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What is Machine 
Learning and why it is 
relevant for research?



What is Machine Learning ?



Machine learning (ML) is the scientific study of algorithms and 
statistical models that computer systems use to progressively 
improve their performance on a specific task. Machine learning 
algorithms build a mathematical model of sample data, known as 
"training data", in order to make predictions or decisions 
without being explicitly programmed to perform the task.

A definition (Wikipedia)
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training data

True Answer

Algorithm

Prediction

Loss

Functions

The name of the game is 
finding the algorithm 
setting (its parameter 
values) that minimise 
the loss, i.e. the 

error made in 
prediction



๏Different ML 
algorithms had their 
moment of glory


๏(Shallow) neural 
networks dominated 
in the 80’s 


๏Alternatives emerged 
in the 90’s


๏Support vector 
machine


๏Boosting of 
decision trees

Many flavors of ML
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https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf


๏Learning: train the algorithm on a 
provided dataset


๏Supervised: the dataset X comes with 
the right answer y (right class in a 
classification problem). The 
algorithm learns the function 


๏Unsupervised: the dataset X comes 
with no label. The algorithm learns 
structures in the data (e.g., alike 
events in a clustering algorithm)


๏Reinforcement: learn a series of 
actions and develop a decision-
taking algorithm, based on some 
action/reward model


๏Inference: once trained, the model can 
be applied to other datasets

A two-steps process
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๏Classification:


๏given an image, identify the 
object represented


๏in particle physics, given a 
particle shower, identify the 
particle kind


๏Regression:


๏given a set of quantities x, 
learn some function f(x)


๏in particle physics, given a 
particle shower, learn its 
energy

Machine Learning in HEP
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Machine Learning Applied Widely in HEP
• In analysis:

– Classifying signal from background, especially in 
complex final states

– Reconstructing heavy particles and improving the 
energy / mass resolution

– …

• In reconstruction:
– Improving detector level inputs to reconstruction 
– Particle identification tasks
– Energy / direction calibration
– …

• In the trigger:
– Quickly identifying complex final states
– …

• In computing:
– Estimating dataset popularity, and determining how 

number and location of  dataset replicas
– …
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Machine Learning in HEP
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Centralised task (in online or offline reconstruction)

Analysis-specific task (by users on local computing 
infrastructures)

๏Classification: 


๏identify a particle & reject fakes


๏identify signal events & reject background


๏Regression:


๏Measure energy of a particle


๏Up to now, these task mainly solved with BDTs


๏moved to Deep Learning for analysis-specific 
tasks


๏same will happen for centralised tasks 
(eventually)



๏Long tradition


๏Neural networks used at 
LEP and the Tevatron


๏Boosted Decision Trees 
introduced by MiniNooNE 
and heavy used at BaBar


๏BDTs ported to LHC and 
very useful on Higgs 
discovery


๏Now Deep Learning is 
opening up many new 
possibilities

Machine Learning in HEP
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๏Classification: associate a 
given element of a dataset to 
one of N exclusive classes


๏Regression: determine a 
continuous value y from a set 
of inputs x


๏Clustering: group elements of 
a dataset because of their 
similarity according to some 
learned metric


๏Dimensionality reduction: 
find the k quantities of the 
N inputs (with k<N) that 
incorporate the relevant 
information (e.g., principal 
component analysis)

Typical problems
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Supervised Learning



A simple example: S vs B selection
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x1

x2

x1

x2

x1

x2

๏Define a selection to separate the signal from the 
background

With rectangular 
cuts

With a linear 
discrimininat

With a non linear 
discrimininat
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A simple example: S vs B selection
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x1

x2

x1

x2

๏Define a selection to separate the signal from the 
background

With rectangular 
cuts

With a linear 
discrimininat

With a non linear 
discrimininat

๏Define a decision boundary which gives optimal 
separation

h(x |w) = wTx = 0

h(x |w) > 0

h(x |w) < 0 h(x |w) = 0

(Signed) distance between x and the boundary plane



๏Give as input pairs of inputs and 
outputs:


๏Model the probability of x to be signal 
(y=1) as  


๏The larger (and positive) the distance, 
the closer p to 1


๏The larger (and negative) the distance, 
the closer p to 0 


๏We can choose the plane such that we 
maximise the probability of the signal 
and minimise that of the background

Logistic Regression
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xi ∈ ℝn yi = {0,1}

p(y = 1 |x) =
1

1 + e−wTx

Linear Decision Boundaries
• Separate two classes:

– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx

62

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

• Decision boundary defined by hyperplane

h(x; w) = wTx = 0

– Boundary is perpendicular to weight vector w

• Classifier Score(xi) = h(xi; w)

• Class predictions: Predict class -1 if  h(xi ; w) < 0, else class 1

[Bishop]



๏Bernoulli’s problem: 
probability of a process that 
can give 1 or 0


๏The corresponding likelihood 
is (as usual) the product of 
the probabilities across the 
events


๏Maximizing the likelihood 
corresponds to minimizing the 
-logL


๏Minimizing the -logL 
corresponds to minimizing the 
binary cross entropy


๏How do we minimise it?

