

Free electron net energy gain and phase space control in photonic chip based accelerators

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Steffi.Kraus@fau.de

EuroNAAc4 23.09.2022

Stefanie Kraus

Particle accelerators

16:30 – 16:50: sub-relativistic electrons (- keV) 16:50 – 17:10: relativistic electrons (- GeV)

FOUNDATION

GORDON AND BETTY

Lohmann, A., IBM Tech. Note 5, 169–182 (1962). Koichi Shimoda, Appl. Opt. 1, 33-35 (1962) R. B. Palmer, (SLAC, 1986), Vol. 4161.

Operation principle

Stefanie Kraus

 $m{eta} = \mathbf{0}.\mathbf{3}:\mathbf{25}$ MeV/m: J. Breuer, P. Hommelhoff, PRL 111, 134803 (2013)

β = **0**. **7**: **250MeV/m**: Peralta, E. A., Soong, K., England, R. J., Colby, E. R., Wu, Z., Montazeri, B., ... & Byer, R. L. (2013). *Nature*, *503*(7474), 91-94.

Operation principle

FA

Operation principle

Dual-pillar grating (2015) (1986)

- Driving laser interacts with little material
- Fabrication recipe relatively simple
- Special alignment not required
- Symmetric field profile

Peyman, Y., [Doctoral dissertation, FAU, Erlangen]

<u>All</u> but the idealized, perfectly on-axis electrons, are lost

EuroNAAc4 23.09.2022

R. B. Palmer, (SLAC, 1986), Vol. 4161., Leedle et al., Opt. Lett. 40, 18 (2015) Leedle et al., Opt. Lett. 43, 9 (2018), Yousefi et al., Opt. Lett. 44, 6 (2019)

> LASER PHYSICS FAU

Dual pillar structures – Sub relativistic electron sources (30keV)

- 1. The forces depend on the injection phase
- 2. Result: at least half the electrons crash into the structure first, then the other half

Dual pillar structures – Sub relativistic electron sources (30keV)

- 1. The forces depend on the injection phase
- 2. Result: at least half the electrons crash into the structure first, then the other half

≻Recall: optical field strengths ~ 1GV/m

>Conventional elements (quadrupoles, solenoids, etc.) cannot compensate the optical defocusing forces

Dual pillar structures – Sub relativistic electron sources (30keV)

- 1. The forces depend on the injection phase
- 2. Result: at least half the electrons crash into the structure first, then the other half

≻Recall: optical field strengths ~ 1GV/m

>Conventional elements (quadrupoles, solenoids, etc.) cannot compensate the optical defocusing forces

A solution: use engineered dielectric structures!

Niedermayer, U., Egenolf, T., & Boine-Frankenheim, O. (2020). *PRL*, *125*(16), 164801. Niedermayer, U., Egenolf, T., Boine-Frankenheim, O., & Hommelhoff, P. (2018). *PRL*, *121*(21), 214801.

ALTERNATING PHASE FOCUSING

Ja. B. FAINBERG 1956

Ukrainian Academy of Sciences, Kharkov

Guiding with Alternating Phase Focusing

In a nutshell: once the electron beam begins to defocus, flip the laser's phase, so alternate between focusing forces and defocusing forces

 C_c excitation coefficient k_x the fundamental wave number of structure φ_s the synchronous phase

Niedermayer, U., Egenolf, T., Boine-Frankenheim, O., Hommelhoff P., *Physical review letters* 121.21 (2018): 214801. Shiloh, R., Illmer, J., Chlouba, T., Yousefi, P., Schönenberger, N., Niedermayer, U., Mittelbach, A., & Hommelhoff, P. (2021). *Nature*, *597*(7877), 498-502.

EuroNAAc4 23.09.2022

LASER PHYSICS

Guiding with Alternating Phase Focusing

In a nutshell: once the electron beam begins to defocus, flip the laser's phase, so **alternate between focusing forces and defocusing forces**

 C_c excitation coefficient k_x the fundamental wave number of structure φ_s the synchronous phase

EuroNAAc4 23.09.2022

LASER PHYSICS

Experimental setup

Yousefi et al., Opt. Lett. 44, 6 (2019)

Stefanie Kraus

Kozák, M., McNeur, J., Schönenberger, N., Illmer, J., Li, A., Tafel, A., ... & Hommelhoff, P. (2018). *Journal of Applied Physics*, *124*(2), 023104.

Ultrafast scanning electron microscope

Fau

10

LASER PHYSICS

Alternating phase focusing effect: proof of principle

2.7 larger electron current at optimal transport field strength (~700 MV/m)

Overfocusing effect (>400 MV/m) Different structure geometry with larger macrocells here

R. Shiloh, J. Illmer, T. Chlouba, P. Yousefi, N. Schönenberger, U. Niedermayer, A. Mittelbach, P. Hommelhoff, Nature 597, 498 (2021)

Niedermayer, U., Egenolf, T., Boine-Frankenheim, O., Hommelhoff P., *Physical review letters* 121.21 (2018): 214801.

