2022 EuroNNAC Workshop,

La Biodola, Elba

Conclusions from the 2021 Snowmass Process (Relevant to AACs)

M. Turner ¹, S. Gessner ², + AF6 community

¹ Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA. ² Stanford Linear Accelerator (SLAC), CA, USA.

> *This work was funded by the Department of Energy Work supported by Office of Science, US DOE, Contract No. DE-AC02-05CH11231

Office of Science

Outline

- What is Snowmass?
- What are the Main Snowmass Outcomes Relevant for the AAC Community?
 - AAC-Relevant Snowmass Messages to P5
- What did we (AAC community) learn from Snowmass?
- Summary & Conclusion

What is Snowmass ?

Division of Physics of Beams

Snowmass is a **Particle Physics Community Planning Exercise** and is a scientific study. It provides an opportunity for the entire particle physics community to come together to identify and document a scientific vision for the future of particle physics in the U.S.

Snowmass cycle: ~8 Years, Snowmass 2021: 18 Months + 10 day Meeting in Seattle.

Snowmass does **not!** prioritize or rank. Snowmass provides information for the Particle Physics Project Prioritization Panel (P5) ⇒ P5 does the prioritization

Office of

Science

Snowmass Structure (1/2)

Ten Frontiers:

- Energy Frontier
- Neutrino Physics Frontier
- Rare Processes and Precision
 Measurements Frontier
- Cosmic Frontier
- Theory Frontier
- Accelerator Frontier
- Instrumentation Frontier
- Computational Frontier
- Underground Facilities
- Community Engagement

Seven Working Groups within the AF:

- AF1: Beam Physics and Accelerator Education AF2: Accelerators for Neutrinos
- AF3: Accelerators for EW/Higgs
- AF4: Multi-TeV Colliders
- AF5: Accelerators for PBC and Rare Processes
- AF6: Advanced Accelerator Concepts
- AF7: Accelerator Technology R&D
 - + Implementation Task Force
 - + Muon and e+e- collider forum

ACCELERATOR TECHNOLOGY & ATAP

Snowmass Structure (2/2)

Ten Frontiers:

AF WG Conveners

Interchange between

Snowmass and the European LDG activity

Link to reports: https://snowmass21.org/accelerator/start

AF6: Advanced Accelerator Concepts

Cameron Geddes Lawrence Berkelev National Lab

AF4: Multi-TeV Colliders

Mark Hogan **SLAC National**

Accelerator Lab

Pietro Musumeci University of California, Los Angeles

Ralph Assmann Deutsches Elektronen-Sychrotron

Implementation Task Force (ITF)

(SLAC)

Steve Gourlav (LBNL)

Philippe Lebrun (CERN)

Thomas Roser (BNL, Chair)

Tor Raubenheimer

(SLAC)

Jim Strait

(FNAL)

Reinhard Brinkmann (DESY)

Marlene Turner (LBNL)

Spencer Gessner

(SLAC)

Katsunobu Oide

(KEK)

Sarah Cousineau (ORNL)

Vladimir Shiltsev (FNAL)

Community Input to the AF

LOIs (more than 300): https://snowmass21.org/loi

Snowmass 2021	ommunity Planning Exercise		원 Search	SEARCH
Announcements	SNOWWASS21.0KG7 summanes / AP		v	Upload form
Snowmass Calendar Ethics Guidelines	SNOWMASS21-AF-TOPIC0-001.pdf	118.33KB	2020-05-21 10:40:07	Late LOIs (general comments)
Snowmass Report	SNOWMASS21-AF0-015.pdf	116.11KB	2020-07-31 06:03:00	Modifying submitted Lols
Organization	SNOWMASS21-AF0_AF0-091.pdf	122.81KB	2020-08-28 14:58:38	Submitting LoIs after the deadline
Snowmass Steering Group	SNOWMASS21-AF0_AF0-215.pdf	90.53KB	2020-08-31 17:51:01	Downloading all Lols Creating
Snowmass Advisory Group	SNOWMASS21-AF0_AF0-229.pdf	511.67KB	2020-08-31 19:42:22	spreadsheets
Frontier Conveners	SNOWMASS21-AF0_AF0-CommF2_CommF0	60.48KB	2020-08-29 21:28:27	
APS DPF Snowmass page Snowmass Early Career	SNOWMASS21-AF0_AF0-IF0_IF0_Federico	242.32KB	2020-08-31 23:05:30	
inowmass Frontiers	SNOWMASS21-AF0_AF0_Hannes_Bartosik-0	351.14KB	2020-08-25 07:53:31	
Energy Frontler	SNOWMASS21-AF0_AF0_Mattia_Checchin+1	20.89KB	2020-09-01 07:44:23	
Neutrino Physics Frontier	SNOWMASS21-AF0_AF0_Pooja_Bajaj-235.pdf	12.08KB	2020-08-31 21:49:57	
Rare Processes and Precision	SNOWMASS21-AF0_AF0_S.ABogacz-098.pdf	276.46KB	2020-08-28 20:20:13	
Cosmic Frontier	SNOWMASS21-AF0_AF0_S.Krave-246.pdf	206.16KB	2020-09-01 01:04:25	

