
Nine ways of evaluating a 3-loop diagram
David Broadhurst, Open University, UK, 10 December 2021, virtually at
Inspired by Precision, held in Bologna in honour of Ettore Remiddi

1. I begin with a 3-loop result from Ettore and Juan Alberto

Mignaco in October 1968, when I began my graduate work.

2. I describe a meeting in France in January 1992, where I was

kidnapped by Ettore. This resulted in a stimulating week in

Bologna, where we discussed integration by parts for massive

3-loop diagrams in dimensional regularization.

3. I recall the monumental 3-loop result of Ettore and Stefano

Laporta in February 1996 for the electron’s magnetic moment.

4. The Greek for Ettore is Eκτωρ: “he who holds all things together”.

Accordingly, I exhibit 9 ways of evaluating a 3-loop massive

diagram. Some of the tools were ably forged by Ettore.
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1: Inspired by precision in 1968
Juan Alberto Mignaco and Ettore Remiddi, Fourth-order vacuum
polarization contribution to the sixth-order electron magnetic moment, CERN
TH.953, 30 October 1968, Il Nuovo Cimento A 60 (1969) 519-529.

Abstract: Il contributo della polarizzazione del vuoto al quarto ordine alla
correzione radiativa al sesto ordine al momento magnetico dell’elettrone è
calcolata analiticamente e risulta essere 0.055(α/π)3.

Their exact coefficient of (α/π)3 for this 3-loop contribution was

269

81
− 434ζ2

135
+

61ζ3 − 8π2 log 2

18
+
ζ4 − 16U3,1

3
= 0.05542917741228434613027275265283443562314047694171107625457697 . . .

with an alternating double sum of weight 4:

U3,1 =
∑

m>n>0

(−1)m+n

m3n
=

1

2

∫ 1

0

log2(x) log(1− x)dx

1 + x

=
ζ4
2

+
(π2 − log2 2) log2 2

12
− 2

∑
n>0

1

2nn4

= −0.1178759996505093268410139508341376187152175131759750633222452 . . .
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2: Visiting Bologna in 1992
In January 1992, Denis Perret-Gallix (1949-2018) organized a workshop
Artificial Intelligence in High Energy and Nuclear Physics near Toulon, at
La-Londe-Les-Maures. I recall rather vividly Ettore’s greeting, said with a
friendly smile: “you are the person who has been giving seminars saying that I
have wasted 20 years of my life by not using dimensional regularization for
massive diagrams.” Of course, I had said no such thing.

I explained that integration by parts in D = 4− 2ε dimensions had been useful
for me, working with massive two-loop two-point integrals and massive three-loop
vacuum diagrams. It gave recurrence relations that related many terms to a few
master integrals, which I had obtained as hypergeometric series with parameters
of the form half integers plus multiples of ε. Then the Laurent expansion in ε
gave alternating sums as well as zeta values. Ettore seemed interested and
invited me to join him for a week in Bologna, after the workshop. I explained
that my family was expecting me to return home. “You must tell them that you
have been kidnapped by someone called Hector!”

It was a very enjoyable week in Bologna. I grouped diagrams into families that
might have the same number content. I guessed that the only numbers up to
weight 4 would be those found by Ettore in 1968. At weight 5, I was agnostic.
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3: Inspired by precision in 1996
The magnetic moment of the electron, in Bohr magnetons, has electrodynamic
contributions

∑
L≥0 aL(α/π)L given up to L = 3 loops by

a0 = 1 [Dirac, 1928]

a1 =
1

2
[Schwinger, 1947]

a2 =
197

144
+
ζ2
2

+
3ζ3 − 2π2 log 2

4
[Petermann,Sommerfield, 1957]

a3 =
28259

5184
+

17101ζ2
135

+
139ζ3 − 596π2 log 2

18
− 39ζ4 + 400U3,1

24

− 215ζ5 − 166ζ3ζ2
24

[Laporta & Remiddi, 1996]

with 3-loops terms up to weight 4 containing the constants encountered by Ettore
in 1968, as expected, and terms of weight 5 that contain only zeta values,
which is a pleasing simplicity for the sum of so many difficult diagrams.

