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[ defuinttion (UUikipedia]

Machine learning (ML) 1s the scientific study of algorithms and
statistical models that computer systems use to progressively
improve their performance on a specific task. Machine learning
algorithms build a mathematical model of sample data, known as
"training data’, 1n order to make predictions or decisions
without being explicitly programmed to perform the task.

[ 1L.OSS
3 TUNCTIONS

the loss, 1.e. the
error made 1n
prediction

TRAINING DATA

.
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- -
‘e L
b 0.—

PREDICTION

The name of the game 1is
O finding the algorithm
TR setting (its parameter

: values) that minimise
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@) Many flavors of Mu

@ D-i 'IC'ICe ren t ML Hidden layer
algorithms had their
moment of glory

xi >cl xi <cl

»_\
xj>c2:;x,<c2 X} >c3| |xj<c3
i U

@Alternatives emerged \
1n the 90°’s

® (Shallow) neural
networks dominated
1n the 80’s

® Support vector
machine

® Boosting of " o
decision trees 2 T X HerC e



https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf

[ two-steps process

® Learning: train the algorithm on a Supervised learning
provided dataset

® Supervised: the dataset X comes with %
the right answer y (right class 1n a X X
classification problem). The - X
algorithm learns the function OOO

® Unsupervised: the dataset X comes sanivy
with no label. The algorithm learns
structures 1n the data (e.g., alike

events 1n a clustering algorithm) Unsupervised learning
® Reinforcement: learn a series of [ classtars
actions and develop a decision- O
. . O O
taking algorithm, based on some O
action/reward model X2 35
_ @ 2, O
@® Inference: once trained, the model can O OOO
be applied to other datasets | | European

> X LI Research
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Bl Machine Learning in HEP

@ Classification:

S = ATLAS ¢ Data -
_ _ _ _ = 700 -, 1s=8TeV,203 fb’ w E
@ given an image, identify the 5 ooy T morers
] L 500 72/ Uncertainty =
object represented 400 =
300 —g
@ 1n particle physics, given a fgg .
particle shower, identify the g 128
particle kind . Q
3 0 0.1 082DTR03 04
esponse
® Regression: )
S CMS Barrel ;
. . . % 104 Simulation H—> vy, p.> o5 GeV =
@given a set of quantities x, &, oo s E
. LU e
learn some function f(x) :
102 . .
| t || 7 h || || 10 .h +
@ 1n particle physics, given a e
particle shower, learn 1ts IR jinsT 10 P08010 2015
enerqgy 006 08 1 12 14 16 R HOTC| comen
6 Etrue/ Eraw :...:..'




(Machine Learning \In HEP

@ Classification:

@ identify a particle & reject fakes 108CMS Preliminary 35.9 o' (13 TeV)
§ § | |+ lData | | | | | | §

’ ; ; ’ < - Simulation: 7

@ 1denti1fy signal events & reject background 2 Hry (. = 125 GeV)x10° -
Q 10 = I total background+stat.uncert. =

LLI - _

® Regression:

® Measure energy of a particle

—h
o
o1
T

@ Up to now, these task mainly solved with BDTs : s -.-.ﬂ-.f--w};l
@ moved to Deep Learning for analysis-specific - -
tasks e -

@ same will happen for centralised tasks L

(eventually) 1 -08 06 04 02 0 02 04 06 08 1
BDT score of the photon ID

Centralised task (in online or offline reconstruction) IR | European
Analysis-specific task (by users on local computing e:rc et
infrastructures) 4 R




@l Machine Learning in HEP

@ Long tradition

é —— BDT y classifier
@ Neural networks used at g / |
LEP and the Tevatron 2 ,.

@ Boosted Decision Trees
1ntroduced by MiniNooNE
and heavy used at BaBar 110 115 120 125 130 135 140 145 150

Higgs Mass (GeV)

—y
o

(00
|IIII IIII|IIII|IIII|IIII|III

—— BDT v classifier

@ BDTs ported to LHC and
very useful on Higgs
discovery

Rule-based y selector

@® Now Deep Learning 1s
opening up many new _
possibilities S e e ke @K C| cowen

=) Higgs Mass (GeV

Dataset increase factor for 5¢ discovery
~

i N
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Typlcal Qroblems

@ Classification: associate a
given element of a dataset to
one of N exclusive classes

® Regression: determine a
continuous value y from a set
of Tnputs X

@ Clustering: group elements of
a dataset because of their
similarity according to some
learned metric

@ Dimensionality reduction:
find the k quantities of the
N 1nputs (with k<N) that
1ncorporate the relevant
information (e.g., principal
component analysis)
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UNSUPERVISED MACHINE LEARNING — SUPERVISED MACRINE (EARNING
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A simple example: S vs B selection

@ Define a selection to separate the signal from the
background

With rectangular X1 With a linear X With a non linear X1
cuts discrimininat discrimininat

1



A simple example: S vs B selection

@ Define a selection to separate the signal from the
background

With a linear
discrimininat

@ Define a decision boundary which gives optimal

(Signed) distance between x and the boundary plane

12



Loglstic F%egressu::n

@ Give as i1nput pairs of 1nputs and h>o0 a2
outputs: h(x) =0 -
n h(x) <o R 1
.xl’E R yi= {0’1} o.o. °
@® Model the probability of x to be signal W’ . ’,"h<x>
(y=1) as 1 . / Twl
— 1 X)—m— ‘.o - >
p(y ‘ ) 1 + e_WTX ® . I
Twil

