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Introduction and Scope |

e Thisis a 2 days course for beginners dipping toes into ML for the first time!

o Goal: introduce basic concepts (a small subset of topics)

] Starting point for experimenting and playing with ideas
[ Build upon physicist language/background
[ Pre-requisites: linear algebra, multivariate calculus, probability theory, MC-methods, (some) python...

o Lectures are accompanied by simple hands-on sessions and real-world
examples

o References

e Course indico: https://agenda.infn.it/event/28573/
e Lectures, exercises: https://github.com/cfteach/ml4hep

e Ahigh bias, low-variance introduction to Machine Learning [hblvi2ML]:

https://arxiv.org/abs/1803.08823
e “ALiving Review of Machine Learning for Particle Physics”:

https://iml-wg.github.io/HEPML-LivingReview/ arXiv:2102.02770 (2021)
e “Artificial Intelligence and Machine Learning in Nuclear Physics”: arXiv:2112.02309 (2021)
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1950s

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms that learn patterns in
data over time

D

Bayesian methods l\l
Genetic Algorithms,
Rules-based system,

Random Forest,
Support Vector Machines,
XGBoost,

L

DL

CNN, RNN, GAN,

Data Science blends data
analytics, computer science and
business domain expertise to solve
problems.

DS

ata Analytics is the practice of

using Machine Learning
algorithms and visualization to
derive insights.

Use of AI/ML/DL in HEP
becoming ubiquitous
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ML

Unsupervised learning is
a type of machine
learning in which the
algorithm is not provided
with any pre-assigned
labels or scores for the
training data.
Unsupervised learning
algorithms must first
self-discover any
naturally occurring
patterns in that training
data set.

¥ MACHINE

REINFORCEMENT

Reinforcement learning is concerned with how intelligent agents ought to take actions in an

Supervised learning is
the machine learning
task of learning a
function that maps an
input to an output based
on example input-output
pairs. It infers a function
from labeled training
data consisting of a set
of training examples

environment in order to maximize the notion of cumulative reward and make informed choices.

R. S. Sutton, and A. G Barto (1998), Reinforcement learning: An introduction, Vol. 1 (MIT press Cambridge)
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Big data

Visualisation
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Forward Propagation

+1

Backward Propagation

Estimation

Layer L,

Error

_
hw,b(x)

The real magic about NN is the
result of an optimization technique:
back-propagation (how a NN works
to improve its output over time)

DL (more hidden layers) nets are
good in learning non-linear functions
(heavy processing tasks)

Based on old school NN revitalized
by augmented capabilities (e.g.
GPU) and a plethora of new
architectures (RNN, CNN,
autoencoders, GAN, etc.)



Unsupervised/Supervised/ Reinforcemeltl Ui ot . 151 5602

Nature, 518.7540 (2015)

NIPS 2016: “If intelligence is a cake,

the bulk of the cake is unsupervised learning,

the icing on the cake is supervised learning,

and the cherry on the cake is reinforcement learning”

Google DeepMind

Deep Q-learning
playing Atari Breakout

LeCun, Turing award 2018
VP and Chief Al Scientist, Facebook



Timetable/OvervieJ

1- Introduction to the training course

2- AUMLIDL: what it is all about

Aula Salvini , LNF

3 - Gradient Descent

Auta Salvini, LNF

4-Regression in a nutshell

Aula Salvini , LNF

Coffee Break

5 - Hands-on - Exercise

Aula Salvini, LNF

Lunch Break

Aula Salvini , LNF

6 - Decision Trees: short overview + example

Aula Salvini , LNF

7- Clustering: practical approach with few examples

Aula Salvini , LNF
Coffee Break
Aula Salvini, LNF

8- Hands-on - Exercise

Aula Sal

timetable can change a bit as

9- Deep Neural Networks

09:10
Aula Salvini, LNF

Cristiano Far
10 - Deep Neural Networks.

Aula Salvini, LNF
Coffee Break
Aula Salvini, LNF

11 - Hands-on - Build a simple NN

Aula Salvini, LNF

Lunch Break

Aula Salvini, LNF

12 - Approaches to Multi-Objective Optimization in a nutshell

Aula Salvini, LNF

14 - Al-assisted Detector Design

Aula Salvini, LNF
Coffee Break
16:30- 17 Aula Salvini, LNF

Cristiano 1 13 - Hands-on - MOO Exercise

Aula Salvini, LNF

needed




Structure and Disclaimer

e ML is broad and interdisciplinary and draw on ideas from many fields

e Inthese 2 days we can only cover very few ideas

e In some cases | will just give the gist of the theoretical foundation behind these
concepts but | won’t have time to go into the details.

e \We will try to provide/point to tools to start using ML in practical problems

o Jupyter notebooks
o  Numerous of great software packages
e Datasets:

o  SUSY dataset (5M MC samples)
o  Higgs dataset (11M)

o Artificially created datasets

Following [hblvi2ZML] we will cover:

e Regression

“Decision trees”
Clustering

(Intro to) Deep Learning

[ J
[ ]
[ ]
e  Optimization
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Notebooks are available at [hblviZml].
In these 2 days we will cover explicitly only few exercises, spanning supervised
classification tasks, unsupervised approaches for clustering and optimization.

ML4A4HEP


https://physics.bu.edu/~pankajm/MLnotebooks.html

Jupyter Notebooks

e  Work with python3
e Install jupyter in a virtual environment
o python3 -m venv env ml4hep
o source ./env_mlé4hep/bin/activate
o pip install jupyter (you can also install with anaconda if you are more familiar)
e How to change/add the kernel of a jupyter notebook in a virtual environment?
o ipython kernel install --name "env ml4hep" --user
e  To start notebook (from terminal, virtual environment):
o Jjupyter notebook

& JUpyter Quit Logout

Files Running Clusters

Select items to perform actions on them. Upload | New ~ | &
Notebook
o | - E Nemo & Python 3 (ipykernel)
[ env_midhep

& clustering.ipynb repo_ml4hep

ML_is_difficult.ipynb

Text File

XGBoost_SUSY.ipynb Folder
0 hdbscan_tree.png Terminal
[ k-means_algo.png aday ago

[ k-means, anim.gif a day ago
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https://queirozf.com/entries/jupyter-kernels-how-to-add-change-remove

What is Mlﬂ

ML, data science and statistics are fields describing how to learn from and make predictions about
data.

Techniques in ML tend to be more focused on predictions than estimation. Methods from ML tend to
be applied to more complex high-dimensional problems.

Estimation and prediction problems can be cast into a common conceptual framework related to
some parameters 8 of a model p(x|0) that describes the probability of observing x given 0

Fitting the model involves finding 8* providing best explanation for data. If fitting refers to the method
of least squares, the estimated parameters maximize @*=argmax{p(x|8)}.

Although the goals of estimation and prediction are related they often lead to different approaches:
o Estimation problems are concerned with the accuracy of 6*.

o Prediction problems are concerned with the ability of the model to predict new observations.

We will focus on prediction.
Problems in ML typically involve inference about complex systems where we do not

know the exact form of the mathematical model that describes the system.

