
2nd ML_INFN Hackathon - 13.12.2021

ANN: PRINCIPLES AND
COMMON ARCHITECTURES
S. Giagu

ARTIFICIAL NEURAL NETWORKS
• the most popular approach to machine learning in the last decade

• an ANN is a mathematical model able to approximate with high precision a generic multidimensional function:

• shallow analogy with biological neural networks

• more precisely is a composition of functions (layers) connected in chains described by graphs  
(example: a feed-forward ANN can be represented as direct acyclic graph)

2

• architecture: interconnected group of simple identical computational units (neurons)

• computational approach: connectionist (collective actions performed in parallel by the neurons)

• learning: as an adaptive system, the network structure dynamically change during a training phase based on a set of examples

that flow through the network during the training steps

• non linear response obtained by non linear neuron outputs

• hierarchic representation learning obtained by implementing complex multilayered topologies (DNN)

f : Rn → Rm: y = f(x) ⟶ ANN(x) = ̂y

a1(z1)

a1(z2)

a1(z3)

a1(zd1)
input

hidden layer

output

MULTILAYER PERCEPTRON (FEED-FORWARD NN)
• the most classical and simplest DNN architecture it the so called Feed-Forward NN or MLP

3

• neurons organised in consecutive layers: input, hidden-1, ... , hidden-K, output

• only connections of neurons of a given layer towards the next are possible;: acyclic direct graph

• all possible connections are present (dense layers)

≡

FF-ANN
acyclic direct

graph

zi = w(1)
0i +

m

∑
j=1

xjw(1)
ji

̂yi = a2 w(2)
0i +

d1

∑
j=1

a1(zj)w(2)
ji

• NN behaviour determined by:

• network topology (#layers, size of each layer, …)

• weights wij

• activation function of each layerMLP with 1 hidden layer

synaptic sum

a1(zi) activation

4

non-linear activations allows to learn complex and non linear patterns …

a(z) = z a(z) = max[0,z]a(z) = tanh[z]

Linear Tanh ReLU

CHOICE OF ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS

5

In general, any continuous and differentiable function would be fine. In practice some functions work better than
other for specific ANN architectures …

should not be used in general for dense and convolutional layers:

- gradient vanishes away from x=0 → vanishing gradient problem

- sigmoid has output not centered in zero → affects SGD dynamic (zig-zag instabilities)

- used in RNN to control gated I/O and often in dense layers in GAN to avoid sparsity

the most popular:

- allows non linear dynamics

- faster convergence of the NN because doesn’t saturate

- no vanishing gradient problem

- induce gradient sparsity (0 output for negative values, i.e. fewer active neurons). This

can be an advantage or an issue depending on the specific ANN architecture. Needs to
be monitored and in case of problems replaced with alternatives

POPULAR ACTIVATION FUNCTIONS FOR THE OUTPUT LAYER

6

Sigmoid: typically used in binary classification problems (2 classes) with a
single output neuron or multilabel (multiple mutually inclusive classes) or
sometime when the output features are numbers in (0,1)

Softmax: Rn→ [0,1]n

- soft version of the argmax output

-often used in multi-class classification tasks (with mutually exclusive classes)

-output of each neuron ∈ (0,1) and interpretable as a probability (∑yi=1)

yi =
ezj

∑n
j=1 ezj

Identity (linear): standard choice for regression tasks

ANN AS UNIVERSAL APPROXIMATORS

7

IMPORTANT: the theorem doesn’t say nothing about the effective possibility to learn in a simple
way the parameters of the model, all the DNN practice boils down in finding optimal and efficient
techniques to solve this problem …

26

Teoria e Tecniche di Pattern Recognition

Reti Neurali 50

F. Tortorella © 2005
Università degli Studi
di Cassino

Regioni di decisione
delle reti neurali

Regioni di forma
arbitraria

Regioni convesse

Semispazi delimitati da
iperpiani

Forma generaleRegioni di decisioneStruttura

Teoria e Tecniche di Pattern Recognition

Reti Neurali 51

F. Tortorella © 2005
Università degli Studi
di Cassino

L1approccio RBF
� L;approccio RBF nasce nel contesto dei problemi di

interpolazione esatta.
� Supponiamo di avere N punti xk con corrispondenti target tk.

