

2nd TDR Review Committee

Plasma section

26-27th October 2021 A. Biagioni, R.Pompili

- ☐ High repetition rate capillaries, from 100 to 400 Hz:
 - Erosion of the capillary walls (first results have been obtained)
 - Design of the HV pulser (our HV-pulser is already able to reach 2.5kA at 23kV)
 - Refill time of the capillary
 - Vacuum requirements
- ☐ Design of 40cm-long Gas-filled discharge-capillary
- ☐ Tests on channel shaping allow us to modify the longitudinal profile to reduce and control spatial density variations
- ☐ Vacuum pumping system improvements allow a discharge repetition rate to 10 Hz
- □ Plasma instability reduction

- The longitudinal profile is strongly changing: from supergaussian to quasi-uniform profile and the mean value goes from 6.5x10¹⁷ to 4x10¹⁷ cm⁻³ (1 to 1.5 mm)
- This capillary shape deformation is proportional to the thermal energy deposition on the capillary walls:

$$T_{\rm e}({\rm eV}) = 5.7 \left[\frac{I({\rm kA})}{r_{\rm cap}({\rm mm})} \right]^{2/5} \approx 4.7 {\rm eV}$$

PWFA

 $6x10^{17}cm^{-3}$ Pgas=20mbar lp=300A Rcap=500um Lcap=30mm Δt =600ns

3D-printed support

Sapphire capillary

Sapphire

After 10⁵ shots there is no any changing of the longitudinal profile and the mean value goes from 7x10¹⁷ cm⁻³ (maybe we have to reach 10⁶ shots)

A. Sapphire material (K=40)
D. Potential limits due to the short length/small radius

High repetition rate capillaries: 100-400 Hz

Mitigation of erosion of the capillary walls can be achieved by reducing the *heat flux*

- A. Current pulse width and amplitude
- B. Gas fill pressure
- C. Capillary radius

Temperature for Plasma formation

PWFA

5x10¹⁶cm⁻³ Pgas=20mbar lp=300A Rcap=2000um

Lcap=400mm Δt =600ns

$$T_{\rm e}({\rm eV}) = 5.7 \left[\frac{I({\rm kA})}{r_{\rm cap}({\rm mm})} \right]^{2/5} \approx 2.7 {\rm eV}$$

the energy deposited into the capillary per shot:

$$E = Rp Ip^2 \Delta t = 100 \text{ mJ/shot}$$

Conductive heat transfer law:

$$\mathbf{q} = -k(T) \nabla T$$

Cylinder geometry

Temperatura(K)

A. Gonsalves, et al, *Demonstration of a high repetition rate capillary discharge waveguide*, JAP, 119,10.1063/1.4940121

High repetition rate capillaries: 100-400 Hz

External collaborations with precision mechanics companies have been started

40 cm-long Gas-filled discharge-capillary

Paschen curves (50 mbar)

Length	Density	Vb
3 cm	4x10 ¹⁶ cm-3	3 kV
10 cm	4x10 ¹⁶ cm-3	8 kV
20 cm	4x10 ¹⁶ cm-3	14 kV
40 cm	4x10 ¹⁶ cm-3	23 kV

printing residuals

40cm-long Gas-filled discharge-capillary

A crucial point to produce a gas discharge is the insulation of others components of the plasma module with respect to the HV pulse

Improvements of the pumping system @ SPARC_LAB

Vacuum pumping system improvements allow a discharge repetition rate to 10 Hz

- At SPARC we already use a differential pumping system
 - 4xTurbo pumps 400 l/sec and 5xScroll pumps (35m³/min)
 - 10⁻⁸ mbar H2 pressure in the C-band section has maintained
- Stable operation @ 1-10 Hz
 - Studies for 100-400 Hz as required by EuPRAXIA will be performed together with a new design of the COMB chamber

A. Biagioni, et al, *Vacuum system design for plasma wakefield acceleration at SPARC_LAB test facility*, PL-21/001, 24/09/2021 (Technical note).

Test on channel shaping allow us to modify and control the longitudinal profile

Studies on the effects of the laser spot and/or position to reduce plasma formation instabilities are planned

Plasma density instability reduced from 25% to 11% @ 5 kV Instability of ~5% when operating at >8 kV (from Stark meas)

A. Biagioni, et al, Gas-filled capillary-discharge stabilization for plasma-based accelerators by means of a laser pulse, Plasma Physics and Controlled Fusion 10.1088/1361-6587/ac1f68

1.Vacuum chamber and support	150 k€
2.Capillary and supports	100 k€
3.Diagnostics: ICCD camera/spectrometers/optics	240 k€
4.Discharge laser trigger	60 k €
5. Neutral gas sources/gas injection system	60 k €
7.Pumping system	120 k€
7.Motorized actuators	100 k€
8.Electro valve	40 k€
9.Discharge pulser and HV generator	100 k€

- Theoretical and experimental studies on gas-filled discharge-capillaries have been started:
 - Erosion of the capillary walls (first results have been obtained)
 - Design of the HV pulser (our HV-pulser is already able to reach 2.5kA at 23kV)
 - Refill time of the capillary
 - Vacuum requirements
 - Current pulse width reduction
- A new design of 40-cm long capillary has been done:
 - New plasma chamber
 - Insulation of the of the electro valve and the other sections of the plasma module
- Vacuum pumping system improvements allow a discharge repetition rate to 10 Hz
- Tests on channel shaping allow us to modify the longitudinal profile depending on the application
- Studies on the effects of the laser spot and/or position to reduce plasma formation instabilities are planned

Thank you for your attention