® The larger (and positive) the distance
the closer p to 1

® The larger (and negative) the distance,
the closer p to 0

® We can choose the plane such that we
maximise the probability of the signal
and minimise that of the background

13



Bernoullls problem

® Bernoulli1’s problem:
probability of a process that

can give 1 or O g — lexl(l _pi)l—xi

® The corresponding li1kelihood
1s (as usual) the product of
the probabilities across the
events

@ Maximizing the Ilikelihood
corresponds to minimizing the
- loglL

—log &L = — log[Hpixi(l — p)' 7]

@Minimizing the -loglL
corresponds to minimizing the
binary cross entropy

— 2 [xl- logp; + (1 —x)log(1 — p;

@ How do we minimise 1t?

14



Gradient Descent

® Gradient Descent 1s a popular Wa A
minimisation algorithm

@ Start from a random point

@® Compute the gradient wrt the model 6‘L(W)
parameters
OwW

@® Make a step of size n (the learning
rate) towards the gradient direction

® Update the parameters of the mode

accordingly
@ Effective, but computationally ' aL(W)
expensive (gradient over entire W W=7 Ow

dataset) ]

15




Stochastic Gradient Descent

@ Make the minimisation more
computationally efficient

@® Compute gradient on a small batch
of events (faster &
parallelizable, but noisy)

® Average over the batches to
reduce noise

@ BEWARE: better scalability come
at the cost of (sometimes) not
converging

® Many recipes exist to help
convergence, by playing with the
algorithm setup (e.g., adapting
learning rate)

16

sgd
momentum |
nag

adagrad
adadelta
rmsprop

1///{///1
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Example: regression & (MSE

@ Given a set of points, find the
curve that goes through them

@ Can be a l1near model

y. =ax;+ b

@ Can be a linear function of
non-1li1near kernel of the x.
For 1nstance, a polynomial
basis

yi==a1ﬂninykl>

_ (g | European
New feature, “engineered” from X are de
i ineel) ounci

the input features

., ®
ooo......
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cvan®, "

N A AN

.- ......-

R N .



Example: regression & (MSE

@ Take some model

(e.g., linear) h(xi‘a, h) = axi'l'b

@ Consider the case
of a Gaussian y
dispersion of y | e
around the expected 'y, = h(x;) + e; p(ei) = —— € 2o

value \/ 270

@ Assume that the
resolution o 1S 1 .

1 (vj = h(x)?
fixed OCZ — e_; — e_ 752
H \/ 270 H \/ 270

@ Write down the
l1kel1hood

s s ...:..o European
R LI Research
| -:::'.'.erc Council
. _'.o.o:.:.....: .,
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Example: regression & (MSE

® The maximisation of this li1kelihood corresponds to the
minimisation of the mean square error (MSE)

1 (= hop))?
e

252 ]]

argmin[—2log £| = argmin[ — 2 log[H

2o

h(x)’
2

O

— argmin[z Oi = ] = argmin[z (v; — h(xl-))z] = MSE

@ MSE 1s the most popular loss function when dealing with
continuous outputs. We will use 1t a few times 1n the next days

@ BE AWARE OF THE UNDERLYING ASSUMPTION: 1f you are using MSE,
you are 1mplicitly assuming that your y are Gaussian
distributed, with fixed RMS

@ What if the RMS is not a constant? erc o

19



https://arxiv.org/pdf/2010.05531.pdf

@ Supervised Learning 1N a nutshell

TRAINING DATA

@A training dataset x
@A target y
@A model to go from x to y

@A loss function quantifying how wrong the model 1s

®A minimisation algorithm to find the model h that corresponds to

. AT European

the minimal loss rare e
=20 '




Tralinng N practice

@Split your sample 1n three:

@ ITraining: the biggest chunk, where you learn from

@ Validation: an auxiliary dataset to verify
generalization and prevent overtraining

@ Test: the dataset for the final 1ndependent check

=1

LR
.........



Validation
Training

4\

Loss

@ ITrain across multiple epochs

@ 1 epoch = going once through
the full dataset

@ Use small batches (64, 128, etc)
® Check your training history

@ on the training data (training
loss)

@ and the validation ones
(validation loss)

@® Use an object-i ve a ]gor--,' thm to EARLY TOPPING: stop the train if the

s ( T t . ) validation loss didn’t change more than 6 i
>top (€.g., edlrly Stopping in the last n epochs (patience) erc




LUhat can go wrong: underfitting

Degree 1 Degree 4

@ If your mOde7 has : thr?Jcieflunction i ':rc::e:unction
nOt enOugh Ny e* e Samples :
flexibi1lity, 1t will
not be able to >
describe the data

e*e Samples

® The training and
validation loss will
be close, but their
value will not
decrease

