

An Introduction to the CBB and its Research

Jared Maxson, Cornell University

With many thanks to Center Director J.R. Patterson for many of these slides

- The US National Science Foundation (NSF) issues a regular call for proposals for Science and Technology Centers, which (from NSF)
 - Conduct world-class research through partnerships among academic institutions, national laboratories, industrial organizations and other entities, both domestically and internationally.
 - Undertake significant investigations at the interfaces of disciplines and/or using fresh approaches within disciplines.
 - Can involve any areas of science and engineering that NSF supports.
- Up to \$5.0M/year of funding for up to 10 years.
- CBB is one of these Centers.
- Federal funding for physical science research in the US is largely provided by the U.S. Department of Energy and the NSF.
- CBB is one of the few NSF grants dealing with accelerator science.

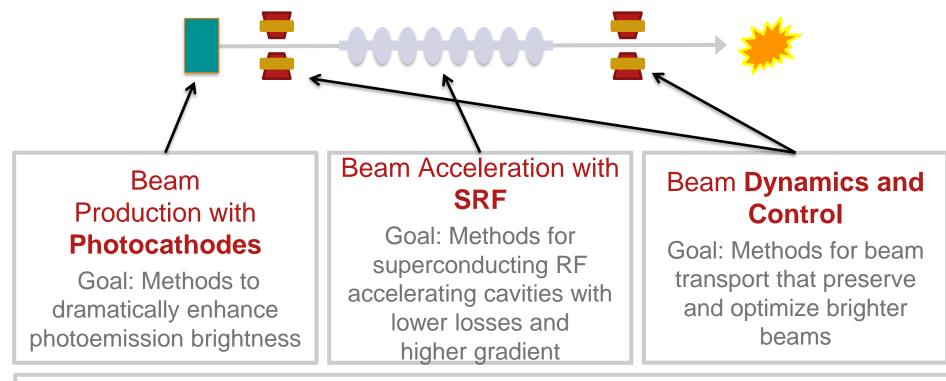
CBB institutions

CBB joins chemists, surface scientists, condensed matter physicists, ab initio physicists, electron microscopists, and accelerator scientists

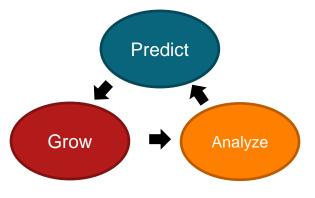
Maxson | EuroNNAC Workshop

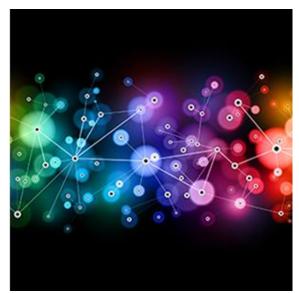
Our Team

Our return to person meetings! June 1-3, 2022, UCLA



• CBB Research is broken down into three themes with *specific aims*:


Integration of these methods in order to optimize high performance accelerator systems.

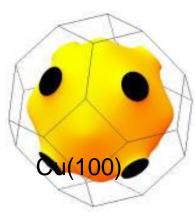


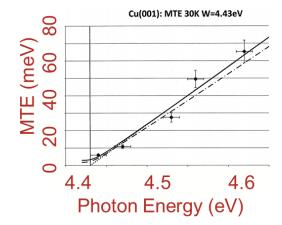
An NSF "Big Idea"

- The convergence of multiple disciplines, such that the "whole is greater than the sum of it's parts," is a CBB guiding principle.
- In the photocathode and SRF research themes:
 - The link between materials and surface science (both theory and expt) is the foundation.

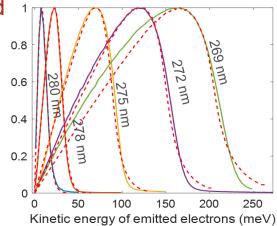
NSF Illustration of convergence research

- Beam Dynamics and Control :
 - Integrate advances of other themes \rightarrow brightness optimization and preservation
 - brings together accelerator physicists and electron microscope optics community
 - an important aspect: advanced methods for optimization (AI/ML)




Some research highlights from the past few years

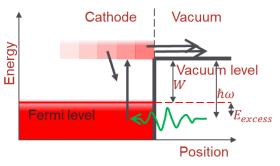
The Coldest Photoelectrons to Date


 We use a quantity called the Mean Transverse Energy (MTE) to characterize the momentum spread/temperature of photoemitted electrons.