Vogliamo trovare una funzione h(.) tale che h(xk)= tk per
k=1,G,N

� L;approccio RBF è basato sull;individuazione di N funzioni
�(||x-xk||) tali che
h(xk)= �kwk�(||x-xk||)

� Queste funzioni sono di solito della forma

dove il � rappresenta la smoothness della funzione

�

	
��
�

�
�� 2

2

2�
xexp�(x)

Structur Decision regions Shapes
sub-spaced delimited

by hyperplanes

convex regions

arbitrary shaped

regions

∫Rn

| | f(x) − F(x) | |p dx < ϵ

F(x) = ∑ cia(w0i + wtx)

it can be demonstrated that a feed-forward network
with a single hidden layer containing a finite number of
neurons with non linear activations can approximate

continuous functions on compact subsets of Rn, under
mild assumptions on the activation function

Universal approximation theorem proof:

- unbounded, sigmoid: here

- bounded, ReLU, arbitrary depth: here

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://arxiv.org/abs/1709.02540

DEEP NN: WHY GOING DEEP WORKS?
• the universal approximation theorem tells us that already a FFNN with one hidden layer can approximate

any function with arbitrary precision

• however deep architectures are much more efficient at representing a larger class of mapping functions:

• problems that can be represented with a polynomial number of neurons in k layers require an
exponential number of neurons in a shallow network (Hastad et Al (86), Y.Bengio (2007))

• sub-features (intermediate representations)  
can be used in parallel for multiple tasks  
performed with the same model

• overparametrization and skip connections  
in deep NN seems to have beneficial effects 
in smoothing the loss function landscape

8

VGG-56 VGG-110

arXiv:1712.09913 [cs.LG]

ResNet-56

WHY GOING DEEP IS DIFFICULT: VANISHING GRADIENT
• the main problem in the use of DNN architectures is related to the vanishing gradient

• the first layers of a deep NN fail to learn efficiently

• reason: during backprop in a network of n hidden layers, n derivatives of the activation
functions will be multiplied together. If the derivatives are small then the gradient will
decrease exponentially as we propagate through the model until it eventually vanishes

9

a

a’

• SOLUTIONS:

1. use activation functions which do not produce small derivatives: i.e. ReLU, LeakyReLU, Selu, …

2. use batch normalisation layers: in which the input is normalised  
before to be processed by the layer in order to not reach  
regions of the activation function where derivatives  
are small (other advantage: prevent the target of each layer  
from moving continuously during the training (internal covariate shift))

3. use skip connections that do not pass through the activation functions  
and propagate information to subsequent layers

LEARN THE PARAMETERS (E.G. TRAINING THE ANN)

• during the training N examples are presented to the network: T{x(i), y(i)} (i=1,…,N) (supervised learning case)

• weights are initialised to random values (small and around zero): for example ~N(0,σ) or U[-ε,ε]

• for each event the output of the model ŷ(x(i)) is calculated and compared with the expected target y(i) by

means of an appropriate loss function that measures the "distance" between ŷ(x(i)) and y(i):

10

example: MSE

L(w) =
1
N

N

∑
i=1

Li (y(i), ̂y(i)(x(i) |w)) Li (y(i), ̂y(i)(x(i) |w)) =
1
2 (y(i) − ̂y(i)(x(i) |w))2

w* = argmin
w

[L(w)]• the vector of weights is chosen as the one that minimizes L:

• the minimum is sought with GD / SGD techniques … w(t+1) = w(t) − η∇wL(T |w)

• training consists in adjusting the parameters according to a given cost function (loss) that is a differentiable
proxy to the performance of the model wrt the specific task we want to solve

• weights and biases: “adjusted” using stochastic gradient descent with back-propagation

• hyperparameters (parameters whose values are fixed before the learning process begins): “adjusted” using heuristic

approaches (manual trial&error, grid or random search, bayesian-opt, autoML, …)

LOSS FUNCTIONS

11

binary cross-entropy

MSE

p = predicted probability (0,1)

y = label (0 or 1)