Next step: Acceleration AND guiding

PHYSICS

Stefanie Kraus

Guiding and acceleration ?

2.7 larger electron current at optimal transport field strength (~700 MV/m)

R. Shiloh, J. Illmer, T. Chlouba, P. Yousefi, N.Schönenberger, U. Niedermayer, A. Mittelbach,P. Hommelhoff, Nature 597, 498 (2021)

Niedermayer, U., Egenolf, T., Boine-Frankenheim, O., Hommelhoff P., *Physical review letters* 121.21 (2018): 214801.

Stefanie Kraus

Towards significant acceleration – APF + Tapering

Electron guiding and acceleration

Features included:

- APF effect
- Tapered
- Numerically optimized
- Longer interaction with tilted laser pulse front (PFT)

With a 800um long structure we expect an energy gain of approx. 30keV for 4.4% of the electrons

Energy doubler

LASER PHYSICS 13

Fau

First net energy gain in 100μ m long structure

E_{Peak} = 600MV/m - 700MV/m Expected gradient: 30MeV/m

EuroNAAc4 23.09.2022

Stefanie Kraus

Towards significant acceleration – APF + Tapering

Electron guiding and acceleration

Features included:

- APF effect
- Tapered
- Numerically optimized
- Longer interaction with tilted laser pulse front (PFT)

With a 800um long structure we expect an energy gain of approx. 30keV for 4.4% of the electrons

Energy doubler

LASER PHYSICS 15

Fau

Conclusion and outlook

Nanophotonic-based particle acceleration

- Complex electron phase space control demonstrated over 77μm long structure: alternating phase focusing
- First 3keV (10%) energy gain

Shiloh, R., Chlouba, T., & Hommelhoff, P. (2022). PRL, 128(23), 235301.

Stefanie Kraus

EuroNAAc4 23.09.2022

LASER PHYSICS FAU 16

Thank you for your attention!

Conclusion and outlook

<u>Nanophotonic-based</u> particle acceleration

- Complex electron phase space control demonstrated over 77μm long structure: alternating phase focusing
- First 3keV (19%) energy gain

Nanophotonic-based particle acceleration

- Complex electron phase space control demonstrated over 77μm long structure: alternating phase focusing
- First 3keV (10%) energy gain

Shiloh, R., Chlouba, T., & Hommelhoff, P. (2022). PRL, 128(23), 235301.

Guiding and acceleration ?

Particle is copropagating with the optical nearfield mode φ_s particle's position inside of the mode

Fx,Fz for sync. e Full fields of a dual-pillar structure

• Particle experiences on average only an accelerating field

Dephasing

Write the electric field as a Fourier series w.r.t. to the grating (period Λ):

$$E_z(x, y, z) = \sum_{m=-\infty}^{\infty} e_m(x, y) e^{-im2\pi z/\Lambda}$$

For our structures:
$$|e_1|/E_{incident} \approx 0.1$$

The energy gain ΔW of an electron in such a field, assuming only one dominant Fourier order m with amplitude $|e_m|$ and phase φ_m is,

$$\Delta W = q\Lambda |\mathbf{e}_{\mathrm{m}}| \cos(\varphi_s), \quad \varphi_s = 2\pi s/\beta \lambda + \varphi_m$$

Where s is the distance of this particle from some arbitrarily-defined reference particle moving at constant velocity, z = vt.

$$\begin{split} \underline{\text{Designing energy gain per cell}} \\ \Delta z^{(n+1)} &= q |\mathbf{e}_1| \lambda^2 \cos\left(\varphi_s^{(n)}\right) / \gamma^{(n)^3} m_e c^2 \\ \beta^{(n+1)} &= \beta^{(n)} + \Delta z^{(n+1)} / \lambda \end{split}$$

LASER PHYSICS

Full fields – APF

Stefanie Kraus

Fau

Top illumination

Side illumination

DBR only mimics two-sided illumination
Experimentally, can only work with point-reflection from sample

Top illumination

- Transverse symmetry guaranteed
- Experimentally, structure shadow easily seen from reflection
- Output: Additional effect in the vertical direction?

Top illumination

LASER PHYSICS FAU 24

Stefanie Kraus

Alternating phase focusing

Net focusing in Alternate the transverse and longitudinal directions both dimensions! 0.01 88 APF: LD-TF Cell:1 86 0.005 Particles :99.681% W^{kin} [keV] 5 0 -0.005 80 <u>Longitudinal</u> Transverse (y) -0.01 0.2 -0.2 -100 100 200 0 -200 0 y [nm] ϕ_{P}

> First structure design that allows building the accelerator on a chip with initial energy **83 keV** to more than **1 MeV**: 56% transmission for 100pm rad, 93% for 25pm rad emittance

EuroNAAc4 23.09.2022

LASER PHYSICS 25

Fau

In free space: Interaction averages to zero

Dielectric structure necessary to reach synchronicity condition

With dielectric structure: synchronized electron continually accelerates

PINEM in an SEM

Shiloh, R., Chlouba, T., & Hommelhoff, P. (2022). PRL, 128(23), 235301.

Stefanie Kraus