

EuPRAXIA@SPARC_LAB Start to end Simulations

C. Vaccarezza on behalf of WA1- Beam Physics collaboration team

WA1 : Activities and Roadmap to TDR update

S2E Simulations progress and results

Conclusions

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

Computing resources-WP9 (F. Fortugno)

- The installation of the new five AC922 units for the plasma simulations is on going from Sept. 10th 2021
- The infiniband connection cards and switches for the cluster setup must be purchased.
- The purchase procedure of the WS rack module for Linac simulations has been finalized on Oct. 20th 2021, delivery in one month.

Activities with the Architect code-WP9 (P. Santangelo)

- Investigation (and solution) of (known) intermittent problems
- Parallelization of much of the code using OpenMP
- Result: (July release)

distance (um)	100	1000	10000	60000
serial (seconds)	200	1720	17426	103789
Processors				
1	149	1542		
2	95	1011		
4	54	610		
8	35	413	4093	23502
16	48	372		
C. Vaccarezza, EuPRAXIA@SPARC LAB Review Committee, Oct 26 th , 2021				

- The new version is better, with 6 speedups on eight processors
- The parallel code produces results «visually» as the same as the serial code
- First Artchitect tests now possible on long times and distances
- Multiple runs of parallel code in the same machine

(not immediate but it works well)

- More to investigate: parallel method for the "current deposition" of bunches
 - particles are only in bunches
 - the position of the particles is limited to a small part of the grid

Magnets & PS design-WP17 (L. Sabatini, A. Vannozzi)

WORK IN PROGRESS:

- DIPOLES: magnetic design ready for:
 - BLH (4x laser heater chicane)
 - BC (4x compressor chicane)
 - DIPSPL (first spectrometer)
- QUADRUPOLES: magnetic design ongoing for all the three families ⇒Optimization
- Control System for power supplies: first estimation of specs.

WHAT NEXT:

- DIPOLES:
 - detailed magnetic design including quality and harmonic analysis
 - review of magnetic design with BD by providing field maps
- QUADRUPOLES:
 - focus on integrated quadrupole (the one including steering and diagnostics)
- DUMP dipoles

Roadmap to TDR update (from last WA meeting)

Upcoming milestones

July 2021 machine layout «coarse» finalization in terms of :

- Number and type of undulators
- Number and type of transfer lines
- Spectrometer /extraction lines
- 5GeV plasma acceleration line
- Submitted to «first magnets design and feasibility verification (April-May 2021)»

Not completed

-> delay to be quantified

C. Vaccarezza, EuPRAXIA@SPARC LAB Review Committee, Oct 26th, 2021

- Between end of May and beginning of October: two less full-time people for WP1-**WP2**
- One full-time people on parental leave from July 2021 at least until February 2022 on WP1
- One part-time people on WP1 now more devoted to SPARC LAB restart and new parts commissioning
- Under negotiation in these days:
 - Two senior and One Postdoc part –time (30%) from other structures/projects for WP1
 - 2-3 students from the 37th PhD Course in Accelerator Physics (Sapienza University- Sept 9th 2021) for WP1-**WP2-WP17**

- With the available resources both of computing power and personnel, two main topics were given priority and efforts:
 - Energy spread compensation scheme for plasma acceleration (WoP1 Linac working point)
 - Bunch compression scheme for the 200pC beam from Linac (WoP2), i.e. chicane vs dogleg comparison

C. Vaccarezza, EuPRAXIA@SPARC LAB Review Committee, Oct 26th, 2021

• WoP1 \rightarrow comb beam re-optimised with ASTRA (NB: X-band E_{acc}=40 MV/m for beam quality preservation)

WoP 1-PWFA

WoP1- PWFA previous results (where we were)

@ Plasma exit: E≈1 GeV

However, an effort is needed to improve the value of the projected energy spread in order to increase the efficiency of the radiation source.

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

EúPR

Previous results on Stability

(A. Del Dotto)

Witness beam final energy and energy spread as a function of the Driver-Witness separation

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

Witness beam final energy and energy spread as a function of the Driver-Witness separation

From Photoinjector

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

Case 2

Case 3 (Chicane ON for better separation)

Doto from SDDS file SDDE.1150A.S.5.X.chk.ON.out.zdhie, table 1 1.5 1.0 0.0 -0.5 -1.0 -0.15 -0.10 -0.05 0.00 0.05 0.10 z (mm) frequency os a function of z and dp/p As suggested by Rev. Committee and needed for long space manipulation.