Loss

® The model 1s said to Validation
be underfitting, or ~— Training
being biased *

=3



CE/RW
\\_/

LUhat can go wrong: overfitting

® Your model can learn too much Degree 4 Degree 15

of your training dataset — Model

——  True function
e*e Samples

—  Model
——  True function
e e Samples

@e.g., 1ts statistical
fluctuations g

® Such an overfitted model :
would not generalise

® So, 1ts description of the
validation dataset will be
bad (1.e., the mode doesn’t
generalise)

Loss

@ This 1s typically highlighted
by a divergence of the
training and validation loss

=24

Validation
Training




The Blias vs VVariance tradeoff

Degree 15

@A model would underfit i1f too o Model
S-imp7e: -it W-i77 I’IO'L' be ab7e 'L'O i *e Samples
model the mean value

@A model would overfit i1f too
complex: 1t will reproduce the

mean value, but 1t wi1ll x
underestimate the variance of the Degree 1
data —  Model
. ——  True function
e®e Samples

® The generalization error 1s the
error made going from the
training sample to another sample
(e.g., the test sample)

.......
......
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The Blias vs VVariance tradeoff

® Generalization error can be written as the sum of three
terms:

@ The 1ntrinsic statistical noise 1n the data
@ the bias wrt the mean
® the variance of the prediction around the mean

Noise Bias Variance
Squared

26



The Blias vs VVariance tradeoff

Total Error

Optimum Model Complexily

Variance

Error

Model Complexity

=2/



Reqularization

@® Model complexity can be “optimized” —_ p=2 —_— p=1
when minimizing the loss 4 4

@A modified loss 1s 1ntroduced, with

>
a penalty term attache to each model ®© 2 2
parameter Q \/
L.,=L+ Q(w) : o

-2 0 2 -2 0 2
® For 1nstance, Lp regularisation 0 0
— p=05 — p=0
— P — P 4 4
L,=|w|" = Z,\W,-\
l
@ The minimisation 1s a tradeoff between: 2 2

@ pushing down the 1st term by taking ; \/ : ‘

advantage of the parameters

@ pushing down the 2nd term by iR | European

switching off the parameters erc e
=8 https://openreview.net/pdf?id=H1Y8hhgOb %



https://openreview.net/pdf?id=H1Y8hhg0b
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D Neural Networks in a nutshell

A mostly complete chart of

O Backfed Input Cell N e u ra l N EtWO rks Deep Feed Forward (DFF)

~ Input Cell

©2016 Fjodor van Veen - asimovinstitute.org

A Noisy Inpat Cel Perceptran (P) Feed Forward (FF)  Radial Basis Network (RBF)

. G Gy S8, e
® NINs are (as of today) the best ML solution on the g & ¢ ~

. Qutput Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o () () . () () . () ()

i (n\.ln\'l - ln\.ln"/ I\

I I I a r I(et . Match Input Output Cell - "’\"',\\" - "’\""\"' A%
AR e e AR
_ ‘ll"\ll"‘ ~ \‘."“."\ o \‘."\‘."\

. Recurrent Cell

. Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

® NNs are usually structured in nodes connected by ¢ .

o
- .\')’l “\’I‘f
: 10:{‘ 400

\Yem Yl
p— - “\'Q "l‘\"
QO Convolution or Pool AANIEOAN

g Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
o - o - - - ‘\ . - s o

® cach node performs a math operation on the

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwaork (DCIGN)
. - - . - - ~
INput X 0 X

P 53 AYAY S S

e UMD S0 S o

X S e o <

. QL ».

X o7 X

® edges determine the flow of neuron’s inputs &

outputs @ | @

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)

VaVaWaW
AW WA




Deep Neural MNetworks

Hidden layer 1  Hidden layer 2  Hidden layer 3
Input layer

® Deep neural networks are

”7 A
h . h . 7 _\%s.:‘.é Seos §§§\$?: utput layer
those with >1 1nner layer Nitte R A
JPR R s @
® Thanks to GPUs, 1t 1s now 2 RS o
' ' 2 SN g,
possible to train them SN

efficiently, which boosted
the revival of neural
networks 1n the years 2000

Large-scale Deep Unsupervised Learning using Graphics Processors

@ In addition, new
architectures emerged,

W h .I' C h b e t t e r, e X p 7 O _I' t t h e Computer Science Department, Stanford University, Stanford CA 94305 USA
new computing power

: ;.. -..; European
% -'.".‘:'.." o Research
' -',-‘.‘.'.erc Council
.‘...:.:.:,'.o:: oy
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http://www.machinelearning.org/archive/icml2009/papers/218.pdf

LUUhat 1Is DL used for

Image processing

text/sound processing

Everything is a Recommendation

NETFLIX  ~ . — -

l!ﬁ“

¥ g T

Over 75% of what
people watch
comes from our
recommendations

LPHAGO
‘00 08:32

LEE SEDOL

« 00:00:27

Recommendations
are driven by
Machine Learning

———— e ———
——

ﬁﬁﬂﬁl%nﬁ% 

. . NETFLIX i uropean
Reinforcement Learning Clustering are resere
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DL, HEP, and new opportuntties

DO~ 0
G - D

@ Anomaly Detection to search .
for new Physics

GEANT

® Event Generation with
generative models

GAN

—_ 1 h%stT
O A-a
= 1 h*>t1v

Probability

® Adversarial training for
systematics

® Reinforcement learning for
jet grooming

e use ep Q-Net
(s,a), rmining th
§ oy, == . threshold on f(X)
= H /= A\ 1 3
. . . . [~ ]
o] V5 RS\ CEE.
g 1Ny : I
EEN .DD (] B = ®o: 0 =
| . . .
of] m\= /i
8 Y/ 1
il e
T Europ

is use - 3 o
-
- e o
* ® =

Q*(s,a) = maxE[ry + yri41 + ...|st = s,as = a, 7 ..‘.‘:. ...:.