Bernoulli’s problem
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ℒ = ∏
i

pxi
i (1 − pi)1−xi

−log ℒ = − log[∏
i

pxi
i (1 − pi)1−xi]

= − ∑
i

[xi log pi + (1 − xi)log(1 − pi)]



Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed 
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of  a gradient step to take

73
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๏Gradient Descent is a popular 
minimisation algorithm


๏Start from a random point


๏Compute the gradient wrt the model 
parameters


๏Make a step of size η (the learning 
rate) towards the gradient direction


๏Update the parameters of the mode 
accordingly


๏Effective, but computationally 
expensive (gradient over entire 
dataset)

Gradient Descent
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๏Make the minimisation more 
computationally efficient


๏Compute gradient on a small batch 
of events (faster & 
parallelizable, but noisy)


๏Average over the batches to 
reduce noise


๏BEWARE: better scalability come 
at the cost of (sometimes) not 
converging


๏Many recipes exist to help 
convergence, by playing with the 
algorithm setup (e.g., adapting 
learning rate)

Stochastic Gradient Descent

16

Stochastic Gradient Descent and Variants 
• Gradient descent is computationally 

costly (since we compute gradient 
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a 

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping” 

out of  bad critical points

– Scales well with dataset and model size
– But can have some convergence 

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …

74
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๏Given a set of points, find the 
curve that goes through them


๏Can be a linear model


๏Can be a linear function of 
non-linear kernel of the x. 
For instance, a polynomial 
basis 
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yi = axi + b

yi = a ϕ(xi) + b
New feature, “engineered” from 

the input features

x

y

x

y

Example: regression & MSE



๏Take some model 
(e.g., linear)


๏Consider the case 
of a Gaussian 
dispersion of y 
around the expected 
value


๏Assume that the 
resolution σ is 
fixed


๏Write down the 
likelihood 

Example: regression & MSE
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h(xi |a, b) = axi + b

yi = h(xi) + ei p(ei) =
1

2πσ
e− e2

i
2σ2

ℒ = ∏
i

1

2πσ
e− e2

i
2σ2 = ∏

i

1

2πσ
e− (yi − h(xi))

2

2σ2



๏The maximisation of this likelihood corresponds to the 
minimisation of the mean square error (MSE)


๏MSE is the most popular loss function when dealing with 
continuous outputs. We will use it a few times in the next days


๏BE AWARE OF THE UNDERLYING ASSUMPTION: if you are using MSE, 
you are implicitly assuming that your y are Gaussian 
distributed, with fixed RMS


๏What if the RMS is not a constant?

Example: regression & MSE
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argmin[−2 log ℒ] = argmin[ − 2 log[∏
i

1

2πσ
e− (yi − h(xi))

2

2σ2 ]]

= argmin[∑
i

(yi − h(xi))2

σ2 ] = argmin[∑
i

(yi − h(xi))2] = MSE

https://arxiv.org/pdf/2010.05531.pdf


Supervised Learning in a nutshell
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training data

True Answer

Model

Prediction

LoSS

๏A training dataset x 


๏A target y


๏A model to go from x to y


๏A loss function quantifying how wrong the model is


๏A minimisation algorithm to find the model h that corresponds to 
the minimal loss



๏Split your sample in three:


๏Training: the biggest chunk, where you learn from


๏Validation: an auxiliary dataset to verify 
generalization and prevent overtraining


๏Test: the dataset for the final independent check

Training in practice
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Training Validation Test



๏Train across multiple epochs


๏1 epoch = going once through 
the full dataset


๏Use small batches (64, 128, etc)


๏Check your training history


๏on the training data (training 
loss)


๏and the validation ones 
(validation loss)


๏Use an objective algorithm to 
stop (e.g., early stopping)

Training in practice

22

Epoch

Lo
ss Validation 

Training

EARLY TOPPING: stop the train if the 
validation loss didn’t change more than δ 
in the last n epochs (patience)

δ
patience



๏If your model has 
not enough 
flexibility, it will 
not be able to 
describe the data


๏The training and 
validation loss will 
be close, but their 
value will not 
decrease


๏The model is said to 
be underfitting, or 
being biased

What can go wrong: underfitting
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What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

Epoch

Lo
ss

Validation 
Training



๏Your model can learn too much 
of your training dataset


๏e.g., its statistical 
fluctuations


๏Such an overfitted model 
would not generalise


๏So, its description of the 
validation dataset will be 
bad (i.e., the mode doesn’t 
generalise)


๏This is typically highlighted 
by a divergence of the 
training and validation loss

What can go wrong: overfitting
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Epoch

Lo
ss Validation 

Training

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/



The Bias vs Variance tradeoff
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๏A model would underfit if too 
simple: it will not be able to 
model the mean value


๏A model would overfit if too 
complex: it will reproduce the 
mean value, but it will 
underestimate the variance of the 
data


๏The generalization error is the 
error made going from the 
training sample to another sample 
(e.g., the test sample)

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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http://scikit-learn.org/

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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๏Generalization error can be written as the sum of three 
terms:


๏The intrinsic statistical noise in the data


๏the bias wrt the mean


๏the variance of the prediction around the mean

The Bias vs Variance tradeoff
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E[(y − h(x))2] = E[(y − ȳ)2] + (ȳ − h̄(x))2 + E[(h(x) − h̄(x))2]

Noise Bias 
Squared

Variance



The Bias vs Variance tradeoff

27

Bias Variance Tradeoff 54



Regularization
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๏Model complexity can be “optimized” 
when minimizing the loss