WoP1 I_w=800 A

(S. Romeo)

Start to end simulation from
Eegant data:
Simulation with Architect code
40 cm propagation in plasma channel

Density scan to optimize the energy spread

Witness parameters $\sigma_{x,y} = 2.6, 2.8 \ \mu m$ $\sigma_z = 5.11 \ \mu m$ $\varepsilon_{n \ (x,y)} = 1.2, 1.0$ mm mrad $\gamma = 921$ $\sigma_E = 0.076\%$ $I \approx 800 \ A$

First results I_w=800 A

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

Transverse Matching for $n_p = 1.2 \cdot 10^{16} \text{ cm}^{-3}$

Results show a transverse mismatching

$$\beta_m = \frac{\sqrt{2\gamma}}{k_n} \approx 2.1 \ mm$$

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

 $\Box \beta_{x,y} = 5.2, 6.8 \text{ mm}$

 Emittance increase of a factor 4-5 due to betatron dephasing
 Could be solved by means of plasma ramps

- □ We are working in over beam loading regime
- Minimum energy spread corresponds to pure non linear contribution of plasma wake
- Longitudinal phase space is not flat in the witness core
- Strategies for energy spread mitigation are still under investigation

Slice analysis:

Option 2: Plasma pre-chirper

(A.R. Rossi)

We are investigating the possibility to pre-compensate the energy chirp by using a higher plasma density stage. Back of the envelope, 1D evaluations seem to qualitatively confirm the possibility to pre-compensate energy chirp.

Pre-compensation for the excess beam loading case

NB: all units are normalized. Current profiles are in a.u. D and W profiles are do not have the same scale.

Plasma pre-chirper

Pre-compensation for the excess beam loading case $n_0 = 4 \times 10^{18} cm^{-3}$

Innermost electron trajectory

NB: all units are normalized. Current profiles are in a.u.

Comparison between Lu and two-sheath (TS) models

NB: units are normalized. Only back portion of the bubble is shown. Witness current profile is flat with length = 0.5 (FWHM), while $\sigma_z = 1$ for driver. Plasma density is 10¹⁶ cm⁻³

Considerations

- TS model is much more robust wrt injection phase and witness current value (not shown) compared to Lu's
- Flat top current profile does NOT perform much worse than triangular profile in reducing energy spread

Previous considerations allow to consider non-linear regime a viable way to deliver low energy spread beams

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Oct 26th, 2021

- Systematic analysis of the space charge effect on the matching before and after the plasma acceleration (plus driver removal) to verify lattice acceptance and robustness (Astra & Tstep plus genetic optmizer)
- Same analysis for the dogleg TL and chicane to evaluate the splitted layout for plasma and all X-band linac.
- X-band cavity after the Gun: design and optimization with iterative BD simulations
- Diagnostic BD simulation to check the virtual measurements
- Microbunching instability budget and mitigation for all the options \Rightarrow LH system and diagnostic section finalization

WoP2- All X-band 200pC

Old 2 X-band section 0.9 m long E_{acc}=60 MV/m

Case a) Chicane layout

Case b) Dogleg compressor with R₅₆ >0

Case c) Dogleg with R₅₆<0 considered layout

R₅₆ =30 mm: Case a) I=1.6 kA slice analysis

Case a) Magnetic chicane

File:200pC_1GeV_DL_noopt_chic_nolin_sband_noopt.outm.asci

Case a) I=700 A slice analysis

z(mm)

z(mm)

Case a) Magnetic chicane

For Comparison:

Case a) Magnetic Chicane $R_{56} = 30 \text{ mm}$

Case b) Dogleg Compressor R₅₆ = 18 mm

Case c) Dogleg Compressor R₅₆= -40 mm

- Despite the personnel situation some of the BD main topics have been addressed for the considered WoP's.
- Some of the presented configurations have been found suitable for the considered undulators.

Conclusions

 Next effort will be focused to improve the aspects still not compliant with lasing at 3-4 nm necessities. Thanks for your attention