. . -o‘.......
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https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf

Feed-Forward MNMls

® Feed-forward neural networks
have hierarchical structures:

® inputs enter from the left and
flow to the right

® no closed loops or circularities

® Deep neural networks are FF-NN
with more than one hidden layer

® Out of this “classic idea, new
architectures emerge, optimised
for computing vision, language
processing, etc

34

input layer

——

hidden layer 1 hidden layer 2 hidden layer 3

output layer
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The role of a network node

® Each input is multiplied by a weight

® [he weighted values are summed
® A bias is added

® [he result is passed to an
activation function

35

input layer

—

—

hidden layer 1 hidden layer 2 hidden layer 3

output layer

ooooo




The role of a network node

® Each input is multiplied by a weight

® The weighted values are summed

® A bias is added

® [he result is passed to an
activation function

36

input layer

hidden layer 1 hidden layer 2 hidden layer 3

_——Fd-

—
——

output layer
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The role of s

® Each input is multiplied by a weight
® [he weighted values are summed

® A bias is added

® [he result is passed to an
activation function

3/

network Nnode

input layer

hidden layer 1 hidden layer 2 hidden layer 3

_——Fd-

——

output layer

ooooo
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@’_ The role of a network nmnode

® Each input is multiplied by a weight
® [he weighted values are summed

. . input layer
® A bias is added o i

p—
p— T

hidden layer 1 hidden layer 2 hidden layer 3

output layer

® The result is passed to an
activation function

Activation Functions

Sigmoid Leaky RelLU ) -
O'(LU) _ 1-*_‘13_30 maX(O.lzc, 27)
5 0 To Er—y 10

tanh Maxout

tanh(x) e ° max(’wr{w + b1, w%rx + bz) y f( § : W x | b )

ReLU T/ ELU ‘° / L J U] !

T x>0

maX(07 :L.) _ § {Oz(e"’ —1) =<0 e’ 10 PETrReE European

HHOTC| coma
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The full plcture

@ In a feed-forward chain,
each node processes what
comes from the previous
layer

@ The final result (depending
on the network geometry) 1s
K outputs, given N 1nputs

— f(3)(21v‘{].(l3) f(2)(2 W(Z) f(l)(Z W(l)x 4 b,fl)) 4 bl(Z)) 4 bj(3))

® One can show that such a mechanism allows to learn gener7c

RN—=RK functions

39

input layer

hidden layer
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hidden layer 2 hidden layer 3
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t layer
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@ LHC: Energy frontier exploration

Vs=7TeV,L=5.
1

9000 - CMS Preliminary

® Discover the Higgs boson or 87 | grorer | By iz S5
exclude 1ts existence 2o 159N
“>J20§— J — §1oooé |
) ) ) 15f- - %800;
@ Help answering the big questmns/ T 1 B
left 1n particle physics \I%Q et Wl
< m,, (GeV) m,, (GeV)

® What stabi1lises physics at EW 19605
Sca7e? Dark energy

@ What’s the nature of Dark

Ma t te r ? Exotic dark
matter
®0rigin of cosmological matter/ 10708
antimatter asymmetry P Ordinary dark

‘matter ~

Ordinary visible
matter

@ Are there unexpected phenomena

at the energy frontier? S| Euvenn
E::;;Q.rc Council
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@ The LHC collides

p I‘O tOnS a t CMS Experiment at the LHC, CERN| (~» 4§
Mon 2010-Nov-08 11:22:07 CET
unprecedented energy Run 150431 Evert 541464,

(equivalent to ~13,000
times their mass)

® (nominally) one
collision event every
25 ns (= 40 Mill10on

collisions/sec)

® Thousands of
particles emerging
from each time

@1 MB of data recorded
at each collision
event by big SRR | European
detectors SHOTC| comar

e e




detector
collisions

40,000,000
events/sec

—

L1 trigger

—>

100,000
events/sec

43

high-level
trigger

0.000 000 092s

1 collision every 25 nanosed

1000
events/sec

data
analysis
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Bl Data BL.HC

N Business email
® The amount of produced data S Pacebook
1s too much to be stored W counbe
LHC st‘;red data (*)
. B LHC Li-filtered (*)
@ 1,000 times the data B LHC produced (*)
generated by google I
searches+youtube+facebook I
back 1n 2013 s Data from WIRED 2013
® Reduced to 5x(google
searches+youtube+facebook) I
after first filtering T
1 100 10000
@ Can only store 5% of those PB/year

