unstable predictors for which errors are dominated by variance due to finite 
sampling.



Bagging
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Bootstrap AGGregation

● Imagine to have a large dataset L that we could partition into M smaller data sets {L1, L2, …, LM}. If each is 
sufficiently large to create a predictor, we can create an ensemble aggregate predictor:

● For classification tasks where each predictor predicts a class label j ∈ {1, …, J}, this corresponds to a majority 
vote: 

We know this can siĀnificantly reduce variance without 
increasinĀ bias. 
But we need to have enouĀh data in each partition.  

● This can be circumvented with empirical bootstrapping, that is 
with new bootstrapped datasets 
{LBS

1, L
BS

2, …, LBS
M}. 

● Resampling with replacement from the original dataset 

● The price we pay for using bootstrapped training datasets as opposed to 
really partitioned dataset is an increase in the bias of our bagged estimators. 



Boosting
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Boosting is another powerful ensemble method. 
In bagging, the contribution of all predictors is weighted equally in the bagged (aggregate) 
predictor. In some problems instead one might prefer to use an “autocratic approach” that 
emphasizes the best predictors.



Boosting

● In boosting an ensemble of weak classifiers is combined into 
a boosted classifier. Each classifier is associated with a 
weight αk (such that Σkαk=1) that indicates how much it 
contributes. 
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● AdaBoost (Adaptive Boosting) is a popular technique. 
The aggregate classifier is formed in an iterative 
process. 

Freund, Yoav, Robert Schapire, and Naoki Abe (1999), “A short introduction to boosting,” Journal-Japanese Society For Artificial Intelligence 14 (771-780), 1612.

pseudo-code



Random Forest
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Comparison oÿ decision surÿaces
(each row a subset oÿ 2 ÿeatures, Iris problem) 

● A decision tree uses a series of questions to hierarchically 
partition the data. 

● A random forest is composed of a family of (randomized) 
tree-based classifier decision trees 

● It is clear that more complex decision trees lead to finer 
partitions that give improved performance on the training 
set. However, this generally leads to overfitting, limiting the 
out-of-sample performance.

● In order to create an ensemble of decision trees, we must 
introduce a randomization procedure (the power of 
ensembles to reduce variance only manifests when 
randomness reduces correlations). Three ways for 
randomness

○ (i) Bag, (ii) feature bagging, (iii) extremized random 
forests (combination)

Breiman, Leo (2001), “Random forests,” Machine learning 45 (1), 5–32.



Gradient Boosted Trees and XGBoost
● Gradient boosted trees combine boosting and gradient descent (in particular Newton’s method) to 

construct ensemble of decision trees

● Ensemble are created iteratively. A cost function measures the performance of the ensemble. At 
each step we compute the gradient of the ensemble and add trees that move in the direction of the 
gradient. 

● Extreme Gradient Boosting (XGBoost) is a particular technique 
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cost 
ÿunction

aĀĀreĀate 
prediction

Goodness oÿ prediction 
(convex and 

differentiable) 

ReĀularization term
Penalizes larĀe weiĀhts on the 

leaves and larĀe partitions 
with many leaves

space oÿ tree Ensemble is ÿormed 
iteratively

Ensemble Idea: ÿor larĀe t, each 
decision tree is a small perturbation to 

the predictor 

An approximate Āreedy alĀorithm is run to 
optimize one level oÿ the tree at a time to find 

optimal splits oÿ the data. Additional 
reĀularization such as shrinkaĀe and ÿeature 

subsamplinĀ are also used.



Further Reading

● Structured vs unstructured data: Unstructured data can be  information that is not arranged according to a pre-set 
data model or schema. Examples of structured data include names, dates, addresses, credit card numbers, stock 
information, geolocation, and more. Structured data is highly organized. Ensemble methods perform well especially 
on structured datasets. Neural networks generally perform better than ensemble methods on unstructured data, 
images, and audio.

● Feature importance 
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https://machinelearningmastery.com/calculate-feature-importance-with-python/ 

https://machinelearningmastery.com/calculate-feature-importance-with-python/
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STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids 
    (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid 
              (That forms K clusters)

STEP 4: Compute and place the new centroid of each cluster 

STEP 5: Reassign each data point to the new closest centroid
              If any reassignment took place, go to STEP 4, 

     otherwise go to FIN.
 

Your Model is Ready

K-Means

K-means clustering can be formulated as: given a 
fixed integer K, find the cluster means {μ} and the 
data point assignments in order to minimize the 
following objective function:

rnk={0,1} binary assiĀnment

hard-clustering



Density Based Clustering
Two different clusterings based on two different level-sets

2 or 3 clusters?