MacKay, David JC (2003), Information theory, inference and learning algorithms (Cambridge university press)

(K



Why is ML ubiquitous |

e Last three decades unprecedented ability to generate
and analyze large data sets: big data revolution
spurred by exponential increase of computing power
and memory

e Computations that were unthinkable can now be
routinely performed on laptops.

e Specialized computing machines (e.g., GPU-based)
are continuing this trend towards cheap, large scale
computation.
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e Physicists are uniquely situated to benefit from and contribute to ML. Many core concepts in ML have their
origin in physics: MC methods, variational methods, simulated annealing, energy based models etc

e HEP has been at the forefront of using big data.

o  LHC experiments produce data at a rate of 1PB/sec; after data reduction (zero suppression, custom compression
algorithms) 50TB/s resulting in as much data every hour as Facebook collects globally in a year
o AtLHCb, 70% of all data retained are classified by ML and all charged patrticle tracks are vetted by NNs.

A. Radovic, et al. "Machine learning at the energy and intensity frontiers of particle physics." Nature 560.7716 (2018): 41-48.
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Why is ML ubiquitous |

HW Trigger Muon 1D
@CMS

Ghost tracks killer,
HLT2 Topologicdl Trigger @LHCDb

e L1 trigger responsible for selecting 100k/s
interesting events out of the 40M/s

e Endcap Muon Track Finder (EMTF)
o Needs to operate fast (~ 500 ns)
o No tracker info available, only muon
chambers

e Want Machine Learning to do the p,
assignment (implemented on FPGA)

Main parameters: A® , AD, , AD
ei‘—:-' Aol:' Ael!' M)l

transverse momentum (p. ) is assigned based on curvature
The Endcap Muon Track Finder (EMTF) needs to process
hits and assign a momentum

Interesting muons have large p,

Fake-track (ghost) killing DNN based on 22 features, most important are hit

reduces the rate of events selected in the HLT1.

Run in the trigger on all tracks (it must be very fast). Use of custom activation
function and highly-optimized C++ implementation.

multiplicities and track-segment chi2 values from tracking subsystems. Significantly

e The main b-physics trigger used by LHCb.
Event Selects vertices which are:
> Detached from the primary pp
> Compatible with coming from a b-hadron decay

HLT “1-track” HLT “2-body SV*
Consists of:
e An SV algorithm that considers 2, 3, and 4-track
? vertices (seeded by HLT1 ML selections).
e The ML uses a list of features: n(tracks), corrected
mass, vertex X2, scalar track p, sum, flight distance
)(2, pseudorapidity (PV-SV), min(track p_), n(small IP

tracks), IP X2, n(very b-like tracks).
e All features are discretized in the ML for stability,
robustness, etc. This allows to control growth of DT.

C. Fanelli, ML in the online data acquisition, INFN Machine Learning school, 2019
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https://agenda.infn.it/event/18113/contributions/85370/attachments/63473/76423/ML_online_data_acquisition-C.Fanelli.pdf

https://iml.web.cern.ch

IML

CERN Accelerating science Signin Directory

ABOUTIML  FORUM (MAILING LIST)  MEETINGS

: IML

Who we are

The Large Hadron Collider at CERN produces petabytes of data per day at the four large experiments (ALICE, ATLAS, CMS, and
LHCb), which altogether have roughly 10.000 collaborators. Processing this amount of data leads to plenty of demanding
challenges that require development and deployment of state-of-the-art machine learning solutions. Applications range from
small to truly large scales and from very fast (a few ps) to modest inference (many seconds) times. The Inter-experimental
Machine Learning (IML) Working Group provides a forum for the machine learning community at the LHC. It brings together
scientists from the LHC experiments, connects them to the data science community, fosters inter-experimental common
solutions, and provides training and benchmarks. Each experiment is represented by an IML coordinator. The IML working group

is hosted and supported by the LHC Physics Center at CERN (For a formal definition of the group, please refer to

What we do

IML organizes monthly meetings on a variety of subjects. These meetings are often topic-oriented (focusing on a certain ML
technique) and may include external experts. Each spring IML organizes an annual workshop typically comprised of roughly 300
participants, which includes invited data scientist's talks, submitted talks, and tutorials.

IML also serves as entry point to find LHC specific machine learning resources, such as s solutions for machine leaming

starting from the common ROOT file format. We build a forum for community driven summaries of software solutions, announce
LHC tailored trainings/school, and list relevant papers and people involved. We can help finding temporary resources
(GPUSs) for tests. We are currently building up a database with s datasets and challenges in order to better enable

testing new methods in our domain against previous ones.

PEOPLE  PUBLIC DATASETS SOFTWARE

: Inter-Experimental LHC Machine Learning Working Group

News

New ALICE coordinator
Gian Michele Innocenti took over from
Riidiger. Welcome to the team!

New TH coordinators
Riccardo Torre and Andrea Wulzer
represent now theory. Welcome to the
team!

NEW CMS coordinator
Pietro Vischia took over from Loukas.
Welcome to the team!

NEW LHCb coordinator

Simon Akar took over from Paul.
Welcome to the team!

HARDWARE
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AI4EIC |
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EIC Schedule and Role of Aﬂ https://eic.al
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Typical Problem |

e Ingredients:
o Dataset D(X,y): X matrix of independent variables, y dependent variables
o Model f(X;08) where f: X—vy is a function of the parameters 0
o Cost function C(y,f(X;0)) to judge how well the model performs on the observations y

e The model is fit to find @ that minimize the cost function; commonly used cost is squared error
(method of least squares)

e Recipe for prediction problems:

1. Randomly divide the dataset D into mutually exclusive D, .- (typically 90%) and D, (10%)

2. Model is fit on training data 8*=argmin {C(y,.. .f(X, . ;6))}

3. The performance of the model is evaluated on C(y,.,.f(X,:6))

e Splitting data provides an unbiased estimate for the predictive performance (known as cross-validation)
e In-sample error: E,_ = C(y, ....f(X, .. ;0)); out-of-sample error: E_ = C(y, ..f(X,0))

e E_ ,isalwayslargerthanE ,E_ 2E_
20


https://machinelearningmastery.com/difference-test-validation-datasets/

Bias/VarianceJ

e The model that provides the best explanation for the current dataset will probably not provide the
best explanation for future datasets

e The discrepancy between E._, E_  grows with the complexity of our data and of our model
(increased model parameters, high dimensional space, curse of dimensionality)

e Forthese reasons (and for complicated models), predicting and fitting can be different things. Need
to pay attention to out-of-sample performance. Fitting existing data well is fundamentally different
from making predictions about new data.

e Let’s see this starting from simple one-dimensional problem: we want to fit data with polynomials of
different orders.

e Our ability to predict depends on the number of data points, the noise in the data, and our prior
knowledge about the system

Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
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Fitting vs Predicting |

Consider probabilistic process that assigns a label y. to an observation x.. Data are generated from
oy =f(x)+n where n is a gaussian uncorrelated noise variable such that <n>=0 and <r]ir]j>=6ij02
To make predictions we consider a family of functions f_(x;8) (different model complexity):
o Polynomial of order 1: f (x;8,) — 2 pars
o Polynomial of order 3: f,(x;8,) — 4 pars
o Polynomial of order 10: f, (x;8.,) — 11 pars

Using a more complex model class may give us better prediction power but only if we have a large
enough sample size to accurately learn the model parameters

To learn 8 we use a training dataset and test the effectiveness of the model on the test dataset

Obviously the more data and less noise we have the better the predictions are

22



Fitting vs Predicting |

We utilize a test interval [0,1.2]
which is larger than the training
interval [0,1.0]

Data sampled from
o f(x)=2x
o f(x)=2x-10x° + 15x'°

In absence of noise, even with a
small training set
(N,,i,=10<N__=20) the model
class that generated the data
provides the best fit and also the
best out-of-the sample
prediction.