(*) Only two bilg experiments :-er C
4 (ATLAS and CMS), only RAW data



https://www.wired.com/2013/04/bigdata/

@l T hings wil get worse

5 iInteractions/beam cross 140 interactions/beam cross

LLEMS Expstiment athHG -CERN
} Datarecorded: Erb@et 26:08:06 57 2018 CESY
Run/Event=32530924451\8

Rimtsectent
OrRiErass ing A1 520. 4650

o Poor Pavo Povo P Paver Boveo T Boooor oo 111 ] Lo
This 1s when the R&D has to happen

LHC Today

» ~40 collisions/event | | 00 collisions/event
> ~10 sec/event processing time » ~minute/event processing time
> (at best)Same computing resources as » (at best)Same computing resources

today 45 as today




More sensors, more RECO troubles

@ To disentangle 200
coll1sions happening at
once, we will build new
detectors with more
(smaller) sensors

® Event complexity grows non
l1nearly

® To profit of that,
computing resources for
data processing will have
to 1ncrease

@© We are off by a factor ~10

LR
.........
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Which Particle?
Which Energy?
Which Direction?

® We know how to get from the data the answers we want
® physics + 1ntuition + computing
@ But running these algorithms takes too much time
@ We can use DL solutions as a shortcut: we teach neural networks ... ...

how to get the answer we want directly from the raw data e;rc ——
47 :




@ Deep Learning ano LHC Big Data

® One BIG challenge: DL deployment needs to happen 1n between collisions and
data analysis (trigger, reconstruction, ..), where freeing resources will make
a difference

@ Other 1ssue: our data are not mainstream Deep Learning data (images,

sequences, etc.). Lot of work going 1into designing custom solutions with
physics knowledge 1njected

.......



Desling with HEP? dats

® Sparse data: HEP data are
sets (point clouds) of
detector hits

@ Custom edge computing:
algorithms have to run on
special resources: custom
custom electronic chips,

dedicated computer centres,
the worldwide GRID

@ Real-time: execution has to
happen within short time (as
fast as ~100 nsec)

Council
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Ol Accessing Raw Data

® DNNs typically rely on two phases:

® Feature engineering from Raw Data. This 1s where new & exotic
architectures (depending on data type) take the best out of your data

T~ bird Poird
I_LI_L sunset ]_> psunset
dog ]_> pdog
jj# cat |—> pcat
. . o
convolution + max pooling vec |4 \o
nonlinearity | o Ny,
convolution + pooling layers fully connected layers  Nx binary classification

® Task solving: start from engineered features and solve the task
(classification, regression, etc.)

......
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New Opportuntties

® Because we can process raw data
directly, we can go beyond high-level CMS Phase-2 Simulation Preliminary
classification and regression

® We can do classification/regression
directly on raw detector hits

® We can generate detector hits
(generative models)

® We can look for strange/new kinds of
patterns 1n data (anomaly detection)

@ To do so, different architectures are
used

® Autoencoders

® Generative models

o ;:;:..‘:'..:; European
.-, .
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9l Rutoencoders in a nutshell

encoder decoder

@ Autoencoders are compression-
decompression algorithms that learn to
describe a given dataset 1n terms of
points 1n a lower-dimension latent space 5 5 : 5 5

® UNSUPERVISED algorithm, used for data
compression, generation, clustering
(replacing PCA), etc. X e . ;

@® Used 1n particular for anomaly _— ?
detection: when applied on events of 10- ﬁ‘ifrﬁ; g :
different kind, compression- *%*"“ | 5'“22 7
decompression tuned on refer sample I A 3:?,,% o
might fail N =f | },»5,," '”3...§ 5

RO et el |
® One can define anomalous any event whose -s{ - ... \_.;\%3::@, 3
decompressed output 1s “far” from the mi‘ff&s" Lol Pl ,
Tnput, 1n some metric (e.g., the metric ‘%} ' 1
of the auto-encoder 1oss) TR, | e
~10 -5 0 5 10 15 -:..e..]’c N
== SRR




Ol Example: Jet sutoencoders

@ Idea applied to tagging jets,
1n order to define a QCD-jet
veto

@Applied 1n a BSM search
(e.g., dijet resonance) could
highlight new physics signal

® Based on 1mage and physics-
1nspired representations of
jets

I. Encoder Decoder

W

Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979 53
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t =
g (400 GeV) —
___J
F
10~ 10°° 107> 104
Reconstruction Error
LoLa 255 160 80 40 20 20 40 80 160
; (ko )
( ]%0’9\ k1,5
~ | LoL .. .
~27.] kg’] Laeeit
\k?),j/ L2
\V*%i )/
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https://arxiv.org/pdf/1808.08992.pdf
https://arxiv.org/pdf/1808.08979.pdf

How does one use this 1IN analysis?

@ Anomaly defined as a p-
value threshold on a
given test statistics

# of Events

® Loss function an
obvious choice

@ Do1ng so, one wants to
avoid deformations 1n
the background
distribution that could
fake a signal

# of Events

=z Some Discriminating Quantltyxer C| counc




@ Generative Adversarial Tralining

® Two networks trained
against each other

® Generator: create Latent

Space

images (from noise, _
other 1mages, etc)

®Discriminator: tries - P G
to spot which image o

comes from the -

generator and which —

1S genuine

Noise

@ Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
® Better generator -> smaller loss

® Trying to full the discriminatore, generatore learns how to create

more realistic 1mages R | Surovesn
g ) '::.:'.:.e...rc gouncil
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Ol Generative Adversarial Training

® Two networks trained cools
against each other Eﬁ¥l
® Generator: create r
1mages (from noise,
other images, etc) T

_).