The area of the regions is the measure of “persistence”.

Maximize the persistence of the clusters under the constraint that they do 
not overlap.

Core distance (defined by a required # of neighbors) as estimate of density

Points have to be in a high density region and close to each other (“mutual 
reachability”)
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                      clusters as more likely “regions” separated by less likely regions -> densities 

soft-clustering



Density Based Clustering
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Mutual reachability

The mutual reachability distance is a 
summary at what level of “𝜆” two points 
together will connect. This is what we use as a 
new metric.

[1] DBSCAN, or density-based spatial clustering of applications with noise [Khan, 2014]
[2] HDBSCAN hierarchical DBSCAN [McInnes, 2017]

https://ieeexplore.ieee.org/abstract/document/6814687/
https://joss.theoj.org/papers/10.21105/joss.00205.pdf


Hierarchical Clustering 
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Minimum spanning tree 
https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html#build-the-minimum-spanning-tree

After mutual reachability… consider a threshold value, starting high, 
and steadily being lowered. Drop any edges with weight above that 
threshold. As we drop edges we will start to disconnect the graph into 
connected components. Eventually we will have a hierarchy of 
components (from completely connected to completely disconnected) 
at varying threshold levels). In practice this is very expensive: many 
edges… Fortunately graph theory furnishes us with just such a thing: 
the minimum spanning tree of the graph.

https://en.wikipedia.org/wiki/Prim%27s_algorithm


Hierarchical Clustering 
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A hierarchy of multiple 
level-sets is obtained by 

varying the density 
threshold

 

Visualization oÿ the tree 
top-down as in the literature

Minimum spanning tree 
https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm


hdbscan vs k-means 
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K-means is a semi-supervised parametric algorithm parameterized by the K cluster 
centroids (if you want K seeds). Can perform if the underlying assumptions on the 
shape of the clusters are not met. Clusters have to be:
● “round” or spherical
● equally sized
● equally dense
● most dense in the center of the sphere
● not contaminated by noise/outliers

Hdbscan on the other hand is an unsupervised hierarchical clustering which excels 
when data has:
● Arbitrarily shaped clusters
● Clusters with different sizes and densities
● Noise

 



PCA 
● Ubiquitous method for dimensional reduction

● Inspired by the observation that in many cases, 
the relevant information in a signal is contained in 
the directions with largest variance

● Use to reduce dimensionality 

● Principal components are orthogonal to each 
other   

● Calculate the Eigenvectors and Eigenvalues of 
the Covariance Matrix
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● We will utilize useful and easy to use python 
packages for Principal Component Analysis 
to create insightful plots. 

[1] Levina, Elizaveta, and Peter J. Bickel. "Maximum likelihood estimation of intrinsic dimension." Advances in neural information processing systems. 2005.
[2] PCA for dimensionality reduction: Abdi, Hervé, and Lynne J. Williams. "Principal component analysis." Wiley interdisciplinary reviews: computational statistics 2.4 
(2010): 433-459.



t-SNE
● t-SNE is also a method to reduce the dimension. One of the most major differences 

between PCA and t-SNE is it preserves only local similarities whereas PA preserves 
large pairwise distance maximize variance.

● Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to 
methods for visualizing high-dimensional data.

● Each high-dimensional training point is mapped to low-dimensional embedding 
coordinates, which are optimized in a way to preserve the local structure in the data.

● The idea of stochastic neighbor embedding is to associate a probability distribution to 
the neighborhood of each data
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[1] Maaten, Laurens van der, and Geoffrey Hinton (2008), “Visualizing data using t-sne,” Journal of machine learning research 9 (Nov), 2579–2605.

● t-SNE can rotate dat 

● t-SNE results are stochastic (depends on initial seed)

● t-SNE preserves short distance information

● Scales are deformed 

● Computationally intensive

t-SNE

PCA



Tips, further reading

● Hard Clustering: In hard clustering, each data point either belongs to a cluster completely or not. 

● Soft Clustering: In soft clustering, instead of putting each data point into a separate cluster, a 
probability or likelihood of that data point to be in those clusters is assigned 

● Since clustering algorithms including kmeans use distance-based measurements to determine the similarity 
between data points, it's recommended to standardize the data to have a mean of zero and a standard deviation 
of one since almost always the features in any dataset would have different units of measurements [ref]

● PCA is at a disadvantage if the data has not been standardized before applying the algorithm to it. 

● PCA vs t-SNE: which one to use? [ref]
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https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://medium.com/analytics-vidhya/pca-vs-t-sne-17bcd882bf3d