๏A modified loss is introduced, with 
a penalty term attache to each model 
parameter


๏For instance, Lp regularisation


๏The minimisation is a tradeoff between:


๏pushing down the 1st term by taking 
advantage of the parameters


๏pushing down the 2nd term by 
switching off  the parameters

Lreg = L + Ω(w)

https://openreview.net/pdf?id=H1Y8hhg0b

Published as a conference paper at ICLR 2018

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

hard-sigmoid. We further propose and employ a novel distribution obtained by this procedure; the
hard concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al.,
2016; Jang et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the
effectiveness of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN )} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓)1:

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

1This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.
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Lp = ∥w∥p = ∑
i

|wi |
p

https://openreview.net/pdf?id=H1Y8hhg0b


Deep Learning



Neural Networks in a nutshell
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• NNs are (as of today) the best ML solution on the 
market

• NNs are usually structured in nodes connected by 
edges

• each node performs a math operation on the 
input

• edges determine the flow of neuron’s  inputs & 
outputs



Deep Neural Networks
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๏Deep neural networks are 
those with >1 inner layer


๏Thanks to GPUs, it is now 
possible to train them 
efficiently, which boosted 
the revival of neural 
networks in the years 2000


๏In addition, new 
architectures emerged, 
which better exploit the 
new computing power

http://www.machinelearning.org/archive/icml2009/papers/218.pdf


What is DL used for
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Image processing

Clustering

text/sound processing

Reinforcement Learning



๏Event Generation with 
generative models


๏Anomaly Detection to search 
for new Physics


๏Adversarial training for 
systematics


๏Reinforcement learning for 
jet grooming


๏…

DL, HEP, and new opportunities
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https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf


Feed-Forward NNs
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• Feed-forward neural networks 
have hierarchical structures: 

• inputs enter from the left and 
flow to the right

•  no closed loops or circularities  

• Deep neural networks are FF-NN 
with more than one hidden layer

• Out of this “classic idea, new 
architectures emerge, optimised 
for computing vision, language 
processing, etc



The role of a network node
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wijxj

•Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

• The result is passed to an              
activation function



The role of a network node
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Σjwijxj

• Each input is multiplied by a weight

•The weighted values are summed

• A bias is added

• The result is passed to an              
activation function



The role of a network node
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Σjwijxj + bi

• Each input is multiplied by a weight

• The weighted values are summed

•A bias is added

• The result is passed to an              
activation function



The role of a network node

38

yi = f(Σjwijxj + bi)

• Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

•The result is passed to an 
activation function



๏In a feed-forward chain, 
each node processes what 
comes from the previous 
layer


๏The final result (depending 
on the network geometry) is 
K outputs, given N inputs

The full picture
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yj = f (3)(Σlw(3)
jl f (2)(Σkw(2)

lk f (1)(Σiw(1)
ki xi + b(1)

k ) + b(2)
l ) + b(3)

j )

๏One can show that such a mechanism allows to learn generic 
ℝN→ℝK functions



Why DeepLearning for HEP?



๏Discover the Higgs boson or 
exclude its existence 


๏Help answering the big questions 
left in particle physics


๏What stabilises physics at EW 
scale?


๏What’s the nature of Dark 
Matter?


๏Origin of cosmological matter/
antimatter asymmetry


๏Are there unexpected phenomena 
at the energy frontier?

LHC:  Energy frontier exploration
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Big Data @LHC
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๏The LHC collides 
protons at 
unprecedented energy 
(equivalent to ~13,000 
times their mass)


๏(nominally) one 
collision event every 
25 ns (= 40 Million 
collisions/sec)


๏Thousands of 
particles emerging 
from each time


๏1 MB of data recorded 
at each collision 
event by big 
detectors



Real-time selection
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Big Data @LHC
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Data from WIRED 2013

๏The amount of produced data 
is too much to be stored


๏1,000 times the data 
generated by google 
searches+youtube+facebook 
back in 2013


๏Reduced to 5x(google 
searches+youtube+facebook) 
after first filtering


๏Can only store 5% of those

(*) Only two big experiments 
(ATLAS and CMS), only RAW data

https://www.wired.com/2013/04/bigdata/


Things will get worse
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‣ ~200 collisions/event

‣ ~minute/event processing time

‣ (at best)Same computing resources 
as today

This is when the R&D has to happen

‣ ~40 collisions/event

‣ ~10 sec/event processing time

‣ (at best)Same computing resources as 
today

Today

5 interactions/beam cross 140 interactions/beam cross



๏To disentangle 200 
collisions happening at 
once, we will build new 
detectors with more 
(smaller) sensors


๏Event complexity grows non 
linearly


๏To profit of that, 
computing resources for 
data processing will have 
to increase


๏We are off by a factor ~10 
if we project to 2027

More sensors, more RECO troubles
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DeepLearningforImagingCalorimetry

VitoriaBarinPacela,⇤Jean-RochVlimant,MaurizioPierini,andMariaSpiropulu
CaliforniaInstituteofTechnologyand

CMS

WeinvestigateparticlereconstructionusingDeepLearning,basedonadatasetconsistingofsingle-

particleenergyshowersinahighly-granularLinearColliderDetectorcalorimeterwitharegular3D

arrayofcells.Weperformenergyregressiononphotons,electrons,neutralandchargedpions,and

discusstheperformanceofourmodelineachparticledataset.