Training Data

Nisain =10, o =0 (train)

linear model

/>
Training
Linear
Poly 3

= Poly 10

0.2 0.4 0.6

Nigain =10, o =0 (train)

polynomial order 10

Training
e | inear
Poly 3

——  Poly 10

0.2 0.4 0.6

FIG. 1 Fitting versus predicting for noiseless data. Nu..
; data was fit using three model classes: linear models (red), all
n) and used to make prediction on N,.,. = 20 new data points

linear model (top) or tenth-order polynomial (bottom). Tt
polynomials of order 3 (yellow), all polynomials of order 10 (gr

Test Data

N =20, o =0 (pred.)

test
linear
3rd order

=== 10th order

0.5 A -
: " same linear model

Wl

0.00 0.25 0.50 0.75
X

0.0

Nyt =20, 0 =0 (pred.)

Test
60— linear

3rd order

40 == 10th order

same polynomial order 10

0.50 0.75
X

= 10 points in the range z € [0, 1] were generated from a

with zy € [0,1.2] (shown on right). Notice that in the absence of noise (¢ = (). given enough data points that fitting and

predicting are identical.




Fitting vs Predicting |

We utilize a test interval [0,1.2]
which is larger than the training
interval [0,1.0]

Data sampled from
o f(x)=2x
o f(x)=2x-10x° + 15x'°

Noise =1; training set
(N,,,=100>N __=20); even when
the model class that generated the
data is a 10 order polynomial, the
linear and 3rd order polynomials
give better out-of-sample
predictions.

At small sample sizes, noise can
create fluctuations in the data that
look like genuine patterns.

Training Data Test Data
Nirain =100, o =1 (train) Niet =20, o =1 (pred.)

= - Test
linear model » ' linear
n-g—p-t—— g ALY 3rd order
: === 10th order better
Training ' L. S
=== Linear l
Poly 3
m—= Poly 10

0.4 0.6 d _m().tl(l 0.25 0.50 0.75 1.00 1.25

X

Niruin =100, o =1 (train) Nt =20, o =1 (pred.)
Test
polynomial order 10 B : linear

3rd order

_f)\___/:_.&s__é_f__,{:__; ' ; = 10th order
Bacar il * Training ® ;-'; ; ’ W :
——— Linear * “® ° : ; =3 —_—
Poly 3

Poly 10

worse

02 04 06 08 q 00 025 05 075 100 1.2

X X

FIG. 2 Fitting versus predicting for noisy data. Ny... = 100 noisy data points (¢ = 1) in the range x € [0, 1] were
generated from a linear model {top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear
models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make prediction on N, ., = 20
new data points with zi € [0,1.2|(shown on right). Notice that even when the data was generated using a tenth order
polynomial, the linear and third order polynomials give better out-of-sample predictions, especially beyond the = range over
which the model was trained.



Bias/Variance Tradeoff | Training Data TestData

Niruin =10000, o =1 (train)

= ‘iPOlynQr-ni'aI order10

e We utilize a test interval [0,1.2] Y
which is larger than the training | s
Intel’val [0,1 0] gaar Training

~—

* Linear

e Data sampled from S ik Poly 3

=== Poly 10

O f(X) = 2X .2 0.4 ' 0.6
o f(x)=2x-10x° + 15x'°

e Noise =1; let’s increase the

training setto N =10*

e The 10 polynomial model gives both the best fit ad the most predictive power over the entire range
[0,1] and actually slightly beyond up to ~1.05, but then the predictive power quickly degrades

e This is our first experience with the bias-variance tradeoff: where the amount of data is limited, we
often get better predictive performance by using a less expressive model (lower order polynomial)

o The simpler model has more bias but is less dependent on the particular realization of the
training set, i.e. has less variance.

25



ML is difficult

® [ast one was a good example where we are good at interpolating but not at extrapolating.

e Fitting is not predicting.
o Fitting existing data well is fundamentally different from making predictions about new data
e Using a complex model can result in overfitting

o Better result on training data; when data size is small and the data are noise, this results in
overfitting and degrade predictive performance

e For complex datasets and small training sets, simple models can be better at
predicting than complex ones due to the bias-variance tradeoff

o Even though the correct model (less bias) has better predictive performance for an infinite
amount of training data, the training errors stemming from finite-size sampling (variance) can
cause simpler models to outperform the more complex model

o ltis difficult to generalize beyond what seen in the training dataset.

26



Statistical Learning Theory |

e \We summarize here the sense in which learning is possible with focus on supervised learning

e We begin from an unknown function y=f(x) and fix a hypothesis set H of all functions we want to
consider

e f(x) produces a set of pairs (x, y.), i=1,...,N, which serve as he observable data. Our goal is to
select a function from the hypothesis set h € H that approximates f(x) as best as possible, such
thath=f

e If thatis possible we say we learnt f(x)

e But if the function f(x) can, in principle, take any value on unobserved inputs, how is it possible to
learn in any meaningful sense?

The relationship between the in-sample error E. and the out-of-sample (or generalization) error is
the domain of statistical learning theory

27



Bias/Varian(E

Assumptions:

E . and E, as a function of the size of training data
We assume data come from a complicated distribution
(so we won'’t exactly learn f(x))

(1) The more data we train on, the more the sampling noise
decreases and the training data becomes representative of the true
distribution. For this reason E_ , and E,_ approach the same bias.

Number of data points

The more data we train on, the more the sampling noise decreases

and the training data becomes representative of the true distribution. ij:,'pfg Sohame fﬁf Lyl ‘;‘;j;;;;}:’g‘°S;"jiz‘;f“,';;ﬁf_
For this reason E,, and E,, approach the same value called bias. The e NS P ot
bias represents the best our model can do if we had an infinite s Tuncdon o maimbae of ralglng et poiifs: The

schematlic assumes 14 1¢ number ol data pUl]l S 18 llg( ‘lll
amount Of data g the schematic does not show the initial drop in

Ein for small amounts of data), and that our model cannot
exactly fit the true function f(x).

The more complex the model we use, the smaller the bias. However
we do not have an infinite amount of data.

For this reason the best predictive power is get by minimizing the E_ . E_  is decomposed in a bias and a variance,

which measures the errors in training our model due to sampling noise

The difference between E_  and E, measures the difference between fitting and predicting.

28



Bias/Varian(E

Assumptions:
° E . and E, as a function of the size of training data
° We assume data come from a complicated
distribution (so we won'’t exactly learn f(x))

e Model complexity is a subtle concept which can in many cases be related to
the number of parameters needed to approximate the true function f(x)

1 of the model comple

e E_, will bein general a non-monotonic function of the model complexity. size. Notice how the b ith model com-

but the varic : performance due

sampling et vith model complex-

Py Itis genera”y minimized for intermediate Comp|exity_ ity, T ul;timal pcrl‘onnuh ieved at intermediate

levels of model complexity.

e Even though using a complicated model always reduces bias, at some point the model becomes too complex for the amount
of training data that the generalization error becomes large due to high variance

e Thus it may be more suitable to use a more biased model with small variance.