Stefano’s amazing semi-analytical 4-loop result, in February 2017, gives 4800
digits of a4 and contains many new constants, two of which are Bessel moments.
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4: Three-loop sunrise, 2007-2018
As a showcase, I choose the 3-loop equal-mass sunrise diagram in D = 2
space-time dimensions. In momentum space it gives

J(p2) ∝

(
4∏

n=1

d2kn
k2n −m2 + iε

)
δ(2)

(
p−

4∑
n=1

kn

)
with 4 massive particles in the intermediate state. For the magnetic moment of
the electron, no diagram has an intermediate state with an even number of massive
particles, since fermion number is conserved. Nevertheless, Stefano Laporta and I
identified this integral, at p2 = m2, as an instructive stepping stone, en route to
the 5-fermion intermediate states at 4 loops. The number theory at D = 2 is the
same as for minimal subtraction at D = 4, where there are UV divergences.

4.1 Schwinger parameters: Let us set m = 1 and normalize the integral as

J(t) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

dx dy dz

xyz((1 + x+ y + z)(1 + 1/x+ 1/y + 1/z)− t− iε)

in the cut t-plane with a branchpoint at t = 16. Since the denominator of the
integrand is quadratic in all three parameters, we encounter an obstruction to
polylogarithmic reduction at the first integration.
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4.2 Co-ordinate space: Here we obtain the Bessel moment

J(t) = 8

∫ ∞
0

I0(
√
tx)K4

0(x)xdx, (1)

for real t < 16. The Bessel function I0(z) =
∑

n≥0 z
2n/(2nn!)2 grows exponentially

at large z, while K0(z) has a logarithmic singularity at z = 0 and falls off
exponentially at large z. This one-dimensional integral is rather convenient for
16 > t > 0. In the space-like region, with t < 0, it becomes less convenient, since
J0(z) = I0(iz) is oscillatory. On the cut, with t > 16, it makes no sense at all.

4.3 Dispersion relation: The discontinuity across the cut is given by squares of
complete elliptic integrals of the first kind and hence by reciprocals of
arithmetic-geometric means that may be calculated at lightning speed:

J(t) =

∫ ∞
16

f 2−(s)− 3f 2+(s)

s− t− iε
ds, f±(s) =

2π

agm
(√

2µ,
√
µ±
√
ν
) , (2)

µ =
2α + β

2
, ν = µ2 − 48

α− β
α + β

, α =
√
s2 − 4s, β =

√
s2 − 16s.

I obtained this using a remarkable discovery, made by Geoff Joyce in 1973.
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4.4 Differential equation: J(t) satisfies a third-order inhomogeneous
differential equation, with singularities at t = 0, 4, 16,∞. For the two-loop sunrise
integral I(w2) = 4

∫∞
0 I0(wx)K3

0(x)xdx, the second-order differential equation
has singularities at w = 0, 1, 3,∞. Joyce’s discovery (in condensed matter physics)
was that the third-order differential operator is a symmetric square of the
second-order one, after a transformation of variables. I shall use the transformation

t = 10− w2 − 9

w2

to relate the three-loop and two-loop cases, after modular parametrization.

4.5 Modular parametrization at 2 loops: Here the break-through came from
Spencer Bloch and Pierre Vanhove in 2013. I summarize it as follows.

With q = exp(2πiz) and =(z) > 0, the Dedekind eta function is given by

η(z) = q1/24
∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nq(6n+1)2/24 =

η(−1/z)√
−iz

.
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With ηn = η(nz) and χ3(n) = 0, 1,−1, for n = 0, 1, 2 mod 3, we may expand

w

3
=

η22η
4
3

η41η
2
6

= 1 + 4q + 12q2 + 28q3 + 60q4 + 120q5 +O(q6),

w2 − 1

8
=

η92η
3
3

η91η
3
6

= 1 + 9q + 45q2 + 171q3 + 549q4 + 1566q5 +O(q6),

w2 − 9

72
=

η2η
5
6

η51η3
= q + 5q2 + 19q3 + 61q4 + 174q5 +O(q6),

f =
η61η6
η32η

2
3

= 1− 6
∞∑
n=1

χ3(n)qn

1 + qn
, at weight 1, for an elliptic integral,

g =
η52η

4
3η6
η41

=
η93
η31

+
η96
η32

=
∞∑
n=1

n2(qn − q5n)
1− q6n

, at weight 3, for 2 loops,

h =
η162
η81
− 9

η166
η83

=
∞∑
n=1

n3(qn − 8q3n + q5n)