I.INTRODUCTION

OnethegreatestchallengesattheLHCat
CERNistocollectandanalysedatae�ciently.
Sophisticatedmachinelearningmethodshave
beenresearchedtotacklethisproblem,suchas
boosteddecisiontreesanddeeplearning.In
thisproject,weareusingdeepneuralnetworks
(DNN)[1][2]torecognizeimagesoriginatedby
thecollisionsintheLinearColliderDetector
(LCD)calorimeter[3][4],designedtooperate
attheCompactLinearCollider(CLIC).

Preliminarystudieshaveexploredthepossi-
bilityofreconstructingparticlesfromcalorimet-
ricdepositsusingimagerecognitiontechniques
basedonconvolutionalneuralnetworks,using
adatasetofsimulatedhitsofindividualpar-
ticlesontheLCDsurface.Thedatasetcon-
sistsofcalorimetricshowersproducedbysin-
gleparticles(pions,electronsorphotons)hit-
tingthesurfaceofanelectromagneticcalorime-
ter(ECAL)andeventuallyshoweringwithin
ahadroniccalorimeter(HCAL).Thisproject
aimedatreconstructingtheenergyofparticles
throughregression.

Thecodeusedfordefiningthemod-
elsandtrainingtheDNNsishostedat
https://github.com/vitoriapacela/NotebooksLCD,
andanalysistoolsarehostedat
https://github.com/vitoriapacela/RegressionLCD.

⇤vitoria.barinpacela@helsinki.fi

FIG.1.Visualizationofthedata.Chargedpion

eventdisplayedintheECALandHCAL.Everyhit

isshowninitsrespectivecellineachofthecalorime-

ters.Warmercolors(likeorangeandpink)repre-

senthigherenergies,as420GeV,whereascolder

colors,likeblue,representlowerenergies,as50

GeV.[5]

II.METHODS

Thedatasetsweresimulatedascloseaspos-
sibletorealcollisiondata,usingapreliminary
versionoftheCLICdetectordesign,imple-
mentedintheDDhepsoftwareframework[3].
Theyconsistof3Darraysrepresentingenergy
valuesinthecellsoftheECALandHCAL,and
thetrueenergyoftheparticle.TheECALdata
arrayshaveshape25x25x25,whereasthe
HCALdataarrayshaveshape4x4x60.Events
areofdiscrete,integer-valuedenergiesoverthe
range10-510GeV,andfixeddirection,sothat
theyimpactthecenterofthecalorimeterbar-
rel,withanimpactangleof90�.Thedatasets
foreachparticlearestoredintheHierarchical
DataFormat(HDF5)[6],whichisdesignedto
storeandorganizelargeamountsofdata.Each
HDF5filecontains10000events,andthereare

Which Particle?

Which Energy?

Which Direction?

๏We know how to get from the data the answers we want


๏physics + intuition + computing


๏But running these algorithms takes too much time


๏We can use DL solutions as a shortcut: we teach neural networks 
how to get the answer we want directly from the raw data



๏One BIG challenge: DL deployment needs to happen in between collisions and 
data analysis (trigger, reconstruction, …), where freeing resources will make 
a difference


๏Other issue: our data are not mainstream Deep Learning data (images, 
sequences, etc.). Lot of work going into designing custom solutions with 
physics knowledge injected

Deep Learning and LHC Big Data
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High-Level 


Trigger
L1 

trig
ger

1 KHz 

1 MB/evt

40 MHz

100 KHz



๏Sparse data: HEP data are 
sets (point clouds) of 
detector hits


๏Custom edge computing: 
algorithms have to run on 
special resources: custom 
custom electronic chips, 
dedicated computer centres, 
the worldwide GRID 


๏Real-time: execution has to 
happen within short time (as 
fast as ~100 nsec)

Dealing with HEP data
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7Rephrasing the problem

Perfect hashing function
g(mj) = bucket index (= tl/pi)

Same particle G same bucket

But: approximate similarity 
probably good enough



Accessing Raw Data
๏ DNNs typically rely on two phases: 


๏ Feature engineering from Raw Data. This is where new & exotic 
architectures (depending on data type) take the best out of your data


๏ Task solving: start from engineered features and solve the task 
(classification, regression, etc.)



New Opportunities
๏ Because we can process raw data 
directly, we can go beyond high-level 
classification and regression


๏ We can do classification/regression 
directly on raw detector hits


๏ We can generate detector hits 
(generative models)


๏ We can look for strange/new kinds of 
patterns in data (anomaly detection)


๏ To do so, different architectures are 
used


๏ Autoencoders


๏ Generative models


๏ …



Autoencoders in a nutshell

52

๏Autoencoders are compression-
decompression algorithms that learn to 
describe a given dataset in terms of 
points in a lower-dimension latent space


๏UNSUPERVISED algorithm, used for data 
compression, generation, clustering 
(replacing PCA), etc.


๏Used in particular for anomaly 
detection: when applied on events of 
different kind, compression-
decompression tuned on refer sample 
might fail


๏One can define anomalous any event whose 
decompressed output is “far” from the 
input, in some metric (e.g., the metric 
of the auto-encoder loss)



๏Idea applied to tagging jets, 
in order to define a QCD-jet 
veto


๏Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal


๏Based on image and physics-
inspired representations of 
jets 


 

Example: Jet autoencoders
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Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

SciPost Physics Submission

tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =

0

BB@

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N

1

CCA . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0

BB@

1 1 0 · · · 0 C1,N+1 · · · C1,M... 0 1
... C2,N+1 · · · C2,M...
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. . . 0
...