Eyut = Bias® + Var + Noise, e Bias measures the deviation of the expectation value of our
estimator (asymptotic value in the infinite data limit) from
the true value

It can be

shown that:  var =Y Ep[(f(z:;0p) — Eplf(xi;6p)))?,
i e Variance measures how much our estimator fluctuates due

Bias® = 3 \(f(2:) — Ep[f(2:;0p)])? to finite-sample effects
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Gradient Descent

e Almost every problem in ML starts with the same ingredients: a
dataset X, a model g(6) which is function of parameters 6, and a
cost function C(X,g(8)) describing how well the model explains
the observations.

e The model is fit by minimizing the cost function.

e Gradient descent is a powerful approach to do so.

e Following this approach the training procedure ensures that the parameters flow towards a minimum of
the cost function.

e GD in practice is full of surprises: the cost functions in ML are usually complicated, non-convex functions
in a high-dimensional space with many local minima.

e Furthermore we almost never access the true function that we wish to minimize (we do not know it at the
ground truth).

e In modern applications the number of parameters to fit is often enormous (millions of parameters and
examples).
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Gradient Desceru

Let’s call the function we want to minimize. E6) = C(X,g9(0))
n
This energy function can be written in terms of n data points PDIC)E Z ei(x;,0)
i=1

In the simplest GD algorithm we iteratively update the parameters as:

vy :@HE (6:), . _ N .
(n,) learning rate: controls how big a step we should take in the direction of the gradient
0t+1 po Ot — Vi

For sufficiently small n, we would converge to a local minimum, but this comes at a huge
computational cost

If too large we can overshoot the minimum.

In practice we need to specify a “schedule” that decreases n, at long times.

The learning rate could be adapted using the inverse of the Hessian matrix (see
Newton’s method), so that larger steps are taken in flat directions and smaller
steps in steep directions.

In the case of a single parameter quadratic energy function we can easily
identify four regimes depending on an Nopt @S in the figure. Ina
multidimensional case, one could determine the largest eigenvalue A __ of the
Hessian and use a single learning rate for all parameters. Convergence requires
n<2/\_.

X
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Limitations and Alternatives: Stochastic Gradient Descery

® Limitations of the simple GD approach:

GD finds local minima
Gradients are computationally expensive to calculate for large datasets (sum over all data points)

Unlike in Newton’s method, GD treats all directions in the parameter uniformly. We need to keep track

of Hessian but it is computationally expensive)
GD is sensitive to initial conditions and can take exponential time to escape saddle points

e Stochastic Gradient Descent (SGD) is one of the most applied variants of the GD. The algorithm is stochastic.

e Where do we introduce stochasticity? It is incorporated by randomly selecting data points at each step to calculate
the gradients. In other words, by approximating the gradient on a subset of the data called minibatch of size M
(traditionally SGD was reserved for each data point, that is minibatch of size 1), B,=1,..,n/M size M:(32, 64, 128, 256, ...)

e Afull iteration over all n data points, i.e. n/M minibatches, is called an epoch.

MB its:
so Ve =1 VeE"(6), e s e e e
loorthm 6. —0 o ochasticity reduces chance to get stuck in local minima
t+1 = Ut — Vi. o It speeds up calculation

KK]



Gradient Descent with Momentum | gy i o A ctor of ot o o

mass m moving in a viscous medium with

damping coefficient and potential

SGD is almost always used with a “momentum” or inertia term (*)

Vi + ntV(,E(Ot) () momentum parameter

91+1 = 0; — vy,

v, is a running average of recently encountered gradients. It is possible to demonstrate (1 . )_1
that the characteristic timescale for the memory used in the averaging procedure is: g/

Why is momentum useful? SGD momentum helps the GD algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in
high-curvature directions. Empirical studies show benefits in the transient phase of training, rather than
during fine-tuning

These benefits are sometimes even more pronounced in a slight modification called Nesterov Accelerated
Gradient (NAG), which calculates the gradient at the expected value of the parameters

Vi =YVi-1+ "hVa

0t+1 pa— 0, — Vi.
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Gradient Descent with Second Momery

® RMSpro
prop B=0.9
g = VQE(O) learning rate r]t~10'3 (can be larger than previous methods due to the adaptive step

size)
st = PBs¢—1+ (1 — e~10° . ] e L
The learning rate is reduced in directions where the gradient is

gt
0111 = 60 — T ie consistently large

® ADAM
g: = VoE(0)
m; = fim;—1 + (1 — B1)g:
s; = Basi—1+ (1 — .‘@ B, =09

ADAM performs an additional bias correction to account for the
fact that we are estimating the first two moments of the gradient
using a running average (denoted with a hat)

3 m, B, =0.99
m=———
1—(B1) : : : ]
g It's possible to rewrite formulas as:
84 == r—
T 1- (B2)t o? = §; — (1;)? We adapt learning rate proportional
m; to signal-to-noise ratio, for example
0,1 =0,— m if widely fluctuating, o>>m
t+1 t T’t ét + 6, A0t+1 — _nt t y g X

\/0?+ﬁz?+e‘

D.P. Kingma, J.L. Ba, ADAM, A method for Stochastic optimization, https://arxiv.org/pdf/1412.6980.pdf 2014 (>90k citations)
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Practical tips and Further Reading

e Randomize data when making mini-batches

e Standardize inputs (learning becomes difficult when it has a mixture of steep
and flat directions)

e Monitor the out-of-sample performance — validation set

e Adaptive optimization methods (ADAM, RMSprop) do not always have good
generalization

o  Suffer when number of parameters exceeds number of data points [1]

o  Outperform with deep networks such as generative adversarial networks [2]

hblvi2ML Sec IV
[1]1A. Wilson, et al .(2017), “The marginal value of adaptive gradient methods in machine learning,” arXiv preprint arXiv:1705.08292.
[2] I. Goodfellow, et al.(2014), “Generative adversarial nets,” in Advances in neural information processing systems, pp. 2672— 2680

36



Due to limited time no exercises on this part. Notebooks are available at [hblvi2zml].

Regression
(in o nutshell)


https://physics.bu.edu/~pankajm/MLnotebooks.html

Regression: the problem
scalar response
e Given a dataset with n samples D :\{\(yi, m(’i)) ?:1
e Assume every sample has p features (%) e RP
e Let fbe the true function that generated these samples via

where Wirye € RP and €; is some i.i.d. white noise with zero mean and finite variance.

e One can cast the samples into an n x p matrix, called the design matrix X & R7xP
with rows Xi,: — m(i) < [RP, 7 = 1, ++,m  being observations

and the columns X:’j c [Rn,j — 1, Ry being the measured features

e The function f is unknown explicitly and we presume its functional form.

e For example, in linear regression we assume Y; = f(w(z); wtrue) +¢€; = wguew(“ —+ €;

for some unknown but fixed Wirye € RP
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_inear Regression |

e We want to find a function g with parameters w fitting to the data D that can best approximate f

g(z; W) ~ f

When this is done, we can use this g to make predictions about the response y, for a new data point

XO'

e Let's introduce the L_norm which is helpful in regression. For any real number p = 1, we define the
LP norm of a vector = (1, ,24) € R? to be

I 5
||l = (lz1]” + - - + |za|") >
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Least-square Regressicm

e Ordinary least squares linear regression (OLS) is defined as the minimization of the L, norm of the
difference between the response y, and the predictor g(x¥;w) = w x(:

n

. Xw — 2 == : Eoak®) N2
toin || Xay—y|ly= min 1('w ) —y;)
y—

e We need to determine w that minimizes the L2 error

e Geometrically speaking, the predictor g(x;w) = w™ x() defines an hyperplane in RP.

e This leads to the solution | wrs = (X*X) ' X"y

where we assume X™X is invertible, which is often the case when n
= p. Formally if rank(X) = p, the columns of X are linearly
independent, then w ¢ is unique.

