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Section 1

Harmonic Polylogarithms
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Back to the year 1999

We knew in principle how to calculate any process to NLO, although the

NLO-revolution has not yet happened.

In preparation for LHC we were aiming at NNLO calculations:

Two-loop amplitudes for pp → 2 jets.

Three-loop splitting functions.

Not much was known what functions we should expect in two-loop

Feynman integrals and in the three-loop splitting functions.

The massless double box integral was not yet known.

Even less was known at higher loops.
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One-loop amplitudes

All one-loop amplitudes can be expressed as a sum of algebraic functions of

the scalar products and masses times two transcendental functions, whose

arguments are again algebraic functions of the scalar products and the

masses.

The two transcendental functions are the logarithm and the dilogarithm:

Li1(x) =− ln(1− x) =
∞

∑
j=1

x j

j

Li2(x) =
∞

∑
j=1

x j

j2
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The obvious generalisation and Nielsen polylogarithmen

Classical polylogarithms:

Lin(x) =
∞

∑
j=1

x j

jn

Nielsen polylogarithms:

Sn,p(x) =
(−1)n−1+p

(n−1)!p!

1∫

0

dt
lnn−1(t) lnp(1− xt)

t

N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, 1909,

K. Kölbig, J. Mignoco, E. Remiddi, On Nielsen’s generalized polylogarithms and their numerical calculation,

1969
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Nielsen polylogarithms

The one-dimensional integral representation is not too enlightning, let’s look at

the sum representation of Nielsen polylogarithms:

Sn,p(x) =
∞

∑
j=1

x j

jn+1
Z1 . . .1
︸ ︷︷ ︸

p−1

(j −1) ,

where

Z1 . . .1
︸ ︷︷ ︸

k

(n) =
n

∑
j=1

1

j
Z1 . . .1
︸ ︷︷ ︸

k−1

(j −1) , Z1 (n) =
n

∑
j=1

1

j
.
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Harmonic polylogarithms

Nielsen polylogarithms : Sm1−1,k(x) =
∞

∑
j=1

x j

jm1
Z1...1 (j −1) ,

Harmonic polylogarithms : Hm1m2...mk
(x) =

∞

∑
j=1

x j

jm1
Zm2...mk

(j −1) ,

with the Euler-Zagier sums

Zm1m2...mk
(n) =

n

∑
j=1

1

jm1
Zm2...mk

(j −1) , Zm (n) =
n

∑
j=1

1

jm
.
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Euler-Zagier sums and harmonic sums

Where does the name “harmonic” come frome?

Euler-Zagier sums Zm1...mk
(n) and harmonic sums Sm1...mk

(n) are defined by

Zm1m2...mk
(n) =

n

∑
j=1

1

jm1
Zm2...mk

(j−1) , Zm (n) =
n

∑
j=1

1

jm
,

Sm1m2...mk
(n) =

n

∑
j=1

1

jm1
Sm2...mk

(j) , Sm (n) =
n

∑
j=1

1

jm
.

One can easily convert between the two:

Zm1m2m3
(n) = Sm1m2m3

(n)−S(m1+m2)m3
(n)−Sm1(m2+m3)(n)+S(m1+m2+m3)(n).
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The integral representation of harmonic polylogarithms

Iterated integration with dt
t

and − dt
t−1

:

Hm1m2...mk
(x) =

x∫

0

dt

t
H(m1−1)m2...mk

(t), m1 > 1,

H1m2...mk
(x) = −

x∫

0

dt

t −1
Hm2...mk

(t).

Denote by w = m1 + · · ·+mk the weight. Then Hm1m2...mk
(x) has a w-fold

integral representation, for example

H12(x) =

x∫

0

dt1

t1 −1

t1∫

0

dt2

t2

t2∫

0

dt3

t3 −1
.
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The shuffle product

Denote differential one-forms by

ω0 =
dt

t
, ω1 = −

dt

t −1
,

and iterated integrals by

I (ωi1 ,ωi2 , . . . ,ωir ;x) =

x∫

0

ωi1 I (ωi2 , . . . ,ωir ; t)

Shuffle product

I (ωi1 , . . . ,ωik ;x) · I
(
ωik+1

, . . . ,ωir ;x
)

= ∑
shuffles σ

I
(
ωσ(i1),ωσ(i2), . . . ,ωσ(ir );x

)

where the sum runs over all permutations which preserve the relative order of

(i1, . . . , ik) and (ik+1, . . . , ir ).

Stefan Weinzierl (Uni Mainz) Special functions December 10, 2021 11 / 30



The shuffle product

The shuffle product allows us to express any product of harmonic

polylogarithms as a linear combination of harmonic polylogarithms, e.g.