White Papers (116): https://snowmass21.org/submissions/af

Snowmass 2021	Community Planning Exercise
Announcements	Submissions to the Snowmass 2021 Proceedings - Accelerator Science and
Snowmass Calendar Ethics Guidelines	
	Technology
Snowmass Report	Papers of general interest to this frontier
Organization	• V. Shiltsev and F. Zimmermann, "Modern and Future Colliders", @arXiv:2003.09084 [phys.acc-ph] @
Snowmass Steering Group	(pdf).
Snowmass Advisory	• Jonathan L. Feng, Felix Kling, Mary Hall Reno, Juan Rojo, Dennis Soldin, et al. "The Forward Physics
Group	Facility at the High-Luminosity LHC [*] , arXiv:2203.05090 [hep-ex] (pdf). (also under EF0, NF0, RF0,
Frontier Conveners	CF0, TF0, IF0)
APS DPF Snowmass page	🔹 J. A. Bagger, B. C. Barish, S. Belomestnykh, P. C. Bhat, J. E. Brau, et al. "Higgs Factory Considerations", 😡
Snowmass Early Career	arXiv:2203.06164 [hep-ex] 🖗 (pdf). (also under EF01)
Snowmass Frontiers	 John Arrington, Joshua Barrow, Brian Batell, Robert Bernstein, Nikita Blinov, et al. "Physics Opportunities for the Fermilab Booster Replacement", WarXiv:2203.03925 [hep-ph] @[pdf]. (also
Energy Frontier	under NF0, RF0, TF0)
Neutrino Physics Frontier	Patrick J. Fox, Sergo Jindariani, Vladimir Shiltsev. "DIMUS: Super-Compact Dimuonium Spectroscopy
Rare Processes and Precision	Collider at Fermilab", ♥arXiv:2203.07144 (hep-ex) ♥ (pdf), (also under RF0, TF0)
Cosmic Frontier	• G. Bernardi, E. Brost, D. Denisov, G. Landsberg, M. Aleksa, D. d'Enterria, P. Janot, M.L. Mangano, et al.
	"The Future Circular Collider: a Summary for the US 2021 Snowmass Process", SarXiv:2203.06520

+ Proponent submitted spreadsheets and parameter tables for the ITF

AF Community Discussions

• e+e- collider forum

• Report:

(https://indico.fnal.gov/event/54953/sessions/20614/attachments/156153/205981/e_e_forum_r eport%20%284%29.pdf)

- Agora series (colloquium style)
 - #5 on Future Colliders: Advanced Colliders
 - https://indico.fnal.gov/event/53848/
- Physics limits of ultimate beams workshops
 - https://indico.fnal.gov/event/47217/
- PASAIG, Plasma and Advanced Structure Accelerator Interest Group
 - https://aacseminarseries.lbl.gov/pasaig

What are the Main Snowmass Outcomes Relevant for the AAC Community?

Message from the EF

While a Higgs/EW factory at 250 to 360 GeV is still the highest priority for the next large accelerator project, the motivation for a TeV or few TeV e+e- collider has diminished. Instead, the community is focused on a 10+TeV (parton c.m.e) discovery collider that would follow the Higgs/EW Factory.

Strong renewed interest in a muon collider at Snowmass

AF4 Evaluated Maturity of Collider Concepts

Review of hadron and lepton colliders options, with focus on evaluating the maturity of the various concepts and the type of support that will be required to provide the high energy physics (HEP) community with the design inputs required for a machine decision.