FIG. 10 Geometric interpretation of least squares rggr9551011. L4 When rank(x)<p XTX iS Singl"”ar’ implying there are infinitely many
sold e, here we have p  2) while the sendual of data poin solutions to the least-squares problem (if w0 is a solution, w +n is

z'") (hollow circles) is its projection onto this hyperplane (bar-

ended dashed linc). also a solution for any n such that Xn=0.
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Least-square Regressicm

e Having determined the least squares solution, we can
calculate the best fit to our data as:

:_l) - XwLS = PX y, where PX = X(XTX)_]'XT FIG. 11 The projection matrix Px projects the response

vector y onto the column space spanned by the columns of

X,span({X.1, -+ ,X.,}) (purple area), thus forming a fitted
° Notice that we found the solution WLS in one ShOt, without vector 9. T%le residuals in Eq. (37) are illustrated by the red
vector y — y.

any iterative optimization as seen e.g. for gradient descent.

e As already discussed the difference between learning and fitting lies in the prediction on unseen data.
It is therefore necessary to examine the out-of-sample error. The reader can find Jupyter notebooks in

[hblvi2ml]
e It can be shown that the average errors are: If we have p > n (i.e. high-dimensional data) the
generalization error is extremely large and the model
- 2 P is not learning. Even when p = n we might still not
Ey, =0 (1 = 7_1) B B oD learn well due to the intrinsic noise 2.
N 5 p » |Ein = Eoutl =20°=| ®»
Fow =0 <1 + ) L To ameliorate this we use regularization and we will
n briefly mention two forms:
(provided we obtain the least squares solution w, ¢ from i.i.d. Ridge (L2 penalty) and LASSO (L1 penalty).

samples X and y generated through 'y = X w, _+€) 41
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Ridge-Regression |

We add to the least squares loss function a regularizer defined as L, norm of the parameter vector
we wish to optimize over. The penalized Ridge regression problem is:

WRidge(A) = argmin (|| Xw —y||5 + A|w||3) (1)

weRP
Equivalent to the constrained optimization problem: Wridge(A) = (XX + Apxp) ' Xy
wRidge(t) = arg min lew - y“% (2)

weRP: ||wl[3<t

meaning for any t = 0 and solution Wridge of (2), there exists a A = 0 such that Wridge solves (1) — and vice
versa. With the regularization term we are constraining the magnitude of the parameter vector learnt from the

data.

WI_ - = N7 * _ — _,_: i
A wLs
WRidge ()\) o a*,\

It is possible to demonstrate that both Ridge and LS linear regression have to
project y to the column space of X. Ridge further shrinks each basis component
by a factor dj2/(dj2+)\2), as can be obtained from singular value decomposition.

[hblvi2ml, Sec VI] Note that the equivalence between the penalized and the constrained (regularized) form of LSO does not always hold. It holds for Ridge and LASSO,
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Rockafellar, Ralph Tyrell (2015), Convex analysis (Princeton university press).

LASS O I Least absolute shrinkage and selection operator

e LASSO in the penalized form is defined by

Wwrasso(A) = argmin || Xw — yllg + Al|w]||1 (1)
weRP

e Assuming X is orthogonal, it is possible to demonstrate that:

~LASSO

LS LS
wj (/\) = 81gn(w )(|w | - )+ where (), indicates the positive part and WJ.LS is the j-th component of the LS solution.

LASSO vs Ridge

scaled by

L - LASSO tends to give sparse solutions,
i.e. many components o) WLASSO are zero.
EAsh ] The L1 regularizer of LASSO has sharp
RO ToT— . 2001)) Mhstes- protrusions, the intersection of the
ion of LASSO (left) and Ridge regression (right). The blue
FIG. 12 [Adapted from ( )] Comparing concentric ovals ;rc :;112 Coxitgleu'lseilf(thl(?ll“egllf( e on fu‘x(;cti(‘;]n regressor contours tend to occur at the
LASSO and Ridge regression. The black 45 degree line is s aint func- vertex of the feaSIbIIIty region |mp|y|ng
the unconstrained estimate for reference. The estimators are ks : . on of LASSO has 'mé’r: . . ’
shown by red dashed lines. For LASSO, this corresponds to i ‘ e the solution vector will be sparse.

the soft-thresholding function Eq. (54) while for Ridge regres- vertex, as shown on the left. Sincc the \fertices correspond to

sion the solution is given by Eq. (46) parameter vectors w with only one non-vanishing component,
LASSO tends to give sparse solution.

[hblvi2ml, Sec VI] As in Ridge, LASSO can be written in its constrained optimization form. However to get the analytic solution of LASSO, we cannot take the gradient of (1) with respect to w,
since the L,-regularizer is not everywhere differentiable. Nonetheless, LASSO is a convex problem and we can invoke the subgradient optimality condition to get the solution. 43



In praCtlce I [hblvi2zml] Notebook3: Linear Regression

import numpy as np n_samples = 150

import matplotlib.pyplot as plt n_samples train = 100

#import seaborn X train, X test = X[:n_samples_train], X[n_samples_ train:]
y _train, y test = y[:n_samples train], y[n samples train:]
train errors ridge = list()

test errors ridge = list()

from sklearn import datasets, linear model

# Load Training Data set with 200 examples

number examples=200 train errors lasso = list()
diabetes = datasets.load diabetes() test_errors_lasso = list()
X = diabetes.data[:number examples]

y = diabetes.target[:number examples]

—— Em o E— E—

# Set up Lasso and Ridge Regression models

ridge=linear model.Ridge()

lasso = linear model.Lasso() I
- s S s e e e e . coefs ridge = []

coefs lasso=[]

for a in alphas:
ridge.set params(alpha=a)
ridge.fit(X train, y train)
coefs ridge.append(ridge.coef )

coeffficients for ridge regression and Lasso

# Use the coefficient of determination R"2 as the performance of predi
ction.

train errors ridge.append(ridge.score(X train, y train))

test_errors ridge.append(ridge.score(X test, y test))

lasso.set params(alpha=a)

lasso.fit(X train, y train)

coefs lasso.append(lasso.coef )

train errors lasso.append(lasso.score(X train, y train))
test errors lasso.append(lasso.score(X test, y test))

B B B e B e S e e g



https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB3_CVI-linreg_diabetes.html

Coefficient of Determinaticm

SS

2
Zn true __ pred res
i=1 |Yi Yi

2
n true 1 n pred
im1 |Yi 0 — g Dim Y ’ SS,,
(0]

In the best case, the modeled values exactly
match the observed values, which results in
SS . =0 and R*=1.

A baseline model which always predicts the
average y, will have R?=0.

Models that have worse predictions than this
baseline will have a negative R?.

The regularization parameter A affects Ridge
and LASSO regressions. A good practice is
check the performance as a function of A.

The better the linear regression (on the right) fits the data in comparison to the
simple average (on the left graph), the closer the value of is to 1.
The areas of the blue squares represent the squared residuals with respect to the
linear regression. The areas of the red squares represent the squared residuals
with respect to the average value. Taken from here.

Train (OLS)
0.6= === Test (OLS)
& — Train (Ridge)

il
0.4)" == Tugt (Ridge)

0o —— Train (LASSO)
== Test (LASSO)

004 10-2 00 102
A

Example taken from [hblvi2ml] for the Isospin regression problem. Notice that
LASSO test curve is not monotonic and there is a sweet spot.
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Convexity and elastic net |

A simple inspection reveals that both LASSO and Ridge
regression are convex in w.