H12(x)H1(x) = 2H121(x)+2H112(x)
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Multiple polylogarithms

One more generalisation:

Harmonic polylogarithms:

Hm1m2...mk
(x) =

∞

∑
n1>n2>···>nk>0

xn1

n
m1

1

·
1

n
m2

2

· . . . ·
1

n
mk

k

Multiple polylogarithms:

Lim1m2...mk
(x1,x2, . . . ,xk) =

∞

∑
n1>n2>···>nk>0

x
n1

1

n
m1

1

·
x

n2

2

n
m2

2

· . . . ·
x

nk

k

n
mk

k
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Multiple polylogarithms

Definition based on nested sums:

Lim1m2 ...mk
(x1,x2, . . . ,xk ) =

∞

∑
n1>n2>···>nk>0

x
n1
1

n
m1
1

·
x

n2
2

n
m2
2

· . . . ·
x

nk
k

n
mk
k

Definition based on iterated integrals:

G(z1, . . . ,zk ;y) =

y∫

0

dt1

t1 − z1

t1∫

0

dt2

t2 − z2

. . .

tk−1∫

0

dtk

tk − zk

Conversion:

Lim1 ...mk
(x1, . . . ,xk ) = (−1)k Gm1 ...mk

(
1

x1

,
1

x1x2

, . . . ,
1

x1 . . .xk

;1

)

Short hand notation:

Gm1 ...mk
(z1, . . . ,zk ;y) = G(0, . . . ,0

︸ ︷︷ ︸

m1−1

,z1, . . . ,zk−1,0, . . . ,0
︸ ︷︷ ︸

mk−1

,zk ;y)
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Alphabets

Consider G(z1, ...,zk ;y) with

zj ∈ A = {l1, . . . , lN} .

A is called the alphabet and the lj ’s are called letters.

Up to now we considered mainly the letters 0 and 1.

Definition

The harmonic polylogarithmen have the alphabet

A = {−1,0,1} ,

i.e. they are iterated integrals of dt
t+1

, dt
t

and dt
t−1

.

E. Remiddi, J. A. M. Vermaseren, 1999
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Feynman integrals

The double box integral:

For pp → 2 jets one needs the double

box integral.

One kinematic variable x = s/t .

Can be expressed to all orders in ε in

terms of harmonic polylogarithms.

There are many Feynman integrals (also with more than two loops), which can

be expressed in terms of multiple polylogarithms!
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A little bit of mathematics

The Riemann sphere is the complex plane plus the

point at infinity: Ĉ=C∪{∞}.

Mark n distinct points (z1, ...,zn) on Ĉ.

The moduli space M0,n is the configuration space of

n distinct marked points modulo Möbius

transformations.

M0,n is an affine algebraic variety of dimension

(n−3).

Multiple polylogarithms can be viewed as iterated

integrals on the moduli space M0,n with

ωij = d ln(zi − zj).

z1

z2

z3
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Section 2

The Two-Loop Sunrise
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Well-studied problems in physics

The harmonic oscillator

The hydrogen atom

The sunrise integral
The first integral which cannot be expressed in terms of multiple

polylogarithmens.
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The sunrise integral

p

m

m

m

p

m1

m2

m3

Two-loop equal mass sunrise

3 master integrals

1 kinematic variable

Two-loop unequal mass sunrise

7 master integrals

3 kinematic variable
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Geometry

From the point of view of algebraic geometry there are two objects of interest:

the zero set E of F = 0:

E : −a1a2a3p2 +
(
a1m2

1 +a2m2
2 +a3m2

3

)
(a1a2 +a2a3 +a3a1) = 0

E is an elliptic curve.

the domain of integration ∆.

E and ∆ intersect at three points, this marks

three points on the elliptic curve.

a1

a2

a3

∆

E
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Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves

of genus g with n marked points.

complex curve
z1

z2

z3⇔

z1

z2

z3

z1

z2

z3⇔z2

z1

z3

real surface
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Coordinates

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)
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Differential one-forms on M1,n

1 From modular forms (fk(τ) modular form):

ωmodular

k = 2πi fk(τ)dτ

2 From the Kronecker function (g(k)(z,τ) coefficient of Kronecker function):

ωKronecker
k = (2πi)2−k

[

g(k−1) (L(z) ,τ)dL(z)+(k −1)g(k) (L(z) ,τ)
dτ

2πi

]

,

L(z) =
n−1

∑
j=1

αj zj +β.
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The sunrise integral

The sunrise integral can be expressed to

any order in the dimensional

regularisation parameter ε as iterated

integrals on M1,3 with a finite number of

ω’s.

z1

z2

z3
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Iterated integrals on M0,n and M1,n

Iterated integrals on M0,n with at most simple poles are multiple

polylogarithms.

Most of the known Feynman integrals fall into this category.

Iterated integrals on M1,n are iterated integrals of modular forms and

elliptic multiple polylogarithms (and mixtures thereof).

The simplest example is the two-loop sunrise integral with non-zero

masses.

p

m1

m2

m3
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Section 3

Outlook
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Generalisations

We understand by now very well Feynman integrals related to algebraic

curves of genus 0 and 1. These correspond to iterated integrals on the

moduli spaces M0,n and M1,n.

The obvious generalisation is the generalisation to algebraic curves of

higher genus g, i.e. iterated integrals on the moduli spaces Mg,n.

However, we also need the generalisation from curves to surfaces and

higher dimensional objects: The geometry of the banana graphs with

equal non-vanishing internal masses

are Calabi-Yau manifolds.
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The next generation

Solve integration-by-parts identities with the help of an ordering criteria.

S. Laporta

Finite field methods.

T. Peraro

Maximal cuts are solutions of the homogeneous differential equation.

A. Primo, L. Tancredi

Scalar product on the vector space of integrands.

P. Mastrolia, S. Mizera

Stefan Weinzierl (Uni Mainz) Special functions December 10, 2021 30 / 30


	Harmonic Polylogarithms
	The Two-Loop Sunrise
	Outlook