@ Discriminator: tries —

Generated

to spot which 1mage _Fake
amples

comes from the

generator and which

1S genuine

@ Loss function to minimise: Loss(Gen)-Loss(Disc)

® Better discriminator -> bigger loss
® Better generator -> smaller loss

more realistic 1mages

56
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® Trying to full the discriminatore, generatore learns how to create
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Ol Generative Adversarial Training

® Two networks trained cools

against each other ‘E{;

@ Generator: create oten _
- - C L
1mages (from noise, _ - A
other images, etc) T ke D A

i N [ i Discriminator
. J

@ Discriminator: tries - P G = _
to spot which image I el I N ?
comes from the — ; 5
generator and which — e} FineTuneTraining

1S genuine

® Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
@ Better generator -> smaller loss
@ Trying to full the discriminatore, generatore learns how to create

more realistic 1mages R |
g ) '::-:o..e..r c gouncil




Generative Adversarial Trawining
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Generative Models

@ GAN:

@ Create fake data from random noise
with Generator

@ train 1t against a Discriminator
which tried to i1dentify the fakes

@ until the Generator confuses the
discriminator

@ VAE:

® compress the 1nput to a (Gaussian)
pdf 1n some latent space

@ sample from the Gaussian
® decompress back to the 1nput space

@ use the last two steps above as a
generator

Training set

Random

59
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Deep Learning & Computing Vision

NASNet-A-Large
SE-ReshaXt-101{32x40)
00 s aiiiast oissid ‘c&'ﬁﬁf?ﬁ"ﬁ#ﬁ s SENL154
o bon PathNel- athiNed-1
® The most evident success of Deep . ..ab bopry e
Learning is computing vision with S oo G0 a3 g1 e 1
g i p g Densedet-2014) Qmsel‘-.el-lm.'ewm.‘m eﬁesllet-'raZ
gsNat- Calle-ResNel-101 GG-19
Convolutional NNs . m.;..p;..ht.,.-e: o::m i ey Yoo
< o nastot IMoie 5 |
® A kernel scans an array of 5 | ovnhon @Festeca VGe-13 BN
1xels £ ® MobilsNet-y2 VGG)1. BN
lt) Eé VGG-19
— 70 - . .Res.\let-le ' VGG-16
® The network 1s translation § Niaid v -
'i nvar 7 ant P Shufflshial VGG-11
.Goog‘_eNel
- - 88,/ Y/
® The network knows which pixels 7 R N T
Soueezaleat-v1.1 -
are near each other and learns eyt I
from there s
55 | 1 || )
0 5 10 15 20 25
Operations [G-FLOPs]
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@ Deep Learning & Computing Vision

® The most evident success of Deep
Learning 1s computing vision with
Convolutional NNs

® A kernel scans an array of
pixels

® The network 1s translation
invariant

® The network knows which pixels
are near each other and learns
from there
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® Paradigm applied successfully to many N e
scientific problems os o g
0.7 f
® Exoplanet detection ol
® Frequency-domain analysis of Gravitational =0 p
Interferometer data oz}
0.1 '
. . 0 -/'/' ! . ! .
@ Ne u t r -I no de te C t -I On ’ v Falg;a4 Positiveolgate o 1

@ etcC..



https://iopscience.iop.org/article/10.3847/1538-3881/aaae05/pdf
https://arxiv.org/pdf/2005.03745.pdf
https://arxiv.org/pdf/2005.03745.pdf
https://arxiv.org/abs/1604.01444

Deep Learning & Matural Language

@Natural language processing 1s another big success of Deep
Learning

@Based on recurrent neural networks
e@data ordered (time sequence, words 1n sentence, etc.)

@data processed sequentially

. L.Zf.':';'-.:é pean
SEERE | Research
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Deep Learning & Matural Language

@Natural language processing 1s another big success of Deep
Learning

@Based on recurrent neural networks
e@data ordered (time sequence, words 1n sentence, etc.)

@data processed sequentially

0.2
0.5
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RMAMN iNn Sclence

@RNNS can be used TO mon'itor‘ t‘ime - SN la (ID: 3385878, redshift: 0.466)

= + ® Filterg
sequences and look for transient . 7 b Filter
- $ + ¢ Filterr
even tS é & & ® Filterz
X 50 - + o ® @ { ®
. ‘ o, *° .
. 0 - : b * o ® - ' t ; ! ‘ !
® Supernovae detection
0 20 40 60 80 100 120
= " 1.00 A +
@Monitoring LHC magnets :
= 0.75 7 : :
= ' —— Prob being class SN la
© 0.50 - ! —— Prob being class SN CC
| | | | [ | _Q
® Event classification at LHC £ 025 - i == Peak MD
[
[
1.0 ) L E— . . . .
@ 0 20 40 60 80 100 120
Time (M)D)
~ 0.8 08
A
t 0.7}
P
8 06 0.6F
3 o
&) S st
= =
=04 :
@ :
= 2
2
n —— Inclusive classifier (AUC): 0.9973
0.2 —— Particle-sequence classifier (AUC): 0.9952
.~ HLF classifier (AUC): 0.9861 ctegee’ens
// —— Abstract-image classifier (AUC): 0.9681 - . '..‘..:3;'.’.:..'.",:. European
0.0 ,//, — Raw-imaglje classifierl (AUC): 0.9999 ) | | | | .;:.::::é:r c gzz:i::h
. OO 02 04 06 08 1 O ° : 4:ime [steps], single st::): 0.4s N . -'...‘...’.:::.'..:.;.'..::?
Background Contamination (FPR) ERSOH