A function R" — R is called convex if its domain is a convex
set and for any x,y in the domain, and t € [0,1]:

fx+ (1 -0y <)+ (A - 0f ()

For convex functions, any local minimizer is a global
minimizer: as long as we're “going down the hill” and we stop
when we can't go any further, then we've hit the global

’ﬂilab"é%”actuany a strictly convex problem (assuming A>0) due to presence of L, penalty. In fact, this is
always true regardless of X and the solution is always well-defined.

LASSO is not always strictly convex and hence by convexity theory, it need not have a unique solution. The
LASSO solution is unique under general conditions, e.g., when X has columns in general position (see
Tibshirani 2013). To mitigate this, one can define a modified problem called the elastic net such that the

function we want to minimize is always strictly convex: _ . .
The elastic net combines some of the desirable

. 2 2 properties of Ridge regression (e.g., prediction) with
r,Iélug, [IXw —ylI2 + A[[w]]; + 5]|w]]> the sparsity properties of LASSO.
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Logistic regression |

e Problems like classification are concerned with outcomes taking discrete variables (i.e. categories):
o Signal vs bkgd, Phase of a system, etc
e Logistic regression deals with dichotomous outcome (True or False, 1 or 0, etc)

e The inner workings of logistic regression are valuable in the study of modern supervised deep neural
networks

e In what follows:
o Define logistic regress
o Derive cost function (cross entropy) using a Bayesian approach
o Discuss its minimization
o Generalize logistic regression in the case of multiple categories (called SoftMax regression)

e We focus on the SUSY dataset of [hblviZml]
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(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

FIG. 18 Pictorial representation of four data categories la- f ) Motorcycle
beled by the integers 0 through 3 (above), or by one-hot vec- Redestrian

tors with binary inputs (below).

e Before delving into logistic regression, it is helpful to consider a simple linear classifier that
categorizes examples using a weighted linear-combination of the features and an additive offset

o &

7

g &

$i=x; w+by=x;w

e We use the short-hand notation  x; = (1,2;) W = (bo, w)

This function takes values on the entire real axis. In the case of logistic regression, however, the
labels y, are discrete variables.

e One could use a sign function for a binary classifier:

{O, 1}, O-(Sz) — Slgn(sz) = ]_ lf Si Z O commonly known as the Perceptron



https://en.wikipedia.org/wiki/Perceptron

Logistic (sigmoid) function |

e Perceptron is an example of “hard classification”, i.e. each datapoint is assigned a category (0 or 1)

e |tis favorable in many cases to have a “soft classifier”, that outputs the probability of a given category
(given x, the classifier returns the probability of being in category m)

1

— _——  where 1—o0(s)=o0(—s
e (5) = o(~s)

e Logistic (or sigmoid) function: o(s)

e Inlogistic regression, the probability that a point x. belongs to a category y. = {0,1} is given by:

1

P S 1 . = —_— Here 6 are the weights we want to learn
(y | ) 1+ e_x;l"e
P(y; = 0|z, 0) = 1 — P(yi = 1|:,0)
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Cross-entropy as cost function for logistic regressicm

We now use Maximum Likelihood Estimation (MLE) to define the cost function for logistic regression.
In MLE we choose parameters to maximize the probability of seeing the observed data.

Consider a dataset D={(y,,x)} with binary labels y. € {0,1} from which the data points are drawn
independently. The likelihood of observing the data under our model is:

P(D|w) =[] [cxIw)]* [1 — o(xTw)]
i=1
We can compute the log-likelihood: (W) =) yilogo(x]w)+ (1 —yi)log [1 — o(x]w)]

1=1
The maximum likelihood estimator is defined as:

W = arg maxz y; log G(X?W)‘f‘(l—yi) log [1 - U(X;'TW)]
o

t=1

The cost (error) function for logistic regreq C(w) = —I(w)

. . . g ) commonly known as the Cross-entropy
is defined as the negative log-likelihood:

= Z —y; log cf(x;TPW) — (1 —y:)log [1 - a(x;.rw)]

We note that, just as in linear regression, in practice we usually supplement the cross-entropy with
additional regularization terms, usually L, and L, regularization 50
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Minimization of the cross-entropy |

The cross-entropy is a convex function of the weights w and therefore any local minimizer is a global
minimizer.

Minimizing the cost function leads to:

n

0= VC(W) = Z [O’(X,LTW) — yi] X,

t=1

where we made use of the logistic function identity 9 o(s) = o(s)[1—0(s)]

The cross-entropy is a convex function of the weights w and therefore any local minimizer is a global
minimizer.

The above is a transcendental equation for w, the solution of which unlike linear regression, cannot
be written in closed form. This is the case where we need to utilize the numerical methods
previously introduced, such as gradient descent.

Notice that Scikit’s logistic regression solvers have in-built regularizers. Their role is fundamental in
general to prevent overfitting.
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SoftMax Regression |

So far we focused only on binary classification. We can generalize logistic regression to multi-class
classification (multinomial logistic regression). The softmax in machine learning is related to the

Boltzmann distribution in physics:

—&; /(KT
1 —&; /(KT) € ¥ (kT) p,is the probability of a state;
Pi — <€ o M is the number of accessible states

Q S il ()

In ML, can be formulated as:

V1 e—xfwm/
P(Yim' = 1|Ti {Wkj—o ) =
( m | 7/7{ }k_O ) Z%;al e—x;.Twm

where y; = (1,0,---,0) means the sample x, belongs to class 1, and y, . is the m’-th
component of the vector y.. From the above, it's possible to build a likelihood and define the cost:

n M-—1

C(W) = Z Z Yim 10g P(yim == 1|mi,wm)

t=1 m=0

i (1 - yim) log (]- = P(yim — 1lwi,wm))

Notice that for M=1 we recover the cross-entropy
of the logistic regression.
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Practical tips and Further Reading

e OLS can be optimized with gradient descent, Newton's method, or in closed form.

Ordinary Least Squares:
ming % Yo (x W — y,')z.
Squared loss.
No regularization.
Closed form: w = (XX ) 1Xy'.

Ridge Regression:

. 1 T ’ 2
ming 37, (] w — 1) + Al [wl3-
Squared loss.

[2-regularization.
Closed form: w = (XX + AI) "Xy .

Ridge has a closed form too.
Read scikit-learn documentation to see details on implementation
“Polynomial” regression

The most commonly used loss function for Linear Regression is
Least Squared Error, and its cost function is also known as Mean

Squared Error(MSE) [The terms cost and loss functions almost refer to the same meaning. But,

loss function mainly applies for a single training set as compared to the cost function which deals with a
penalty for a number of training sets or the complete batch]

[1] https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html

[2] https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
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Practical tips and Further Reading

e Categories: one-hot encoder One-hot encoding ensures that machine learning does not assume that higher
numbers are more important. For example, the value '8' is bigger than the value '1', but that does not make '8'
more important than '1'. The same is true for words: the value 'laughter’ is not more important than 'laugh’.

e https://pytorch.ora/docs/master/generated/torch.nn.CrossEntropylLoss.html Therefore, there's no need to one-hot
encode your data if you have the labels already provided

e Logistic regression is easier to implement, interpret, and very efficient to train. If the number of observations is
lesser than the number of features, Logistic Regression should not be used, otherwise, it may lead to overfitting.
Logistic regression can be thought as a special case of NN with no hidden layer, that uses the sigmoid activation
function and softmax with cross-entropy loss.