...
1 0 0 · · · 1 CN,N+1 · · · CN,M

1

CCA . (4)

We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
LoLa�!

0

BBBBBB@

k̃0,j
k̃1,j
k̃2,j
k̃3,jq
k̃2j

1

CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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How does one use this in analysis?
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๏Anomaly defined as a p-
value threshold on a 
given test statistics


๏Loss function an 
obvious choice


๏Doing so, one wants to 
avoid deformations in 
the background 
distribution that could 
fake a signal

+
+ + + + + + +

+++++++ +
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๏Two networks trained 
against each other


๏Generator: create 
images (from noise, 
other images, etc)


๏Discriminator: tries 
to spot which image 
comes from the 
generator and which 
is genuine

Generative Adversarial Training
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๏ Loss function to minimise: Loss(Gen)-Loss(Disc)


๏ Better discriminator -> bigger loss


๏ Better generator -> smaller loss


๏ Trying to full the discriminatore, generatore learns how to create 
more realistic images



Generative Adversarial Training
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๏Two networks trained 
against each other


๏Generator: create 
images (from noise, 
other images, etc)


๏Discriminator: tries 
to spot which image 
comes from the 
generator and which 
is genuine

๏ Loss function to minimise: Loss(Gen)-Loss(Disc)


๏ Better discriminator -> bigger loss


๏ Better generator -> smaller loss


๏ Trying to full the discriminatore, generatore learns how to create 
more realistic images



Generative Adversarial Training
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๏Generator: create 
images (from noise, 
other images, etc)


๏Discriminator: tries 
to spot which image 
comes from the 
generator and which 
is genuine

๏ Loss function to minimise: Loss(Gen)-Loss(Disc)


๏ Better discriminator -> bigger loss


๏ Better generator -> smaller loss


๏ Trying to full the discriminatore, generatore learns how to create 
more realistic images



Generative Adversarial Training



Generative Models
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๏GAN:


๏create fake data from random noise 
with Generator


๏train it against a Discriminator 
which tried to identify the fakes


๏until the Generator confuses the 
discriminator


๏VAE:


๏compress the input to a (Gaussian) 
pdf in some latent space


๏sample from the Gaussian 


๏decompress back to the input space


๏use the last two steps above as a 
generator



Data Representation



Deep Learning & Computing Vision

๏ The most evident success of Deep 
Learning is computing vision with 
Convolutional NNs


๏ A kernel scans an array of 
pixels


๏ The network is translation 
invariant


๏ The network knows which pixels 
are near each other and learns 
from there



Deep Learning & Computing Vision

๏ The most evident success of Deep 
Learning is computing vision with 
Convolutional NNs


๏ A kernel scans an array of 
pixels


๏ The network is translation 
invariant


๏ The network knows which pixels 
are near each other and learns 
from there



CNN in Science
๏ Paradigm applied successfully to many 
scientific problems


๏ Exoplanet detection


๏ Frequency-domain analysis of Gravitational 
Interferometer data 


๏ Neutrino detection


๏ etc…

https://iopscience.iop.org/article/10.3847/1538-3881/aaae05/pdf
https://arxiv.org/pdf/2005.03745.pdf
https://arxiv.org/pdf/2005.03745.pdf
https://arxiv.org/abs/1604.01444


Deep Learning & Natural Language
๏Natural language processing is another big success of Deep 
Learning


๏Based on recurrent neural networks


๏data ordered (time sequence, words in sentence, etc.)


๏data processed sequentially



Deep Learning & Natural Language
๏Natural language processing is another big success of Deep 
Learning


๏Based on recurrent neural networks


๏data ordered (time sequence, words in sentence, etc.)


๏data processed sequentially



RNN in Science
๏RNNs can be used to monitor time 
sequences and look for transient 
events


๏Supernovae detection


๏Monitoring LHC magnets


๏Event classification at LHC


๏…

https://arxiv.org/pdf/1901.06384.pdf
https://inspirehep.net/literature/1499546


What about irregular data?
๏ Unfortunately, many scientific domains deal with data which 
are not regular arrays (neither images nor sequences)


๏ Galaxies or star populations in sky


๏ Sensors from HEP detector


๏ Molecules in chemistry 


๏ These data can all be seen as sparse sets in some abstract 
space


๏ each element of the set being specified by some array of 
features


๏ geometrical coordinates could be some of these features0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4

0 4 1 4 2 1 3 0 4

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4
0 4 1 4 2 1 3 0 4

1.00 0.25 0.75 1.00 0.25 0.75 0.50 0.25 1.00

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4

0 4 1 4 2 1 3 0 4

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4
0 4 1 4 2 1 3 0 4

1.00 0.25 0.75 1.00 0.25 0.75 0.50 0.25 1.00

MB II simulation, animation credit: Kim Albrecht

Graph Neural Networks in Particle Physics 3

calorimeters, muon detector, etc — each using a di↵erent technology to measure the

trace of particles. The data in particle physics are therefore heterogeneous. Detectors

in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares,

etc) constructed around a single measurement technology, the data are therefore

homogeneous. In both cases, the measurements are inherently sparse in space, due to

the design of the geometry of the sensors. The measurements therefore do not a-priori

fit homogeneous, grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on lower level

information.