NOTE: generalisation for multi class problems

- categorical cross-entropy (one-hot encoded label)

- sparse categorical cross-entropy (integer labels)

given two distributions p and q, Hp(q) measures the average number of bits needed to identify an event extracted
from the set, when the p model is used for the probability distribution, rather than the "true" distribution q. It is
usually the best loss function to train ANNs that output probabilities (example: softmax)

for regression problems

Modern ANNs are trained using the maximum likelihood principle, consequently the most used loss functions are
simply equivalent expressions/approximations of the negative log-likelihood:

L(w) = − ET[log pmodel(y |x, w)]

most popular forms:

MSE = | |y − ̂y | |2 =
1
N

N

∑
i=1

(y − ̂y)2
(also MAE, UberLoss, …)

Hp(q) = −
1
N

N

∑
i=1

yi log(pi) + (1 − yi)log(1 − pi)

BACKPROPAGATION

• the training of an NN takes place in two distinct phases which are repeated at each iteration:

• forward phase: the weights are fixed and the input vector is propagated layer  
by layer up to the output neurons (function signal)

• backward phase: the Δ error is calculated by comparing the output with the  
target y and the result is propagated back, again layer by layer (error signal)

• each neuron (hidden or output) receives and compares the function and error signals

• back-propagation consists of a simplification of the gradient calculation obtained by applying recursively the
rule of derivation of compound functions (chain rule)

12

w1
∂L(w)
∂w1

=
∂L(w)

∂ ̂y
×

∂ ̂y
∂w1

=
∂L(w)

∂ ̂y
×

∂ ̂y
∂z1

×
∂z1

∂w1

̂y = a2(w2z + b2)z1 = a1(w1x + b1) L(w) =
1
2

(̂y − y0)2 available at
the output analytically calculable

to update the weights of all the layers of the network is necessary to calculate the gradient of complicated non
convex functions with respect each weight, and to evaluate its numerical value. Doing it in a simple and efficient
way is called Backpropagation or Backprop procedure

LEARNING CURVES
• at the start of the training phase when the network weights have been initialised randomly (with small random

values) the error on the training set (the loss value) is typically large

• with the iterations (epochs) the error tend to decrease until it reach (typically) a plateau value that depends on:
the size of the training set, the NN architecture, initial value of the weights, the hyper-parameters …

• training progress is visualized with the learnign curves (loss or accuracy or any useful metrics vs epochs)

13

22

Teoria e Tecniche di Pattern Recognition

Reti Neurali 42

F. Tortorella © 2005
Università degli Studi
di Cassino

Terminazione
dell-apprendimento

E/n

test validation

terminazione
dell-apprendimento

Teoria e Tecniche di Pattern Recognition

Reti Neurali 43

F. Tortorella © 2005
Università degli Studi
di Cassino

Migliorare il training
� Problema dei minimi locali

Lo
ss

• as usual in ML multiple datasets (and/or cross validation) are needed
to monitor the tradeoff between bias and variance during the training
(e.g. undercutting vs overfitting) and to optimise the hyper parameter
of the model

• validation set: for the optimisation of hyper-parameters and the

training stop criteria

• test set: to evaluate the final performances of the trained model

LOSS AND LEARNING RATE

14

• the gradient descent method is an iterative procedure

• at each iteration weights are updated according to: w(t+1) = w(t) - η⋅ ∇L(w(t))

• η is called learning rate and defines the magnitude of the vector modification

• η affects the speed and quality of convergence toward a minima:

• a small value can result in excessive slowness and an increase in the probability of being trapped in local minima

• a large value can cause the algorithm to diverge

• to speedup convergence: Variable Learning Rate and Adaptive Learning Rate Optimisers

• during the iterations the learning rate decrease according to a predetermined schedule

or adapt following a specific strategy
10

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 18

F. Tortorella © 2005
Università degli Studi
di Cassino

Metodo della discesa lungo il
gradiente
Supponiamo che alla
generica iterazione k
abbiamo un vettore dei pesi
w(k). Il gradiente di J per quel
vettore sia �J(w(k)). Il valore
aggiornato di w sarà:

dove � è una costante
definita tasso di
apprendimento (learning rate)
e definisce lCampiezza della
modifica del vettore.