1− q6n
, at weight 4, for 3 loops.
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In 1993, Broadhurst, Fleischer and Tarasov gave the differential equation for the
D-dimensional equal-mass 2-loop sunrise integral. At D = 2, this yields

−
(
q

d

dq

)2
I(w2)

6f
= g, I(w2) = 4

∫ ∞
0

I0(wx)K3
0(x)xdx,

with w2 the norm of the external momentum. The elliptic periods

f =
4
√

3

agm
(√

(w + 3)(w − 1)3,
√

16w
) =

√
3=I(w2 + i0)

π2
for w > 3,

2zf =
4
√
−3

agm
(√

(w + 3)(w − 1)3,
√

(w − 3)(w + 1)3
) ,

yield the nome q = exp(2πiz). Their Wronskian determines

g =
w2(w2 − 1)(w2 − 9)f 3

2634
=
η52η

4
3η6
η41

=
η93
η31

+
η96
η32

=
∞∑
n=1

n2(qn − q5n)
1− q6n

.

With χ6(n) = χ2(n)χ3(n) and χ2(n) = (1− (−1)n)/2, the solution

I(w2)

f
=
π log(−1/q)√

3
− 3

∞∑
n=1

χ6(n)

n2
1 + qn

1− qn

was obtained by Bloch and Vanhove, using the finiteness of I(1) = π2/4.

9



4.6 Atkin-Lehner transformations and optimal nomes:

z2 =
2z − 1

6z − 2
, z3 =

3z − 2

6z − 3
, z6 =

−1

6z
, qk = exp(2πizk),

f2(z) =
η62η3
η31η

2
6

, f3(z) =
η2η

6
3

η21η
3
6

, f6(z) =
η1η

6
6

η22η
3
3

,

−
(
qk

d

dqk

)2
I(w2)

6fk(zk)
= gk(zk),

g2(z) =
η51η3η

4
6

η42
, g3(z) =

η41η2η
5
6

η43
, g6(z) =

η1η
4
2η

5
3

η46
,

from which I obtain alternative expansions

I(w2)

f2(z2)
= I(0)−

∞∑
n=1

6χ3(n)

n2
qn2

1 + q2n2
,

I(w2)

f3(z3)
= I(1)−

∞∑
n=1

6χ2(n)

n2
qn3

1 + qn3 + q2n3
,

I(w2)

f6(z6)
= −3 log2(−q6) +

∞∑
n=1

6

n2
qn6

1− qn6 + q2n6
.

For a given w2 we choose the smallest of the 4 nomes, for best convergence.
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4.7 Three-loop sunrise: In 2008, Bailey, Borwein, Broadhurst and Glasser
used the third-order differential equation to develop the momentum expansion

J(t) = 8

∫ ∞
0

I0(
√
tx)K4

0(x)xdx = 7ζ3 + (7ζ3 − 6)
t

16
+ (49ζ3 − 54)

t2

1024
+ . . . (3)

about t = 0. A neat q-expansion comes from the transformation

t = 10− w2 − 9

w2
= −64

(
η2η6
η1η3

)6

= −64q +O(q2)(
q

d

dq

)3
J(t)

(wf/3)2
= 24h = 24

∞∑
n=1

n3(qn − 8q3n + q5n)

1− q6n

J(t)

(wf/3)2
= 7ζ3 + 24

∞∑
n=1

φ(n)

n3
qn

1− qn
(4)

with φ(n) = 0,1, 0,−8, 0,1, for n = 0, 1, 2, 3, 4, 5 mod 6. This expansion works well
for |t| < 8, where |q| < exp(−π

√
2/3) < 0.22742. On-shell, at t = 1, we have good

convergence with −q = exp(−π
√

5/3) < 0.017322.
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4.8 Atkin-Lehner transformation at three loops: For |t| > 8, it is better to
use the more ornate Fourier expansion of

h6(z) =
−64h

t
= 1 + 2h− 30

∞∑
n=1

n3(q2n + q4n − 8q6n)

1− q6n
.