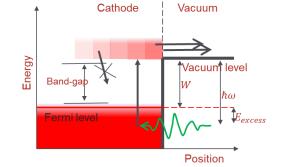
5 meV MTE measured from Cu(100) Most photoinjectors use MTE ~500 meV

- Photoemission at the threshold
- Cooled to LHe (30K)
- Atomically ordered flat surface
- Good band-structure
- New techniques to measure low energy distributions

10 meV total energy spread More than **1 order of magnitude smaller than any existing electron source** (not just photoemission)

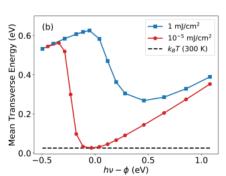

PRL 125 (5), 054801 (2020)

Deep Theoretical Understanding of Photoemission

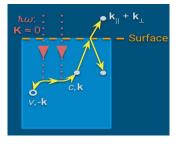


Theoretical calculations of non-linear photoemission effects

Electron heating in metals



affinity semiconductors E.g. Alkali-antimonides, NEA-GaAs


Solution: use low-electron

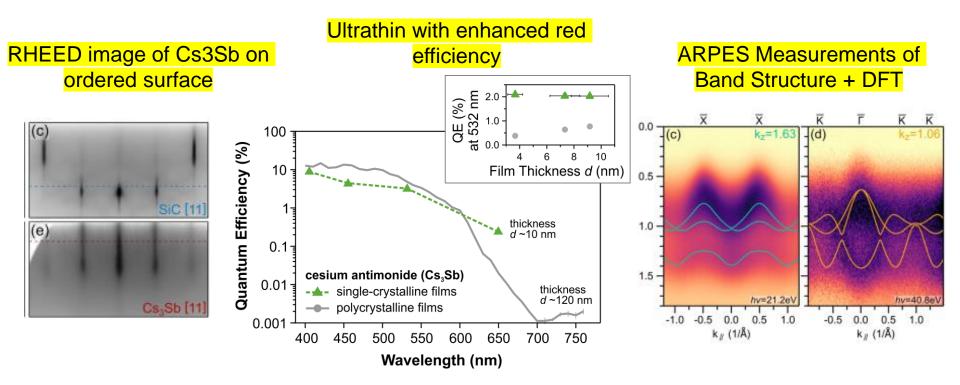
Preliminary results indicate MTE < 20 meV even at large laser fluence

Non-linear effects will limit MTE in metals to few 100 **meV** for large charge densities

Multiphoton effects

Abs. Fluence = 10^{-1} ml/cm² 50 1-photon 40 1- & 2-photon MTE (meV) 30 20 Photocurrent 10 ratio ~ 10⁻³ 0∔ 2.0 2.1 2.2 2.3 2.4 Photon Energy (eV)

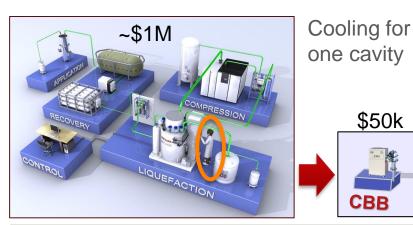
Jai Kwan Bae

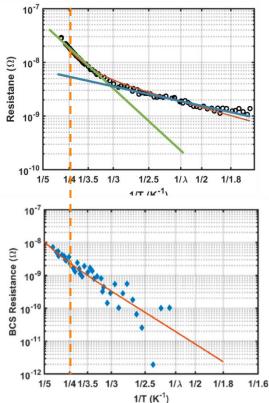


Oksana Chubenko

Maxson | EuroNNAC Workshop

 The first atomically-ordered visible light photocathode achieved using molecular beam epitaxy

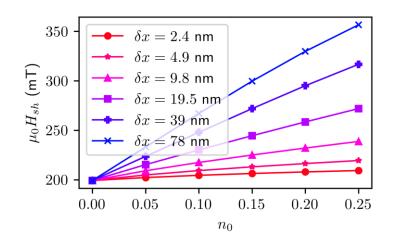

Phys. Rev. Lett., 128, 114801 (2022).