J

J
� �)()()1(kJkk www ����� �

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 19

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Il valore di � influisce sulla rapidità di convergenza

dellCalgoritmo, per cui un valore basso può risultare in
una lentezza eccessiva

small η

slow convergence

11

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 20

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Di contro, un valore troppo alto può far divergere

l5algoritmo

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 21

F. Tortorella © 2005
Università degli Studi
di Cassino

Algoritmi di apprendimento

� Sulla base del criterio J(w) scelto e della
regola di minimizzazione si possono quindi
definire diversi algoritmi di apprendimento
che mirano a costruire la fdl.

� Analizziamo tre algoritmi:
� L5algoritmo del Perceptron

� L5algoritmo MSE

� L5algoritmo di Widrow-Hoff o algoritmo LMS

ADAptive grad: the learning rate associated with each weight is individually scaled inversely
proportional to the root of the historical sum of squares of the gradients for that parameter:

‣ weight associated to relevant features: smaller η

‣ weight associated to non relevant/low frequency features: larger η

several implementations:

Adadelta, Adam, RMSProp, …

large η

cause drastic

updates leading to
instability

MOST CRITICAL ASPECTS IN THE TRAINING OF ANNs
• training speed:

• mitigated by using stochastic-learning, momentum, adaptive learning rate (Adam o RMSProp), non
saturating activation functions (ReLU, …), smart weight initialisation, and scaling of the input features

• but most of all by using dedicated coprocessors (GPUs, TPUs, ACAPs, SOCs, FPGAs, …)

• hardcore overfitting:

• inevitable consequence of the trade-off between variance (large expressive power) and bias
(generalization)

• issue controlled by applying a set of regularization techniques aimed at reducing the error on the test
set (typically at the expense of error on the training set)

• regularisation techniques impose constraints on different aspects of the NN model such as the
complexity of the NN architecture, the error reduction on the training set, the representation of the
loss function landscape, the size of weights, etc… so that will be more difficult for the model to learn
characteristic that are specific of the training set

15

DROPOUT

16

before after

used routinely in the context of convolutional NN where it can
sensibly increase performance on the test set

• very popular and powerful technique to prevent overfitting in architecture of deep neural network

• imposes constraints on the complexity of the Neural Network architecture

• neuron connections are eliminated based on a defined probability

• forces the model to not rely excessively on particular sets of features

EARLY STOPPING AND NOISE INJECTION
• early stopping: imposes constraints on the error reduction on the training set

• the training process is stopped as soon as the loss on the validation sample reaches a plateau or start to increase

17

• noise injection/information loss: makes it more difficult for the
network to learn specific characteristics of the input features

• random flip of labels

• random occlusion of pixels or feature bits

• adding withe/colored/gaussian noise to the features

• …

DATA AUGMENTATION
• one of the best ways to make an ML algorithm to generalize better is to train it on larger and more expressive data

• but having more data is normally the real issue in ML/DL → solution: artificially increase the dimension of the
training set by applying transformations that preserve the relevant “physics” of the data/problem

18+ modern approaches can be also based on data produced with generative models (GAN, VAE, …)

ANN ARCHITECTURES FOR VISION: CNN
• MLP are universal models, however too much flexibility can results in arbitrarily complex models, with a huge number of

parameters that are very difficult to optimise and for which is very hard to achieve a good level of generalisation

• As partial remedy to these problems task independent priors (called inductive relational biases) are introduced in modern DNN
architectures, priors that are inferred from general structures observed in data

• Convolutional NN is one of these specific DNN architecture designed to excel in image recognition tasks

• operate directly on the images (raw “pixel” information organised in a fixed size mesh)

• the inductive bias is based on assumptions on the properties of the input data:

• translation equivariance: sub-features in the image remain the same in different points of the image

• self-similarity: two or more identical sub-features present in the image can be recognised with a single filter that identifies one of the sub-features

• compositionality: a complex feature made of several sub-features can be recognised by identifying only few sub-features