Concepts		WFA	MuC	SppC	FCC-hh
Collider Conc	Collider-in-Sea	ReLIC MulC (≤3 TeV)		FCC-eh	CLIC
		Multi-TeV ILC (Nb ₃ Sn)	CCC (TeV)	TeV (Ni	
Technical Maturity	Low maturity conceptual development. Proof-of-principle R&D required. Concepts not ready for facility consideration.	• Emerging acceler significant basic R& to maturity.		maturity requiring performanc ort to bring prior R&D a • Critical pro identified a	ve achieved a level of to have reliable e evaluations based on nd design efforts. nject risks have been nd sub-system focused rway where necessary.
Funding Approach	 Funding for basic R&D required. Availability of "generic" accelerator test facility access often necessary. 	 Efforts would benefit to mature collider of the availability of test broad range of tech Some large-ticket necessary before a can be completed. 	oncepts. facilities to dem nology concepts re demonstrators are	equired. e generally e generally e generally	h significant dedicated

Figure 1 The AF4 evaluation of the maturity level of various concepts. Further details for the evaluation of the various concepts can be found in the "Concept Assessments" Section. The color code is that the concepts shown in blue offer a path to constituent center-of-mass energies >10 TeV, while those shown in orange are electron-hadron machines, and those shown in black are lepton collider concepts which will reach only into the 1-few TeV range.

- Earliest timescale for making a construction decision for a 10+ TeV machine will be sometime in the next decade.
- Interest remains in the possibility of alternative paths exploring the TeV-scale including lepton-ion and g-g colliders.
- Significant R&D required to mature concepts in the yellow shaded area. Green maturity level required for decision making and informed comparison. 10+ TeV options highlighted in blue.

ACCELERATOR TECHNOLOGY & ATAP

AF6 (+AAC Community) Prepared 1-15 TeV Collider Parameter Sets

AAC Community responded by providing parameter sets for cme up to 15 TeV as Input to the ITF and the AF (see details in white papers and ITF report)

Proposal Name	CM energy nom. (range) [TeV]	$\begin{array}{c} \text{Lum./IP} \\ @ \text{ nom. CME} \\ [10^{34} \text{ cm}^{-2}\text{s}^{-1}] \end{array}$	Years of pre-project R&D	Years to first physics	Construction cost range [2021 B\$]	Est. operating electric power [MW]
Muon Collider	10 (1.5-14)	20 (40)	>10	>25	12-18	~300
LWFA - LC (Laser-driven)	15 (1-15)	50	>10	>25	18-80	~ 1030
PWFA - LC (Beam-driven)	15 (1-15)	50	>10	>25	18-50	~620
Structure WFA (Beam-driven)	15 (1-15)	50	>10	$>\!25$	18-50	$\sim \!\! 450$
FCC-hh	100	30 (60)	>10	>25	30-50	~ 560
SPPS	125 (75-125)	13 (26)	>10	>25	30-80	~400

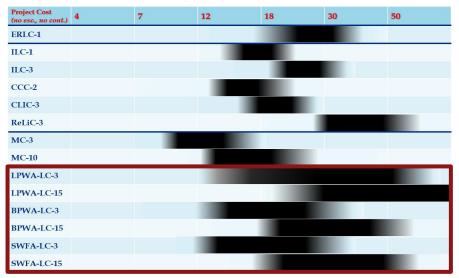
Table 3: Main parameters of the colliders with 10 TeV or higher parton CM energy. Total peak luminosity for multiple IPs is given in parenthesis. The cost range is for the single listed energy. Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes. The relevant energies for the hadron colliders are the parton CM energy, which can be substantially less than hadron CM energy quoted in the table.

AF6 report:

"...to reducing the dimensions, CO_2 footprint and costs of future high energy physics machines, with the potential to reduce power consumption and offer e+e- and $\gamma - \gamma$ machines to and beyond 15 TeV energies."