e A full fledged NN with hidden layers (deep network) and non-linear activation functions allows to capture highly complex
functions of the features that could be characteristic of several problems.

e  There are other techniques (e.g., SVMs not covered here) which can capture nonlinear functions. But NNs are popular
because there are highly evolved and scalable platforms to capture more and more complex relationships by easily
constructing a deep network and feeding in a lot of data

[1] https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
[2] https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
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https://towardsdatascience.com/optimization-of-supervised-learning-loss-function-under-the-hood-df1791391c82
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E n S e m b I e M et h Od S I “Wisdom of the crowds”, Aristotle

e One of the most powerful and widely-applied ideas in modern ML. Ensemble methods correspond to
combining predictions from multiple — often weak — classifiers to improve the predictive performance.

e Also in the context of NN is common to combine the predictions from multiple NNs, e.g., in complicated
image classification problems.

e The key to determining when ensemble methods work is the degree of correlation between the models [1].

e Largely used ensemble methods are: Importance/role of correlation* between models

(@) BOOSting 1. Holding the ensemble size fixed, averaging the predictions of correlated
models reduces the variance less than averaging uncorrelated models.

o Random forest

2. In some cases, correlations between models within an ensemble can
result in an increase in bias, offsetting any potential reduction in variance
gained from ensemble averaging.

o Gradient boosted trees (e.g., XGBoost)

[1] Louppe, Gilles (2014), “Understanding random forests: From theory to practice,” arXiv preprint arXiv:1407.7502
*E.g., the correlation coefficient between the predictions made by two randomized models based on the same training set but with different random seeds [hblvi2mi]
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Bias-Variance Decomposition for Ensambleﬂ

The bias-variance tradeoff is discussed in the context of continuous predictions like regression, but
many intuitions apply also for classification tasks.

Let’s recall the bias-variance tradeoff for a single model first.

Consider the dataset X, = {(y;,%;),j = 1... N} and let's assume is generated from a noisy model
y = f(x)where noise is normally distributed with mean zero and st. deviation o..

Assume we have a predictor g'\f(x) that gives a prediction of our model for a data point x. The estimator
can be chosen by minimizing the cost function squared error:

C(X,g(x)) = Y _(yi — gc(xi))
We already ShO\;VGd that the expected generalization error can be decomposed as:
Ec.[C(X,g(x))] = Bias* + Var + Noise.

What happens now if we have an aggregate ensemble predictor?

gz (xi, {6}) =

M is the dimension of the ensemble
O can be seen as the

X'L, We assume that 6 parametrize members Qﬁper_—ptorcd)meterts o:]mot_d‘etls,
of the ensemble ey introduce stochasticity

| in the ensemble

Mz
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Bias-Variance Decomposition for Ensambleﬂ

e \What happens now if we have an aggregate ensemble predictor?

(Xz, {9} M E g xz, M is the dimension of the ensemble

e For athorough derivation see [thV|2mI, Sec. VIlI].

Var(x) = E£0[(92(x, {6}) — E£,0[92 (x, {6})])?]

Intuitively this derives from ]

the variance of n correlated Z EC,B[@C (x’ am)gﬁ (x’ em’)] — M2 Z[“C’O(X)PJ

variables:

Var(X) = 6%/n + (n-1)/n po?
= /5 T 3 Expectations are e Variance of the aggregate estimator
= po?+ (1-p)/n o2 SUIETIEEe Y depends on their correlation
joint distribution of

datasets £ and .
hyperparameters © e Forlarge ensemble (M— ) variance

is significantly reduced, and for
completely random ensembles (p
(x)=0) it is maximally suppressed!

Bias*(x) =

e Bias of the aggregate predictor is just
the expected bias of a single model



https://www.sciencedirect.com/science/article/pii/S0370157319300766

Intuitions behind ensembleﬂ

Ensembles are successful for the following reasons:

1. Statistical: provided their predictions are uncorrelated, averaging several models reduces the risk of
choosing the wrong hypothesis.

2. Computational: many learning algorithms rely on some greedy assumption or local search that may
get stuck in local optima. An ensemble made of individual models built from many different starting
points may provide a better approximation of the true unknown function

3. Representational power (expressivity): for a learning set of finite size, the true function cannot be
represented by any of the candidate models in the hypothesis H. By combining several models in an
ensemble, it may be possible to expand the space of representable functions and to better model
the true function.

Using an ensemble allows one to reduce the variance by averaging the result of many independent classifiers.
This procedure works best for unstable predictors for which errors are dominated by variance due to finite
sampling.

[1] Louppe, Gilles (2014), “Understanding random forests: From theory to practice,” arXiv preprint arXiv:1407.7502
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Bagg | ng I Bootstrap AGGregation

Imagine to have a large dataset £ that we could partition into M smaller data sets {£,. Z,, ..., £,,}. If each is
sufficiently large to create a predictor, we can create an ensemble aggregate predictor:

M
A A T 1 We know this can significantly reduce variance without
ar (X) = M E : gc; (X) increasing bias.
i=1 But we need to have enough data in each partition.
For classification tasks where each predictor predicts a class label j € {1, ..., J}, this corresponds to a majority
vote: M
~A i .
g7 (x) =argmax » I[gz,(x) = j]

J i=1
This can be circumvented with empirical bootstrapping, that is
with new bootstrapped datasets

{fBST fBSZ’ ""IBSM}' 6y M@ ) Bootstrap

replications

Resampling with replacement from the original dataset

Bootstrap
samples

The price we pay for using bootstrapped training datasets as opposed to
really partitioned dataset is an increase in the bias of our bagged estimators.

Training
samples
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Boosting_|

‘boosting

Boosting is another powerful ensemble method.

In bagging, the contribution of all predictors is weighted equally in the bagged (aggregate)
predictor. In some problems instead one might prefer to use an “autocratic approach” that
emphasizes the best predictors.



Boostinﬂ

® In boosting an ensemble of weak classifiers is combined into [EREREECECRIEICIVERVARIES SEEINE

We construct the boosted classifier as follows:

a boosted classifier. Each classifier is associated with a e For t = 1---,T(desired termination step), do:
weight a, (such that 2, a,=1) that indicates how much it W I —————
contributes weighted error

M
ga(x) = ) argr(x)
K—1 2. Let ax = % In 1%“, update the weight for each
= data x,, by
)exp[—c‘rt_y”gt(zﬂ)]
Zy :

W41 (_JZ”) = u“t(mn

® AdaBoost (Adaptive Boosting) is a popular technique.

The aggregate classifier is formed in an iterative ERT R TR —
process. all weights add up to unity.

e Output ga(x) = sign (ZtT,—J atgt(:v))

pseudo-code

Freund, Yoav, Robert Schapire, and Naoki Abe (1999), “A short introduction to boosting,” Journal-Japanese Society For Atrtificial Intelligence 14 (771-780), 1612.



Random Foreﬂ [

e Adecision tree uses a series of questions to hierarchically - -
partition the data.