https://arxiv.org/pdf/1901.06384.pdf
https://inspirehep.net/literature/1499546

LUUJhat about irreqular data™?

® Unfortunately, many scientific domains deal with data which
are not regular arrays (neither images nor sequences)

® Galaxies or star populations 1n sky
® Sensors from HEP detector
® Molecules 1n chemistry

® These data can all be seen as sparse sets 1n some abstract
space

® each element of the set being specified by some array of
features

® geometrical coordinates could be some of these features

olo[i[1]2]alala]a -
olal1islal1[alo]a G
1.00(0.25(0.751.00(0.25/0.75[0.50/0.25/1.00 o

O 1 2 3 4
O 1 2 3 4
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Ul From Sets to Graphs

® Given such a set, we want to generalise the
1mage representation as regular array that 1s
fed to a CNN

® Once that 1s done, we can generalise CNN
1tself

® For 1mages, a lot of 1nformation 1s carried
by pixels being next to each other. A metric
1s 1ntrinsic 1n the data representation as
1mage

® With a set, we need to specify a metric that
tell us who 1s close to who 1n the abstract
space of features that we have at hand

® SOLUTION: connect elements of sets and
learn (e.g., with a neural network) from
data which connections are relevant
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Bullding the Graph

® Each element of your set 1s a vertex V
® Edges E connect them

® Edges can be made directional

® Graphs can be fully connected (N?)

@® Or you could use some criterion (e.g.,
nearest k neighbours 1n some space) to
reduce number of connections

@ 1T more than one kind of vertex, you
could connect only Vs of same kind, of
different kind, etc

® The (V,E) construction 1s your graph.
Building i1t, you could enforce some
structure 1n your data

European
Research
Council

@ If you have no prior, then go for a
directional fully connected graph

69



Summary

@ ML models are adaptable algorithms that are trained (and not
programmed) to accomplish a task

® The training happens minimizing a loss function on a given
sample

@ The loss function has a direct connection to the statistical
properties of the problem

@® Deep Learning 1s the most powerful class of ML algorithms
nowadays

@® New architectures bring new opportunities for new applications

@It could be relevant to the future of HEP, e.g., to face the
big-data challenge of the High-Luminosity LHC
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@ Learning from Graph: an example

@® Imagine a concrete example: given a social-media user,
who will she vote for at the next elections? ‘

‘

® The graph here comes from social-media connections

® The features are what we know for a given user (gender
age, education, etc.)

® We want to gather i1nformation on someone from the

social network of that person

@ we might know who some of her connections voted for
@We will use NNs to model the influence (message passed)

of each user on her connection and learn from data

which are the relevant connections. We are engineering

features

@A final classifier will give us the answer we want

® You might become president with this + target pressure Europesn
(ads, fake news, etc.) ejrc Council

/3




@ Learning from Graph: an example

DON'T DO IT!!




Graph MNetworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

® Each example 1n a dataset 1is
represented as a set of vertices

® Each vertex 1s embedded 1n the
graph as a vector of features

V6 — ( 6, 6 ..... 6) ...:.:.,'::;'.."..E European

https://arxiv.org/pdf/1704.01212.pdf er | Ovee

aS_0y
" .s
. .

e
o....
L A
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https://arxiv.org/pdf/1704.01212.pdf

Graph Metworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

® Each example 1n a dataset 1s
represented as a set of vertices

@ Each vertex 1s embedded 1n the
graph as a vector of features

@ Vertices are connected through
11nks (edges)

/76
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https://arxiv.org/pdf/1704.01212.pdf

Graph Metworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

Ms_p = 8(f3»f2)

® Each example 1n a dataset 1s
represented as a set of vertices
_ _ My_,n = 8(?4»1?2)
® Each vertex 1s embedded 1n the
graph as a vector of features m = a(Fo F)

® Vertices are connected through
l1nks (edges)

Ms_,p = 8(?5»]?2)

: 2 =8(fer fo)
® Messages are passed through 11nks -2 = 8Ue 2

and aggregated on the vertices

European
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Graph MNetworks

® Graphs Nets are architectures based on

an abstract representation of a given V3 =305 05 M6 3) Q
dataset
® Each example 1n a dataset 1s O

represented as a set of vertices q o

vi=f1my ..., Me_, 1) Vy=Jam_y,. .., Mg, 4)

® Each vertex 1s embedded 1n the Q Q

graph as a vector of features q

Vo, = fo(my_,..., Me_,»)

® Vertices are connected through
l1nks (edges)