Selling points:

- 1) Compact
- 2) Low power consumption
- 3) Low cost



ITF Evaluated and Compared Collider Properties

Proposal Name	Power Consumption	Size	Complexity	Radiation Mitigation
FCC-ee (0.24 TeV)	290	91 km	I	Ι
CEPC (0.24 TeV)	340	100 km	I	I
ILC (0.25 TeV)	140	20.5 km	I	I
CLIC (0.38 TeV)	110	11.4 km	II	Ι
CCC (0.25 TeV)	150	3.7 km	I	I
CERC (0.24 TeV)	90	91 km	П	I
ReLiC (0.24 TeV)	315	20 km	II	I
ERLC (0.24 TeV)	250	30 km	п	Ι
XCC (0.125 TeV)	90	$1.4 \mathrm{km}$	II	I
MC (0.13 TeV)	200	0.3 km	I	II
ILC (3 TeV)	~ 400	59 km	П	П
CLIC (3 TeV)	~ 550	50.2 km	III	II
CCC (3 TeV)	~ 700	26.8 km	II	II
ReLiC (3 TeV)	~ 780	360 km	III	I
MC (3 TeV)	~ 230	10-20 km	II	III
LWFA (3 TeV)	~340	1.3 km (linac)	п	I
PWFA (3 TeV)	~ 230	14 km	II	II
SWFA (3 TeV)	~ 170	18 km	П	II
MC (14 TeV)	~ 300	27 km	III	III
LWFA (15 TeV)	~ 1030	6.6 km	III	Ι
PWFA (15 TeV)	~ 620	14 km	III	II
SWFA (15 TeV)	$\sim \!\! 450$	90 km	III	II
FCC-hh (100 TeV)	~ 560	91 km	II	III
SPPC (125 TeV)	~ 400	100 km	П	III

Collider Cost Estimate

- Based on 30 parameter model developed by the ITF
- Upper bound (if build right now)
- Lower bound (estimated after technology R&D),
 - however it is noted in the report that additional cost reduction R&D may further reduce costs

ITF Compares 1-15 TeV Lepton Collider Luminosity and TRL

Peak Luminosity per IP

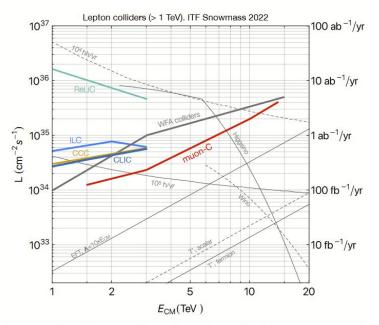


Figure 2: Peak luminosity per IP vs CM energy for the high energy lepton collider proposals as provided by the proponents. The right axis shows integrated luminosity for one Snowmass year (10⁷ s). Also shown are lines corresponding to yearly production rates of important processes. The luminosity requirement for 5 σ discovery of the benchmark DM scenarios Higgsino and Wino are also shown, see Refs.[21, 22]

Proposal Name (c.m.e. in TeV)	Collider Design Status	Lowest TRL Category	Technical Validation Requirement	Cost Reduction Scope	Performance Achievability	Overal Risk Tier
FCCee-0.24	П	0 7				1
CEPC-0.24	П					1
ILC-0.25	I	1		i i i i i i i i i i i i i i i i i i i		1
CCC-0.25	ш	1		i i i i i i i i i i i i i i i i i i i	j.	2
CLIC-0.38	Ш					1
CERC-0.24	ш					2
ReLiC-0.24	V				· · · · · · · · · · · · · · · · · · ·	2
ERLC-0.24	V					2
XCC-0.125	IV		T			2
MC-0.13	III					3
ILC-3	IV					2
CCC-3	IV					2
CLIC-3	П					1
ReLiC-3	IV					3
MC-3	ш			-		3
LWFA-LC 1-3	IV		2			4
PWFA-LC 1-3	IV					4
SWFA-LC 1-3	IV					4
MC 10-14	IV					3
LWFA-LC-15	V		1	1		4
PWFA-LC-15	V			1		4
SWFA-LC-15	V		1	1		4
FCChh-100	Ш		1	1		3
SPPC-125	Ш					3
Coll.Sea-500	V			1		4

AAC-Relevant messages from Snowmass to P5

Snowmass does **not!** prioritize or rank. Snowmass \Rightarrow P5 \Rightarrow ARD sub panel \Rightarrow Advanced Accelerator Development Strategy

> P5 is starting starting now, panel formed in early fall. Chaired by Hitoshi Murayama (University of California, Berkeley)