Using the alternative nome q6 = exp(2πiz6), with z6 = −1/(6z), we obtain(
q6

d

dq6

)3
J(t)

(wf6(z6))2
= −24h6(z6)

J(t)

(wf6(z6))2
= −4 log3(q6) + 24

∞∑
n=1

15φ(n+ 3)− φ(n)

n3
1 + qn6
1− qn6

. (5)

Bloch, Kerr and Vanhove obtained this alternative solution, neglecting issues
of analytic continuation or efficient convergence, I resolved both issue at Les
Houches in June 2014. This simple Pari-GP procedure

Z(t)={local(x=2/(sqrt(4-t)+sqrt(16-t)),a=sqrt((1-x)^3*(1+3*x)));

I/2*agm(a,4*x*sqrt(x))/agm(a,sqrt((1+x)^3*(1-3*x)));}

determines z and hence the nomes q = exp(2πiz) and q6 = exp(−πi/(3z)).
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4.9 On-shell evaluation at the 15th singular value: As Laporta and I
discovered at Bielefeld in July 2007, the on-shell integral

J(1) =
Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
30
√

5
(6)

has a stunningly simple evaluation. Its proof by Bloch, Kerr and Vanhove,
elucidated by Detchat Samart in 2016, was complicated by expansion in
complex q6. By contrast, expansion in real q reduces the burden of proof to
showing that

∞∑
n=1

φ(n)

n3
1− exp(−π

√
5/3n)

1 + exp(−π
√

5/3n)
=

π3

12
√

15

which results from an Eichler integral that is rational:∫ √1/15

0

h

(
1 + iy

2

)
ydy =

1

120
, h(z) =

η162
η81
− 9

η166
η83
,

somewhat to the surprise of Bruce Berndt.
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4.10 Theta series at the 15th singular value: With b > a ≥ 0 and c ≥ 0, I
define Bessel moments

M(a, b, c) =

∫ ∞
0

Ia0 (x)Kb
0(x)xcdx.

Then the 5-Bessel matrix[
M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

]
=

[
π2C π2

(
2
15

)2 (
13C − 1

10C

)
√
15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

) ]

has a determinant 2π3/
√

3355 that is free of the 3-loop constant C in

J(1) = 8π2C =
64π3(1− 1/

√
5)

agm2(8
√

2,
√

15 + 3
√

5 +
√

3− 1)
(7)

=
π3

2

(
1− 1√

5

)(
1 + 2

∞∑
n=1

qn
2

tiny

)4

, (8)

= 8.570280443374461268149695824246537286105438217336449736197549 . . .

where qtiny = exp(−π
√

15) < 0.0000051975 is the tiny nome of Bologna.
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4.11 Critical L-value: The L-series for 5 Bessel functions comes from a
modular form of weight 3 and level 15:

f3,15(z) = (η3η5)
3 + (η1η15)

3 =
∑
n>0

A(n)qn,

L(s) =
∑
n>0

A(n)

ns
, for s > 2,

J(1) =
8π2

5
L(1) =

8π2

5

∑
n>0

A(n)

n

(
2 +

√
15

2πn

)
exp

(
− 2πn√

15

)
(9)

as Francis Brown and I discovered at Les Houches in June 2010.

4.12 Finite part in 4 dimensions: With the measure dDk/(πD/2Γ(1 + ε)) for a
loop momentum k, in D = 4− 2ε dimensions, the Laurent expansion of the
on-shell 3-loop sunrise diagram is

2

ε3
+

22

3ε2
+

577

36ε
+

6191

216
− π2

3

(
4C +

7

40C

)
+O(ε)

as I discovered using PSLQ in 2007.
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Summary: I have given 9 ways of evaluating a 3-loop diagram, using

1. a Bessel moment, in co-ordinate space,

2. a dispersion integral over squares of elliptic integrals,

3. a momentum expansion from an inhomogeneous differential equation,

4. an expansion in powers of a nome, using eta quotients,

5. an alternative expansion obtained by an Atkin-Lehner transformation,

6. a product of Gamma values at the 15th singular value,

7. the inverse square of an arithmetic-geometric mean,

8. the fourth power of a theta series, for the fastest method,

9. a critical value of an L-series of a modular form of weight 3.
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