® Messages are passed through 11nks Q
and aggregated on the vertices )
Vé =f§(m1_>5 ..... m6_>5)
@ A new representation of each node Q
1S created, based on the
information gathered across the Vo = [ msg) Curopenn
graph e https://arxiv.org/pdf/1704.01212.pdf er G| coma



https://arxiv.org/pdf/1704.01212.pdf

The inference step

® The 1nference step usually
happens on each vertex

@® But, depending on the problem,
1t might happen across the
graph

@® Usually, this 1s done with a
DNN taking

® the 1nitial features fi

® the learned representation
fi’

® [optional] some ground-truth
label (for classifiers)

European
Research
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V

80
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a ®
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them ®

@At each step, you 1mprove
knowledge on your vertex V

52



...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from O
coordinates 1n real space ‘a
+ some feature ©
O
® Build function of them v

@ Bu1ld functions of o
functions of them ®

@At each step, you 1mprove
knowledge on your vertex V

B4




LJith equations...

® Your message at i1teration t 1s some function M of
the sending and receiving features, plus some vertex

features (e.g., business relation vs friendship 1n h‘f
social media) O
o<,
[
hw

M(hy, h,,, e,

® The message carried to a vertex V 1s aggregated by

some function (typically sum, but also Max, Min,
etc.)

mit =Y MR Re,,
weG(v)

85



® The state of vertex V 1s updated by some function U
of the current state and the gathered message

h‘€+l — Ut(h\ia mt+1)

Vv

@After T 1terations, the last representations of the
graph vertices are used to derive the final output
answering the question asked (classification,
regression, etc.), typically through a NN

=R |veG
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Learning Message

@ Typically, the M, U, and R functions are learned from data
® Expressed as neural networks (fully connected NNs, recurrent NNs, etc.)

® Which networks to use depends on the specific problem, as much as the
graph-building rules

@ But you could 1nject domain knowledge 1n the game

® You might know that SOME message 1s carried by some specific functions
(e.,g., Netwon’s low for N-body system simulation)

® You could then use analytic functions for some message
® You could still use a learned function for other messages

® The trick 1s dealing with differentiable functions not to spoil your back
propagation

® Graph networks become a tool for probabilistic programming Research
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([ little bt of History

@ (1n this millenium) Graph
networks started (as often
1t 1s the case) with a
Yann LeCun et al. paper

® They tried to generalise
CNNs beyond the regular-
array dataset paradigm

® They replaced the
translation-invariant
kernel structure of CNNs -
with hierarchical
clustering

https://arxiv.org/abs/1312.6203



https://arxiv.org/abs/1312.6203

@) A little bit of History

H
Y.y
N\ A\ \S,”.‘

2T L XPC D X< 1 \£&

\/ - v 9.
Y A Y Y W WY

Rl \ IV \ o< ¥ \ I\ V I
A\\/V—_ L N e ___.V__"’/
YA VAR - VA" - YA " A \X ..

® The 1dea of message passing can be
tracked to a '15 paper by Duvenaud et al.

® The paper 1ntroduces “a convolutional
neural network that operates directly on
graphs”

ANEE VAN VA A"

X

n 1 1fferen 1T look
® Language .S d : © .e t, but you ook at Algorithm 2 Neural graph fingerprints
the algorithm 1t 1s pretty much what we , , .
discussed (for speci fic network 1: Input: molecule, radius R, hidden weights
architecture choices) H; ...H3, output weights W7 ... Wg

2: Initialize: fingerprint vector f < Og
3: for each atom a in molecule
Fragments most O iy O
activated by MH x( jH 4. r, < g(a) > lookup atom features
pro-solubility
feature ° o \ 5:for L=1to R > for each layer
6: for each atom a in molecule
Fragments most 6 7 r'r...ry = neigthI'S(a)
aniosolabiiy 8.8 Od%g 8: A A > sum
feature .
UaW, 9: r, < o(vH;) > smooth function
Figurel4: E;(amilnin% ﬁl}fgerprints (ZEUIE]IZG}? fgr. p1r§1dic:)tin§f1 .scﬁubiliiy. EhO\thdhjgcfre arte freptresentaft‘tti}\;e 10‘ 1 < SOf tIl:laX(ra WL) > Sp ar Slfy
examples of molecular fragments (highlighted in blue) which most activate different features of the o
ﬁnge.rl]);).rint. Top row: Th% feature nglostg predictive of solubility. Bottom row: The feature most 1 1 f — f + 1 > add tO ﬁngerprlnt
precictive ofinsolubiliy 12: Return: real-valued vector f

https://arxiv.org/pdf/1509.09292.pdf
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Further Reading & Coding

@A few recent reviews that could guide you through the many
applications and networks

@A nice BLOG article on GNNs

@ Another nice BLOG article on GNNs

@A _generic review

@A particle-physics specific one

@A few GitHub entries

@ JEDI-net Interaction Networks for jet tagging on these data

® PUPPIML: GGNN for pileup subtraction

@®A small GarNet example that fits an FPGA on these data

S0


https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://github.com/vlimant/PUPPIML
https://zenodo.org/record/3992780#.X6ysJC9h2L9
https://zenodo.org/record/3888910#.X6ytBi9h2L8