> > P5 Prioritizations expected mid-2023

Input from the WGs \rightarrow AF

AF6 (selected highlights, more in the report) Support:

- ...vigorous research on advanced accelerators...
- A targeted R&D program addressing high energy advanced accelerator-based colliders
- Recognize research in near-term application as essential for progress towards HEP colliders
- Advanced accelerators workforce development
- Enhanced driver R&D to develop the efficient, high repetition rate high average power laser and charged particle beam technology
- Upgrades for beam test facilities
- A study for a collider demonstration facility and physics experiments at an intermediate energy
- A doe-hep sponsored workshop in the near term should update and formalize the U.S. Advanced accelerator strategy and roadmaps

Input from the WGs \rightarrow AF

AF6 (selected highlights, more in the report) Support:

- ...vigorous research on advanced accelerators...
- A targeted R&D program addressing high energy advanced accelerator-based colliders
- Recognize research in near-term application as essential for progress towards HEP colliders
- Advanced accelerators workforce development
- Enhanced driver R&D to develop the efficient, high repetition rate high average power laser and charged particle beam technology
- Upgrades for beam test facilities
- A study for a collider demonstration facility and physics experiments at an intermediate energy
- A DOE-HEP sponsored workshop in the near term should update and formalize the U.S. Advanced accelerator strategy and roadmaps

ITF (see report for complete list):

 Recommend that R&D to reduce the cost and the energy consumption of future collider projects is given high priority.

• etc...

Input from the WGs $\rightarrow \text{AF}$

AF6 (selected highlights, more in the report) Support:

- ...vigorous research on advanced accelerators...
- A targeted R&D program addressing high energy advanced accelerator-based colliders
- Recognize research in near-term application as essential for progress towards HEP colliders
- Advanced accelerators workforce development
- Enhanced driver R&D to develop the efficient, high repetition rate high average power laser and charged particle beam technology
- Upgrades for beam test facilities
- A study for a collider demonstration facility and physics experiments at an intermediate energy
- A doe-hep sponsored workshop in the near term should update and formalize the U.S. Advanced accelerator strategy and roadmaps

ITF (see report for complete list):

 suggests that Snowmass CSS recommends that R&D to reduce the cost and the energy consumption of future collider projects is given high priority.

• etc...

AF4 (see report for complete list):

 Support & fund collider R&D to provide viable options to the 10+ TeV energy scale.

etc...

AF Summary Report - Selected Highlights (1/2)

- Support technical exploration of 10+TeV Collider options
 - ... the discovery machines such as O(10 TeV c.m.e.) muon colliders have rapidly gained significant momentum. To be in a position for making decisions on collider projects viable for construction in the 2040s and beyond at the time of the next Snowmass/P5, these concepts could be explored technically and documented in pre-CDR level reports by the end of this decade.
 - (mentioned later in the report in the same context)...R&D is in progress on other concepts such as wakefield based e +e - or γγ systems which may present additional future options.
- Advanced wakefield accelerator concepts should strive toward demonstration of collider quality beams, efficient drivers and staging, and development of self-consistent parameter sets for potential colliders based on wakefield acceleration in plasma and structures (in close coordination with international programs such as the European Roadmap, EuPRAXIA, etc.);

AF Summary Report - Selected Highlights (2/2)

- In accelerator and beam physics the focus should be on experimental, computational and theoretical studies on acceleration and control of high intensity/high brightness beams, high performance computer modeling and AI/ML approaches, and design integration and optimization. The program should also include the overall energy efficiency of future facilities and re-establish a program of beam physics research on general collider-related topics towards future e +e - colliders and muon colliders.
- In the context of AAC: At this time, there are no parameter sets for a plasma or structure based linear collider that self-consistently address the known accelerator physics challenges in a linear collider –... However, acceleration of beams with ultra-high gradients (GeV/m and beyond) will reduce the dimensions and thus potentially reduce the costs and power consumption of future high energy physics machines with the potential to offer e +e – and γγ colliders at and beyond 15 TeV. Recognizing this promise, the last Snowmass and P5/HEPAP recommended, and DOE developed with the community, an organized Advanced Accelerator Development Strategy, and work has been aligned to this strategy

What did we (AAC community) learn from Snowmass ?

AAC collider option have not been included in the AF report. Concepts are mentioned as promising R&D efforts.