¢¢ mn =B
60 00"

e Arandom forest is composed of a family of (randomized) N

tree-based classifier decision trees

e |tis clear that more complex decision trees lead to finer
partitions that give improved performance on the training
set. However, this generally leads to overfitting, limiting the

Comparison of decision surfaces
out-of-sample performance. (each row a subset of 2 features, Iris problem)

Decision Tree Random Forest

AR
. .
R

e |In order to create an ensemble of decision trees, we must §ii3
introduce a randomization procedure (the power of . 7 _’
ensembles to reduce variance only manifests when
randomness reduces correlations). Three ways for
randomness

bt B

4

sanros

o (i) Bag, (ii) feature bagging, (iii) extremized random
forests (combination)

Breiman, Leo (2001), “Random forests,” Machine learning 45 (1), 5-32. 63



Gradient Boosted Trees and XGBooﬂ

e Gradient boosted trees combine boosting and gradient descent (in particular Newton’s method) to

construct ensemble of decision trees

e Ensemble are created iteratively. A cost function measures the performance of the ensemble. At
each step we compute the gradient of the ensemble and add trees that move in the direction of the

gradient.

e Extreme Gradient Boosting (XGBoost) is a particular technique

f tree
aggregate g = space o
prediction ¥i = ga(xi) = ZQJ ), g;€F

N

M
cost C(X, = y;, Ui Q
function 94) Z (v 9:) + Z

_ (95)

. Regularization term
Goodness of prediction ) .
Penalizes large weights on the
(convex and

: . leaves and large partitions
differentiable) with mon?/ lch)Jves

A ;
0(g) =T + 5wl

Ensemble is formed

A(t) Zgg (x;) = yz )+ 9¢(x;)

Ensemble Idea: for large t, each
decision tree is a small perturbation to
the predictor

An approximate greedy algorithm is run to
optimize one level of the tree at a time to find
optimal splits of the data. Additional
regularization such as shrinkage and feature
subsampling are also used.
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Further Reading

e  Structured vs unstructured data: Unstructured data can be information that is not arranged according to a pre-set
data model or schema. Examples of structured data include names, dates, addresses, credit card numbers, stock
information, geolocation, and more. Structured data is highly organized. Ensemble methods perform well especially

on structured datasets. Neural networks generally perform better than ensemble methods on unstructured data,
images, and audio.

e Feature importance

https://machinelearningmastery.com/calculate-feature-importance-with-python/
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Iteration number 1l

K_Mea@ hard-clustering

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids
(not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid
(That forms K clusters)

STEP 4. Compute and place the new centroid of each cluster K-means clustering can be formulated as: given a
fixed integer K, find the cluster means {u} and the

data point assignments in order to minimize the
following objective function:

STEP 5: Reassign each data point to the new closest centroid
If any reassignment took place, go to STEP 4,
otherwise go to FIN.

K N
Z Z rnk(xn - ”k)z

k=1n=1
L Your Model is Ready

r=10,1} binary assignment




Density Based Clustering| soft-clustering

Two different clusterings based on two different level-sets Core distance (defined by a required # of neighbors) as estimate of density

Points have to be in a high density region and close to each other (“mutual
reachabilityg

The area of the regions is the measure of “persistence”.

Maximize the persistence of the clusters under the constraint that they do
not overlap.

clusters as more likely “regions” separated by less likely regions -> densities



Density Based Clustering |

Mutual reachability

dmreuch-—k(as b) = max{ corey (a), corey (b), d(a’ b)}

The mutual reachability distance is a
summary at what level of “A” two points

together will connect. This is what we use as a
new metric.

[1]1 DBSCAN, or density-based spatial clustering of applications with noise [Khan, 2014]
[2] HDBSCAN hierarchical DBSCAN [Mclnnes, 2017]
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https://ieeexplore.ieee.org/abstract/document/6814687/
https://joss.theoj.org/papers/10.21105/joss.00205.pdf

Hierarchical Clusteri@

After mutual reachability... consider a threshold value, starting high,
and steadily being lowered. Drop any edges with weight above that
threshold. As we drop edges we will start to disconnect the graph into
connected components. Eventually we will have a hierarchy of
components (from completely connected to completely disconnected)
at varying threshold levels). In practice this is very expensive: many
edges... Fortunately graph theory furnishes us with just such a thing:
the minimum spanning tree of the graph.

Mutual reachability distance

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html#build-the-minimum-spanning-tree



https://en.wikipedia.org/wiki/Prim%27s_algorithm

Hierarchical Clusteri@

Condensed Tree Plot of X (min_samples=100, min_cluster_size=500)

/ \

A hierarchy of multiple
level-sets is obtained by
varying the density
threshold

oints

3
5
5

B

E

Z

Visualization of the tree
top-down as in the literature



https://en.wikipedia.org/wiki/Prim%27s_algorithm

hdbscan vs k-meansJ

K-means is a semi-supervised parametric algorithm parameterized by the K cluster
centroids (if you want K seeds). Can perform if the underlying assumptions on the

shape of the clusters are not met. Clusters have to be:
e “round” or spherical

equally sized

equally dense

most dense in the center of the sphere

not contaminated by noise/outliers

Hdbscan on the other hand is an unsupervised hierarchical clustering which excels
when data has:

e Arbitrarily shaped clusters

e Clusters with different sizes and densities

e Noise



PCA |

e Ubiquitous method for dimensional reduction

e Inspired by the observation that in many cases,
the relevant information in a signal is contained in
the directions with largest variance

e Use to reduce dimensionality

e Principal components are orthogonal to each
other

e Calculate the Eigenvectors and Eigenvalues of
the Covariance Matrix

FIG. 50 PCA seeks to find the set of orthogonal directions
with largest variance. This can be seen as “fitting” an ellipse
to the data with the major axis corresponding to the first
) . principal component (direction of largest variance). PCA as-
® We will utilize useful and easy to use python sumes that directions with large variance correspond to the

packages for Principal (0de11] ponent Analysis true signal in the data while directions with low variance cor-

to create insightful plots. respond tomoige:

[1] Levina, Elizaveta, and Peter J. Bickel. "Maximum likelihood estimation of intrinsic dimension." Advances in neural information processing systems. 2005.
[2] PCA for dimensionality reduction: Abdi, Hervé, and Lynne J. Williams. "Principal component analysis." Wiley interdisciplinary reviews: computational statistics 2.4
(2010): 433-459. 73



N

° t-SNE is also a method to reduce the dimension. One of the most major differences
between PCA and t-SNE is it preserves only local similarities whereas PA preserves
large pairwise distance maximize variance.

° Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to
methods for visualizing high-dimensional data.

° Each high-dimensional training point is mapped to low-dimensional embedding
coordinates, which are optimized in a way to preserve the local structure in the data.

) The idea of stochastic neighbor embedding is to associate a probability distribution to
the neighborhood of each data

e t-SNE can rotate dat

e t-SNE results are stochastic (depends on initial seed)
e t-SNE preserves short distance information

e  Scales are deformed

e  Computationally intensive

[1] Maaten, Laurens van der, and Geoffrey Hinton (2008), “Visualizing data using t-sne,” Journal of machine learning research 9 (Nov), 2579-2605.
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Tips, further reading

e Hard Clustering: In hard clustering, each data point either belongs to a cluster completely or not.

e Soft Clustering: In soft clustering, instead of putting each data point into a separate cluster, a
probability or likelihood of that data point to be in those clusters is assigned

e Since clustering algorithms including kmeans use distance-based measurements to determine the similarity
between data points, it's recommended to standardize the data to have a mean of zero and a standard deviation
of one since almost always the features in any dataset would have different units of measurements [ref]

e PCAis at a disadvantage if the data has not been standardized before applying the algorithm to it.

e PCAvs t-SNE: which one to use? [ref]
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https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://medium.com/analytics-vidhya/pca-vs-t-sne-17bcd882bf3d