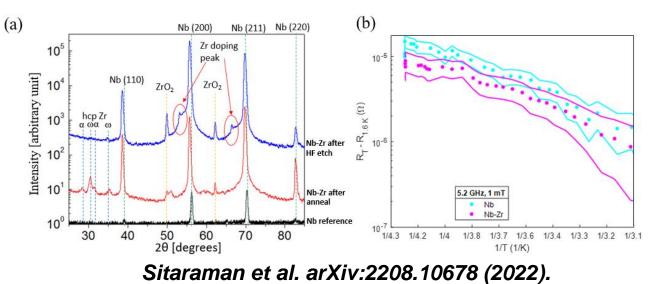

Superconducting RF (SRF) cavities Niobium \rightarrow Nb₃Sn

Nb₃Sn has higher critical temperature and is therefore far simpler to operate \rightarrow A high power beam in every basement ... or industrial plant

Earlier: CBB PI (Liepe) first successful growth of Nb₃Sn

Recent progress: Eliminated a second band gap, for 50% reduction in BCS resistance

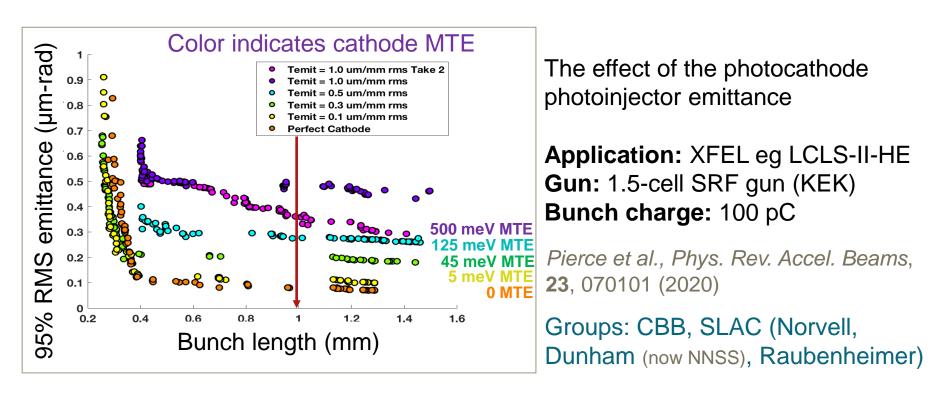

Team: Surface chemistry, electron microscopy, accelerator science, ab initio physics, materials engineering, condensed matter physics, and computational physics.



A promising new material for SRF: Nb-Zr *alloys*

 Multi-scale theoretical modeling predicts nearly a factor of 2 potential enhancement of Nb-Zr over Nb.

 Proof of principle Nb-Zr surfaces


Patterson | Center for Bright Beams | APB workshop

Can photoinjectors benefit from high-performance photocathodes? Genetic optimizations say YES.

Application: Lepton linear colliders Cross-cut: Single shot UED/UEM, xFELs

Accomplishment: Microscope tuning

Nion UltraSTEM microscope Atom-scale imaging

Sept 7, 2022

2022: We used machine learning to tune the octupole aberration corrector (81 lenses)