To-do List for the AAC Community (1/2)

Before AAC colliders can/should be discussed for an option:

- Produce a **consistent parameter set**, and refine the wakefield collider parameters.
 - Be clear about assumptions
 - Connect components, move away from single component design.
 - Include a description of a linac arm for positrons acceleration (e.g., hollow channels plus focusing)
 - Clarify how many orders of magnitude we are away from the state of the art.
 - Cost estimates, including the impact of some of the stringent component tolerances, should be made to understand if the potential cost benefit of the new technologies can be realized.
- Evaluate overall efficiency (driver, wakefield, witness)
- Define tolerances (transverse stability requirements, in particular for e+)
- Evaluate source design: e.g. what is the design of a positron source that operates at ~50 kHz?
- Need collaboration structure. Oversight committee. Reference documents.

To-do List for the AAC Community (2/2)

Detector studies for particle physicists; predict HEP event rates.

- Simulations of **beamstrahlung to determine the luminosity spectrum**. Need to validate tools used for extrapolation (current results e.g. Guinea Pig can't be trusted in the 10s of TeV parameter regime).
 - Describe fraction of useful luminosity for round beam case
- **BDS system design is beyond the state of the art**. Is there a realistic design at all? with short focal length plasma lenses? How is round beam final focus done at IP (including realistic energy spread)?
 - If used, how can plasma lens FF be compatible with current detectors? How do we integrate vertex detectors?

Need for AAC concepts to engage with HEP community, started via ITF \Rightarrow continue by engaging the conventional accelerator community and keep being engaged through cycle.

Summary & Conclusions

Summary & Conclusions

- Snowmass is a Particle Physics Community Planning Exercise, provides input to P5 to produce scientific vision for the future of particle physics in the U.S. and happens every ~8 years. P5 will prioritize.
- Interest has shifted from a TeV-Scale Collider to a **10+ TeV Scale Collider**
- AF Report **encourages R&D on AAC** technologies but does not acknowledge them as being promising 10+ TeV collider options yet
- To be included they asked the AAC Community to develop **consistent collider parameters sets**, that include detector considerations and to document them together with the technology gaps

Thank you for your attention!

AF4 maturity scale

Design Maturity	Maturity Criteria #1 (Design Maturity)	Maturity Criteria #2 (R&D Maturity)			
0	No end-to-end design concept prepared	Concept proposed, but no systematic design requirements and/or parameters available.			
1	No end-to-end design concept prepared	Concept proposed, proof-of-principle R&D underway			
2	End-to-end preliminary design concept under development	Ongoing R&D to address fundamental physics/technical issues.			
3	End-to-end preliminary design concept available	Sub-system operating parameters established based on preliminary design concepts for novel/critical sub-systems			
4	End-to-end integrated design concept under development	Preliminary design concepts with operating parameters established for all sub-systems. Sub-system design R&D underway.			
5	End-to-end integrated design concept available. Enables end-to- end performance evaluation.	- Sub-system preliminary designs exist. Sub-system design R&D continues.			
6	End-to-end performance evaluation complete. Reference (pre- CDR level) Design Report under development.	Sub-system performance risk assessment complete.			
7	Reference Design available. Sub-system parameters and high potential alternatives documented.	Sub-system detailed design and performance R&D for highest risk sub-systems underway.			
8	Conceptupal Design Report in preparation.	Sub-system specifications with validated operating parameters established. High risk sub-system R&D underway.			
9	Conceptual Design Report and detailed cost estimate available.	High risk sub-system R&D ongoing. Risk mitigation strategy for sub-system performance established.			
10	Ready for Construction Proposal . Detailed Engineering Design being developed.	Performance Optimization R&D underway.			

EF desires a 10+ TeV Lepton Collider

Covers new R&D concepts for particle acceleration, generation, and focusing.

Highlights from the executive summary:

- Goal: to reducing the dimensions, CO2 footprint and costs of future high energy physics machines, with the potential to reduce power consumption and offer e+e- and γ γ machines to and beyond 15 TeV energies.
- While recent results indicate that the main building blocks of future advanced accelerators are workable and promising, significant development is still required. There are still several challenges to be addressed including how to achieve the high wall-plug efficiency and high repetition rates needed to fulfill future collider luminosity requirements, how to preserve small energy spreads and beam emittance over many acceleration stages and, for plasmas, efficient positron acceleration.
- Integrated design study: ..The european minimum requested funding for the design study is 75 FTE-years... The us should match and coordinate with this effort.