(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.



From Sets to Graphs
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๏ Given such a set, we want to generalise the 
image representation as regular array that is 
fed to a CNN


๏ Once that is done, we can generalise CNN 
itself


๏ For images, a lot of information is carried 
by pixels being next to each other. A metric 
is intrinsic in the data representation as 
image


๏ With a set, we need to specify a metric that 
tell us who is close to who in the abstract 
space of features that we have at hand


๏ SOLUTION: connect elements of sets and 
learn (e.g., with a neural network) from 
data which connections are relevant



๏Each element of your set is a vertex V


๏Edges E connect them


๏Edges can be made directional


๏Graphs can be fully connected (N2) 


๏Or you could use some criterion (e.g., 
nearest k neighbours in some space) to 
reduce number of connections


๏if more than one kind of vertex, you 
could connect only Vs of same kind, of 
different kind, etc


๏The (V,E) construction is your graph. 
Building it, you could enforce some 
structure in your data


๏If you have no prior, then go for a 
directional fully connected graph

Building the Graph
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๏ML models are adaptable algorithms that are trained (and not 
programmed) to accomplish a task


๏The training happens minimizing a loss function on a given 
sample


๏The loss function has a direct connection to the statistical 
properties of the problem


๏Deep Learning is the most powerful class of ML algorithms 
nowadays


๏New architectures bring new opportunities for new applications 


๏It could be relevant to the future of HEP, e.g., to face the 
big-data challenge of the High-Luminosity LHC

Summary
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Backup
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Message Passing



๏Imagine a concrete example: given a social-media user, 
who will she vote for at the next elections?


๏The graph here comes from social-media connections


๏The features are what we know for a given user (gender, 
age, education, etc.)


๏We want to gather information on someone from the 
social network of that person


๏we might know who some of her connections voted for


๏We will use NNs to model the influence (message passed) 
of each user on her connection and learn from data 
which are the relevant connections. We are engineering 
features


๏A final classifier will give us the answer we want


๏You might become president with this + target pressure 
(ads, fake news, etc.)

Learning from Graph: an example
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 DON’T DO IT!!!!!! 



๏Graphs Nets are architectures based on 
an abstract representation of a given 
dataset


๏Each example in a dataset is 
represented as a set of vertices


๏Each vertex is embedded in the 
graph as a vector of features


๏Vertices are connected through 
links


๏Messages are passed through links 
and aggregated on the vertices


๏A new representation of each node 
is created, based on the 
information gathered across the 
graph

Graph Networks

v1 = ( f1
1 , f 2

1 , . . . , f k
1)

v2 = ( f1
2 , f 2

2 , . . . , f k
2)

v3 = ( f1
3 , f 2

3 , . . . , f k
3)

v4 = ( f1
4 , f 2

4 , . . . , f k
4)

v5 = ( f1
5 , f 2

5 , . . . , f k
5)

v6 = ( f1
6 , f 2

6 , . . . , f k
6)
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m3→2 = g( ⃗f3, ⃗f2)

m1→2 = g( ⃗f3, ⃗f2)

m4→2 = g( ⃗f4, ⃗f2)

m5→2 = g( ⃗f5, ⃗f2)

m6→2 = g( ⃗f6, ⃗f2)

https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf


๏Graphs Nets are architectures based on 
an abstract representation of a given 
dataset


๏Each example in a dataset is 
represented as a set of vertices


๏Each vertex is embedded in the 
graph as a vector of features


๏Vertices are connected through 
links (edges)


๏Messages are passed through links 
and aggregated on the vertices


๏A new representation of each node 
is created, based on the 
information gathered across the 
graph

Graph Networks

78

v′￼1 = ⃗f ′￼1(m2→1, . . . , m6→1)

v′￼2 = ⃗f ′￼2(m1→2, . . . , m6→2)

v′￼4 = ⃗f ′￼4(m1→4, . . . , m6→4)

v′￼5 = ⃗f ′￼5(m1→5, . . . , m6→5)

v′￼6 = ⃗f ′￼6(m1→6, . . . , m5→6)

v′￼3 = ⃗f ′￼3(m1→3, . . . , m6→3)
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๏The inference step usually 
happens on each vertex


๏But, depending on the problem, 
it might happen across the 
graph


๏Usually, this is done with a 
DNN taking


๏the initial features fi


๏the learned representation 
fi’


๏[optional] some ground-truth 
label (for classifiers)

The inference step
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v1 = ( ⃗f1
⃗f ′￼1)

v3 = ( ⃗f3
⃗f ′￼3)

v4 = ( ⃗f4
⃗f ′￼4)

v2 = ( ⃗f2
⃗f ′￼2)

v5 = ( ⃗f5
⃗f ′￼5)

v6 = ( ⃗f6
⃗f ′￼6)
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
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compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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…and repeat
๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex


๏You could start from 
coordinates in real space 
+ some feature


๏Build function of them


๏Build functions of 
functions of them


๏At each step, you improve 
knowledge on your vertex V

80



…and repeat

81

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex


๏You could start from 
coordinates in real space 
+ some feature


๏Build function of them


๏Build functions of 
functions of them


๏At each step, you improve 
knowledge on your vertex V



…and repeat

82

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex


๏You could start from 
coordinates in real space 
+ some feature


๏Build function of them


๏Build functions of 
functions of them


๏At each step, you improve 
knowledge on your vertex V



…and repeat

83

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex


๏You could start from 
coordinates in real space 
+ some feature


๏Build function of them


๏Build functions of 
functions of them


๏At each step, you improve 
knowledge on your vertex V



…and repeat

84
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new representation of each 
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With equations…
๏Your message at iteration t is some function M of 
the sending and receiving features, plus some vertex 
features (e.g., business relation vs friendship in 
social media)

ht
w

ht
v

evw

Mt(ht
v, ht

w, evw)
๏The message carried to a vertex v is aggregated by 
some function (typically sum, but also Max, Min, 
etc.)

mt+1
v = ∑

w∈G(v)

Mt(ht
v, ht

w, evw)
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With equations…
๏The state of vertex v is updated by some function U 
of the current state and the gathered message

ht+1
v = Ut(ht

v, mt+1
v )

๏After T iterations, the last representations of the 
graph vertices are used to derive the final output 
answering the question asked (classification, 
regression, etc.), typically through a NN

̂y = R(hT
v |v ∈ G)
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
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VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

ht+1
v
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Learning Message
๏Typically, the M, U, and R functions are learned from data


๏Expressed as neural networks (fully connected NNs, recurrent NNs, etc.)


๏Which networks to use depends on the specific problem, as much as the 
graph-building rules


๏But you could inject domain knowledge in the game


๏You might know that SOME message is carried by some specific functions 
(e.,g., Netwon’s low for N-body system simulation)


๏You could then use analytic functions for some message


๏You could still use a learned function for other messages


๏The trick is dealing with differentiable functions not to spoil your back 
propagation


๏Graph networks become a tool for probabilistic programming
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A little bit of History
๏(in this millenium) Graph 
networks started (as often 
it is the case) with a 
Yann LeCun et al. paper


๏They tried to generalise 
CNNs beyond the regular-
array dataset paradigm


๏They replaced the 
translation-invariant 
kernel structure of CNNs 
with hierarchical 
clustering 

https://arxiv.org/abs/1312.6203

multiscale clusterings that are provably guaranteed to behave well w.r.t. Laplacian on the graph is
still an open area of research. In this work we will use a naive agglomerative method.

Figure 1 illustrates a multiresolution clustering of a graph with the corresponding neighborhoods.

Figure 1: Undirected Graph G = (⌦0,W ) with two levels of clustering. The original points are
drawn in gray.

2.3 Deep Locally Connected Networks

The spatial construction starts with a multiscale clustering of the graph, similarly as in [3] We
consider K scales. We set ⌦0 = ⌦, and for each k = 1 . . .K, we define ⌦k, a partition of ⌦k�1

into dk clusters; and a collection of neighborhoods around each element of ⌦k�1:

Nk = {Nk,i ; i = 1 . . . dk�1} .

With these in hand, we can now define the k-th layer of the network. We assume without loss of
generality that the input signal is a real signal defined in ⌦0, and we denote by fk the number of
“filters” created at each layer k. Each layer of the network will transform a fk�1-dimensional signal
indexed by ⌦k�1 into a fk-dimensional signal indexed by ⌦k, thus trading-off spatial resolution
with newly created feature coordinates.

More formally, if xk = (xk,i ; i = 1 . . . fk�1) is the dk�1 ⇥ fk�1 is the input to layer k, its the
output xk+1 is defined as

xk+1,j = Lkh

0

@
fk�1X

i=1

Fk,i,jxk,i

1

A (j = 1 . . . fk) , (2.1)

where Fk,i,j is a dk�1 ⇥ dk�1 sparse matrix with nonzero entries in the locations given by Nk, and
Lk outputs the result of a pooling operation over each cluster in ⌦k. This construcion is illustrated
in Figure 2.

In the current code, to build ⌦k and Nk we use the following construction:

W0 = W

Ak(i, j) =
X

s2⌦k(i)

X

t2⌦k(j)

Wk�1(s, t) , (k  K)

Wk = rownormalize(Ak) , (k  K)

Nk = supp(Wk) . (k  K)

3
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A little bit of History
๏ The idea of message passing can be 
tracked to a ’15 paper by Duvenaud et al. 


๏ The paper introduces “a convolutional 
neural network that operates directly on 
graphs”


๏ Language is different, but if you look at 
the algorithm it is pretty much what we 
discussed (for specific network 
architecture choices)

Figure
1:

Left:
A

visualrepresentation
of

the
com

putationalgraph
of

both
standard

circular
fin-

gerprints
and

neuralgraph
fingerprints.

First,a
graph

is
constructed

m
atching

the
topology

of
the

m
olecule

being
fingerprinted,in

w
hich

nodes
representatom

s,and
edges

representbonds.
A

teach
layer,inform

ation
flow

s
betw

een
neighbors

in
the

graph.
Finally,each

node
in

the
graph

turns
on

one
bit

in
the

fixed-length
fingerprint

vector.
Right:

A
m

ore
detailed

sketch
including

the
bond

inform
ation

used
in

each
operation.

2
C

ircular
fingerprints

The
state

of
the

art
in

m
olecular

fingerprints
are

extended-connectivity
circular

fingerprints
(EC

FP)
[21].

