

Free-electrons manipulation with light in an RF-cavity-based Ultrafast Transmission Electron Microscope Simona Borrelli

Ultrafast Transmission Electron Microscopy Technology

X. Dai et al., 2021 Supporting_Video_S1 TEM tilt series of duble spiral lamellar morphology

Tilt angle -60.8° ~ +47.6°

G

3.89Å

Ultrafast Transmission Electron Microscopy

Ultrafast Transmission Electron Microscope

Beam coherence approaching the limit imposed by Heisenberg's uncertainty principle

Ultrafast Transmission Electron Microscope

Lobastov et al., Proc. National Academy of Science, 2005, 7069-7073

Atomic spatial and temporal resolution

Photoemitted pulsed electron beam

Pulse Generation by Beam Chopping

RF-Cavity-Based Ultrafast Transmission Electron Microscope

Thermo Fisher SCIENTIFIC

RF-Cavity-Based Ultrafast Transmission Electron Microscope

TM₁₁₀ RF-Cavity in UTEM

Conjugate Blanking Mode

Pulsed beam on camera at different positions of the crossover in the cavity

Verhoeven et al., Ultramiscoscopy, 2018, 188, 85

Peak brightness and beam quality of the FEG are conserved

	Schottky FEG	Cavity-based source
ΔE_{FWHM} (eV)	(0.9 ± 0.05)	(0.95 ± 0.05)
B _{rms} (A /m ² sr V)	(7.5 ± 1) x 10 ⁶	(7 ± 1) x 10 ⁶

Verhoeven et al., Ultramiscoscopy, 2018, 188, 85

Dual mode TM_{110} Cavity for Ultrafast Electron Microscopy

Dual mode TM₁₁₀ Cavity in Conjugate Blanking Mode

Van Rens et al., Applied Physics Letters, 2018, 113.16: 163104

RF-Cavity-Based UTEM

$$H_S = \left(-\frac{\hbar^2 \nabla^2}{2 m_e} - \frac{ie\hbar}{m} \bar{A} \cdot \bar{\nabla} + \frac{e^2 A^2}{2 m_e}\right)$$

Photon-Induced Near-Field Electron Microscopy

$$H_{S} = \left(-\frac{\hbar^{2}\nabla^{2}}{2 m_{e}} - \frac{ie\hbar}{m}\bar{A}\cdot\overline{\nabla} + \frac{e^{2}A^{2}}{2 m_{e}}\right)$$

A free electron cannot absorb/emit a photon

A free electron cannot absorb/emit a photon

Dispersion relation is changed by the presence of matter

An electron can absorb/emit photons in the near-filed of the object

A test-bed of coherent manipulation of electrons with light & Diagnostic Tool

S. Borrelli et al., RF-cavity-based Ultrafast Transmission Electron Microscopy (Accepted for publication)

 $au = 2.1 ext{ ps}$ $au_l \sim 2 ext{ ps}$ $au_e \sim 650~{
m fs}$

$$\tau_e = \frac{I_{pulse}}{I_{cont} * Rep Rate} \sim (630 \pm 10) \text{ fs}$$

relininar

Wrap-up

- Pulse generation by beam chopping with miniaturized TM_{110} RF-cavity
- 100 fs pulses @ rep rate 3 GHz or 75 MHz
- Fast switching between continuous and pulsed mode operation
- High Brightness (~ 10^7 A/m² sr V)) and energy spread (0.9 eV)
- fs-laser oscillator integrated into the microcope

• Photon-Induced Near-field Electron Microscopy for electron pulse length measurements

• Shaping of the electron wavefunction with fs laser pulses for Zernike phase contrast microscopy

COAT Coherence and Quantum Technology

Free-electrons manipulation with light in an RF-cavity-based Ultrafast Transmission Electron Microscope Simona Borrelli

Backup slides

Anglular Distribution of the Pulsed beam – Single Mode

Angles calibrated using a known diffraction ring at 10.6 mrad from a typical cross grating sample.

The focusing angle is determined to be 8.74 mrad.

Cavity Radius

16.4 mm

$$a = \frac{X_{11}}{\sqrt{\varepsilon\mu}\omega_0}$$

3 GHz in vacuum a = 60.9 mm3 GHz with ZrTO4 a = 10 mm

Pulsed-Laser-Based Zernike Phase Plate

Spatial Alignment and Diagnostics

Temporal Alignment