Technology	PWFA	PWFA	PWFA	SWFA	SWFA	SWFA	LWFA	LWFA	LWFA
Aspect Ratio	Flat	Flat	Round	Flat	Flat	Round	Flat	Flat	Round
CM Energy	1	3	15	1	3	15	1	3	15
Single beam energy (TeV)	0.5	1.5	7.5	0.5	1.5	7.5	0.5	1.5	7.5
Gamma	9.78E+05	2.94E+06	1.47E+07	9.78E+05	2.94E + 06	1.47E + 07	9.78E+05	2.94E+06	1.47E + 07
Emittance X (mm mrad)	0.66	0.66	0.1	0.66	0.66	0.1	0.1	0.02	0.1
Emittance Y (mm mrad)	0.02	0.02	0.1	0.02	0.02	0.1	0.01	0.007	0.1
Beta* X (m)	5.00E-03	5.00E-03	1.50E-04	5.00E-03	5.00E-03	1.50E-04	2.50E-02	1.40E-02	1.50E-04
Beta* Y (m)	1.00E-04	1.00E-04	1.50E-04	1.00E-04	1.00E-04	1.50E-04	1.00E-04	1.00E-04	1.50E-04
Sigma [*] X (nm)	58.07	33.53	1.01	58.07	33.53	1.01	50.55	9.77	1.01
Sigma* Y (nm)	1.43	0.83	1.01	1.43	0.83	1.01	1.01	0.49	1.01
N_bunch (num)	5.00E+09	5.00E+09	5.00E+09	3.13E+09	3.13E + 09	3.13E + 09	1.20E + 09	1.20E + 09	7.50E + 09
Freq (Hz)	4200	14000	7725	11000	36000	19800	46856	46856	3435
Sigma Z (um)	5	5	5	40	40	40	8.4	8.4	2.2
Beamstrahlung param	15	78	6590	1	6	515	2	37	22466
n_gamma	1.5	1.5	5.7	2.2	2.2	8.4	0.8	1.5	5.7
Single Beam Power (MW)	1.7	16.8	46.4	2.8	27.0	74.4	4.5	13.5	31.0
Two Beam Power (MW)	3.4	33.6	92.8	5.5	54.1	148.7	9.0	27.0	61.9
Geo. Lumi (cm ² s ¹)	1.01E+34	1.01E+35	1.50E+36	1.03E+34	1.01E+35	1.51E+36	1.05E+34	1.13E+35	1.50E+36
Beamstrahlung lumi	1.99E+34	1.99E+35	1.52E + 36	2.03E+34	2.00E + 35	1.52E + 36	2.09E + 34	2.17E+35	1.52E + 36
Wall plug to drive laser/beam eff	0.4	0.4	0.4	0.774	0.774	0.774	0.4	0.4	0.5
Laser/beam drive to main eff	0.375	0.375	0.375	0.42	0.42	0.42	0.2	0.2	0.12
Wall plug to main beam eff	0.15	0.15	0.15	0.32508	0.32508	0.32508	0.08	0.08	0.06
Site power Wall to main only (MW)	22	224	619	17	166	457	113	338	1032
Lumi/Power (1e34/MW)	0.04	0.04	0.08	0.06	0.06	0.11	0.01	0.03	0.05
GUINEA-PIG Total Lumi	1.83E+34	1.85E+35	4.2E+37	2.08E+34	2.13E+35	4.2E+36	1.53E+34	2.58E+35	6E+36
GUINEA-PIG Lumi 1% (20%)	6.86E+33	6.23E+34	5E+35	8.49E+33	6.14E-34	5E+35	1.03E+34	8.72E+34	5E+35
GP Total Lumi/Power	0.08	0.08	6.79	0.12	0.13	0.92	0.01	0.08	0.58
GP Lumi 1%/Power (20%)	0.03	0.03	0.08	0.05	0.04	0.11	0.01	0.03	0.05
Length of 2 Linacs (km)	1	3	14	5	15	75	0.44	1.3	6.5
Length of Facility	14	14	14	8	18	90	3.5	4.5	9.5