• locality of the features: to identify a sub-feature it often takes just a few pixels concentrated in a small portion of the image itself

• implementation idea: apply layers called convolutional filters that operate on the input by recognising the local sub-features present there

• the same filters use shared parameters (weights) and sequentially analyse all portions of the image

• weights of the filters are not fixed but are learned

• CNN learns from the training data sample the best set of weights to solve the task given the chosen architecture
19

HOW A NEURAL NETWORK “SEES” AN IMAGE …

20

images for a computer are essentially meshes (tensors) of numbers

gray scale image with 8bit depth: 12x16x1 intensity ∈ [0,256]

color image with n-bit depth: m1xm2x3 with each RGB intensity ∈ [0,2n]

credit MIT AI course

CONVOLUTIONAL FEATURE EXTRACTION LAYER
• used to identify similar features that are present in different position of the image

• based on three basic ideas:

• local receptive field

• shared-weights kernels

• pooling layers

21

local receptive field

5x5

• input neurons (one for each NxN pixels of the image) are NOT fully connected with all
the neurons of the first hidden layer. Connections exist only for localised and small
regions of the image called local receptive fields

• the local receptive field is shifted through the whole image: for each shifted receptive
field there will be an hidden neuron in the hidden layer

24 = 28-5+1

stride S=1

22

• shared-weights:

• all the hidden neurons of a given hidden layer share the same weights → all neurons of the hidden

layer detect the same sub-feature, only in different regions of the image

• as the CNN has to identify many sub-features: there are many convolutional kernels each one with an

associated hidden layer: input image (n,m,3) → output (k,l,d)

• huge advantage wrt DNN: much smaller number of weights to learn …

local receptive field or

convolutional kernel

convolution

operation wi

xi
∑xi*wi

after the convolution operation, an activation function is applied to each (neuron) of the filtered
image (ex. with ReLU all negative values are set to zero)

• pooling layers:

• in addition of the convolution layers a CNN has also other layers called pooling layers, usually used after
each convolution layer. They performs a downsampling operation: simplifying the information in output
from the convolutional layer (less weights) and making the NN less sensitive to small translations of the
image

• motivated on the fact that once a sub-feature is found, to know the exact position is not as important as to
know the relative position wrt the other sub-feature in the image

23

FULL CNN: CONV BLOCKS + DENSE MLP STAGE
• after the convolution blocks, the output of the convolutional layers can be connected via a flattening

layer with one or more dense layers (DNN), that are used to optimise objectives: class scores
(classification), mapping (regression), etc…

24

Example: LeNet (Yan LeCun 1989)
multi-staged CNN for classification: (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

detects details
(segments, arcs, …)

focus on overall
shapes

maps high level
representations to targets

MODERN CNNs

25

philosophy: deeper is better …

• AlexNet (2012): better backdrop via ReLU, dropout, batch normalisation, data augmentation

• VGG (’15): smaller 2D kernels(3x3) with more convolutional blocks to induce more  

non-linearity and so more degree of freedom for the network

• GoogleNet (’14) (Inception):

Inception module:

- 2D convolutions with different kernel sizes process the same input and then are concatenated

- multi-level feature extraction at each step: general features captured by 5x5 at the same time

with local ones captured by 3x3 filters

- additional intermediate classification tasks to inject gradient in intermediate layers …

RESNET, DENSENET, XCEPTION

26

going deeper increase the vanishing gradient problem residual learning in
ResNet help avoiding it, moreover each block learns the residual wrt the
identity (easier task)

Evolutions of the idea:

DenseNet: connect entire blocks of layers to one another helps in
identifying and use of diverse representations as we go deeper …

DenseNet

ResNet-152
60 MPar

… 152 layers

Xception = Inception + ResNet: same parameters as
InceptionV3 but better performance …

UNet architecture: Convolutional Networks for
Biomedical Image Segmentation

ANN ARCHITECTURES FOR UNSUPERVISED REPRESENTATION
LEARNING: AUTOENCODERS
• non-supervised model that try to identify common and fundamental characteristic in the input data

• combines and encoder that converts input data in a different representation, with a decoder that

converts the new representation back to the original input

• trained to output something as close as possible to the input (i.e to learn the identity function)