C
ircular

fingerprints
[6]

are
a

refinem
ent

of
the

M
organ

algorithm
[17],

designed
to

encode
w

hich
substructuresare

presentin
a

m
olecule

in
a

w
ay

thatisinvariantto
atom

-relabeling.

C
ircularfingerprintsgenerate

each
layer’sfeaturesby

applying
a

fixed
hash

function
to

the
concate-

nated
featuresofthe

neighborhood
in

the
previouslayer.The

resultsofthese
hashesare

then
treated

as
integer

indices,w
here

a
1

is
w

ritten
to

the
fingerprintvector

atthe
index

given
by

the
feature

vector
ateach

node
in

the
graph.

Figure
1(left)

show
s

a
sketch

of
this

com
putationalarchitecture.

Ignoring
collisions,each

index
ofthe

fingerprintdenotes
the

presence
ofa

particularsubstructure.
The

size
ofthe

substructures
represented

by
each

index
depends

on
the

depth
ofthe

netw
ork.Thus

the
num

beroflayers
is

referred
to

as
the

‘radius’ofthe
fingerprints.

C
ircularfingerprints

are
analogous

to
convolutionalnetw

orks
in

thatthey
apply

the
sam

e
operation

locally
everyw

here,and
com

bine
inform

ation
in

a
globalpooling

step.

3
C

reating
a

differentiable
fingerprint

The
space

ofpossible
netw

ork
architecturesislarge.In

the
spiritofstarting

from
a

know
n-good

con-
figuration,w

e
designed

a
differentiable

generalization
ofcircularfingerprints.Thissection

describes
ourreplacem

entofeach
discrete

operation
in

circularfingerprints
w

ith
a

differentiable
analog.

H
ashing

The
purpose

of
the

hash
functions

applied
at

each
layer

of
circular

fingerprints
is

to
com

bine
inform

ation
about

each
atom

and
its

neighboring
substructures.

This
ensures

that
any

change
in

a
fragm

ent,no
m

atterhow
sm

all,w
illlead

to
a

differentfingerprintindex
being

activated.
W

e
replace

the
hash

operation
w

ith
a

single
layer

of
a

neuralnetw
ork.

U
sing

a
sm

ooth
function

allow
s

the
activations

to
be

sim
ilarw

hen
the

localm
olecularstructure

varies
in

unim
portantw

ays.

Indexing
C

ircularfingerprintsuse
an

indexing
operation

to
com

bine
allthe

nodes’feature
vectors

into
a

single
fingerprintofthe

w
hole

m
olecule.Each

node
sets

a
single

bitofthe
fingerprintto

one,
atan

index
determ

ined
by

the
hash

of
its

feature
vector.

This
pooling-like

operation
converts

an
arbitrary-sized

graph
into

a
fixed-sized

vector.
For

sm
allm

olecules
and

a
large

fingerprintlength,
the

fingerprints
are

alw
ays

sparse.
W

e
use

the
s
o
f
t
m
a
x

operation
as

a
differentiable

analog
of

indexing.In
essence,each

atom
isasked

to
classify

itselfasbelonging
to

a
single

category.The
sum

ofallthese
classification

labelvectors
produces

the
finalfingerprint.This

operation
is

analogous
to

the
pooling

operation
in

standard
convolutionalneuralnetw

orks.
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Figure 3: Left: Comparison of pairwise distances between molecules, measured using circular fin-
gerprints and neural graph fingerprints with large random weights. Right: Predictive performance
of circular fingerprints (red), neural graph fingerprints with fixed large random weights (green) and
neural graph fingerprints with fixed small random weights (blue). The performance of neural graph
fingerprints with large random weights closely matches the performance of circular fingerprints.

4.1 Examining learned features

To demonstrate that neural graph fingerprints are interpretable, we show substructures which most
activate individual features in a fingerprint vector. Each feature of a circular fingerprint vector can
each only be activated by a single fragment of a single radius, except for accidental collisions.
In contrast, neural graph fingerprint features can be activated by variations of the same structure,
making them more interpretable, and allowing shorter feature vectors.

Solubility features Figure 4 shows the fragments that maximally activate the most predictive fea-
tures of a fingerprint. The fingerprint network was trained as inputs to a linear model predicting
solubility, as measured in [4]. The feature shown in the top row has a positive predictive relationship
with solubility, and is most activated by fragments containing a hydrophilic R-OH group, a standard
indicator of solubility. The feature shown in the bottom row, strongly predictive of insolubility, is
activated by non-polar repeated ring structures.

Fragments most
activated by

pro-solubility
feature

2
2+

2

1+

2

2+

2+

Fragments most
activated by

anti-solubility
feature

Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative
examples of molecular fragments (highlighted in blue) which most activate different features of the
fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature most
predictive of insolubility.
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๏A few recent reviews that could guide you through the many 
applications and networks


๏A nice BLOG article on GNNs


๏Another nice BLOG article on GNNs


๏A generic review


๏A particle-physics specific one


๏A few GitHub entries


๏JEDI-net Interaction Networks for jet tagging on these data


๏PUPPIML: GGNN for pileup subtraction


๏A small GarNet example that fits an FPGA on these data

Further Reading & Coding

90

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://github.com/vlimant/PUPPIML
https://zenodo.org/record/3992780#.X6ysJC9h2L9
https://zenodo.org/record/3888910#.X6ytBi9h2L8