27

• “trivial” unless to constrain the network to have the hidden
representation with a smallare dimension of the input/output

• in such case the network build (learn) “compressed”
representations of the input features: x∈R5→z∈R3

input 
v(5)

output = input
bottleneck

ENCODER DECODER

AUTO-ENCODER  
IMPLEMENTATION

28NOTE: L do not depends on dataset labels (unsupervised learning)

x z x̂

L(x, ̂x) = | |x − ̂x | |2

gϕ(x) : Rd → Rz

fθ(z) : Rz → Rd

ϕ*, θ* = arg max
ϕ,θ

1
N ∑ L(x(i), ̂x(i)) =

= arg max
ϕ,θ

1
N ∑ L(x(i), fθ(gϕ(x))

L(x, ̂x) = − ∑
D

[xk log(̂xk) + (1 − xk)log(1 − ̂xk)]or

ENCODER: x→z

DECODER: z→x

trained so that: Output ≃ Input

AE: RECONSTRUCTION QUALITY

29

Original images

(ground truth) 2D latent space 5D latent space

- latent space acts as a "compressor" of information, a certain level of smoothing (inform. loss) is inevitable

- most important limitation: the learned latent space is a non-continuous representation and does not allow

interpolations and / or to structure the space appropriately, i.e. cannot be used to generate events (for this scope
there are specific generative architectures VAE, GAN, Normalizing Flows, Invertible-nets, etc…)

30

L→ FORWARD PASS

ŷ

ht

̂yt = Wt
hyht

=

ht = fw(ht−1, xt) = tanh(Wt
hhht−1 + Wt

xhxt)

old-state
sequence input

at step t

• RNN are specific architectures optimised to identify correlations in sequence of informations of variable lengths (text, music, time series,
waveforms, … a list of charged tracks parameters, etc…)

• typical task for a RNN: given a sequence of features, predict one or more targets (the next word in a phrase, the weather in the next 24h,
the flavour of a hadron jet in an hep experiment, …)

• a RNN processes the input in a loop (recurrent connection) that allows the persistence of the informations during the entire processing
of the sequence’s elements

• base module: A is a NN that analyse the t-element of the input sequence xt and produce the output ht (hidden state). ht is passed to
the same network during the processing of the next element of the sequence

the same function fw with the same set of
weights is used to process each element

of the sequence …

can be thought of as a series of
multiple copies of the same

conventional neural network, each
passing a message to its successor

ANN ARCHITECTURES FOR SEQUENCES: RECURRENT NEURAL NETWORKS

RNN AND LONG TERM DEPENDENCIES

31

- in RNNs unbounded activations (like ReLU) cannot be
used as they create instabilities

- tanh or sigmoid are OK but suffer vanishing of the gradient

problem solved in LSTM RNN (Hochreiter, '97) with a software trick: instead of having a single neural layer, it
has four, which interact in such a way to implement a sort of parallel data-flow which at each step t makes the
previous data available to each layer of the network w/o being affected by gradient dilution

key element: cell-state Ct

is a memory units (“conveyor belt”) to which is
possibile to add or subtract information using
“gate” structuresht

CtCt−1

ht−1

LONG SHORT TERM MEMORY (LSTM) NETWORKS

32

output ∈[0,1]:

every LSTM has 3 gates:

- f: forget gate (controls deleting from the cell-state)

- i: input gate (controls writing on the cell-state)

- o: output gate (controls the output on ht)

gate: NN-layer with sigmoid activation and a point-wise multiplication

the backprop from Ct →Ct-1 doesn’t requires multiplications for tanh/sigmoid → no gradient dilution …

every publication implementing a LSTM has used a slightly different version of the original algorithm, so
you’ll find it with different names …

GRU (Gate Recurrent Unit):
combines the gates and unify
hidden state with cell-state to
simplify model and number of
parameters (one of the most

used RNNs)

LSTM with “peephole”:
gate layers can see the

cell-state

ht

Ct
Ct−1

ht−1

KEEP IN TOUCH …

33

https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
https://orcid.org/0000-0001-9192-3537