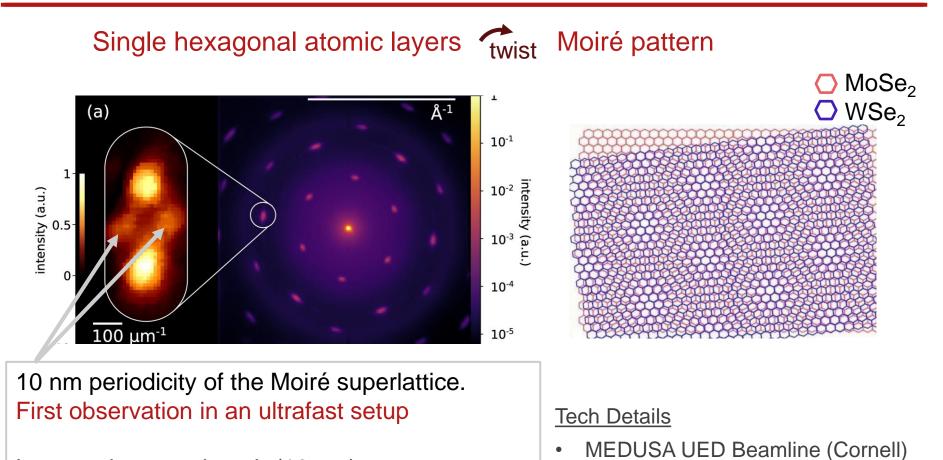
Ronchigrams

Microsc. Microanal. 28 (S1), 3146 (2022)

Initial state

After new auto-tuning

After standard tuning


Auto-tuning performs as **well or better** than standard tuning, is **faster** (2 minutes), and **doesn't rely on human judgement**

Groups: CBB, SLAC (Edelen, Hanuka)

Patterson | Center for Bright Beams | APB workshop

Improved Ultrafast Electron Diffraction

Large coherence length (10 nm) enabled by small emittance $\epsilon = 0.7 \pm 0.1$ nm (500 e⁻) *Arxiv: 2206.08404*

CBB and DOE Early Career award (BES)

Sept 7, 2022

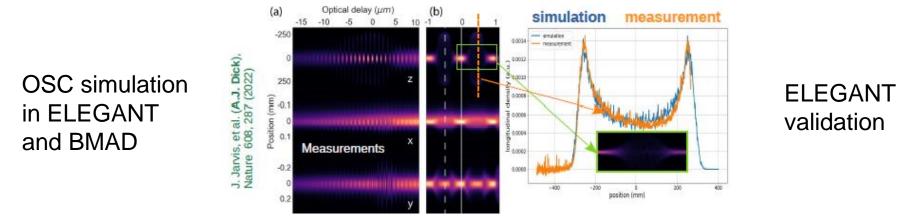
Patterson | Center for Bright Beams | APB workshop

1kz rep rate

detector

EMPAD high dynamic range

CBB contributions to the IOTA demonstration


Groups: CBB, FNAL, ANL

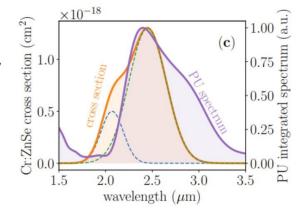
J. Jarvis, et al., Nature 608, 287 (2022)

Optical-delay stage

A. J. Dick et al., IPAC2021, WEPAB270 (2021)

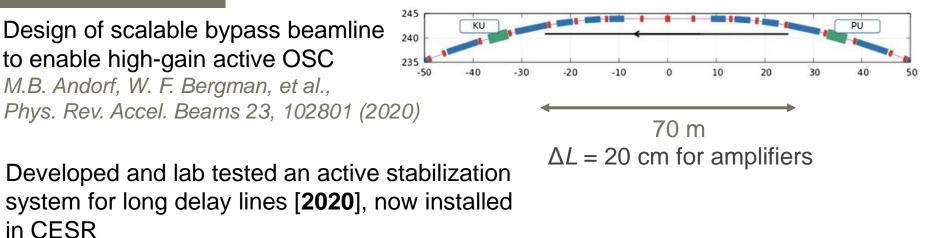
BMAD: S. T. Wang, M.B. Andorf, et al., Phys. Rev. Accel. Beams 24, 064001 (2021)

Patterson | Center for Bright Beams | APB workshop



Future: Active cooling

Preliminary design of a Cr:ZnSe single-pass amplifier Compact, high gain, with wavelength tuned for IOTA, tested at APS.


Andorf, Lebedev, Piot, Optics Express 28, 26601 (2020)

Groups: CBB, FNAL

Preparing for a high-gain OSC experiment at IOTA

CESR-based OSC

Patterson | Center for Bright Beams | APB workshop

- We are guided by a Strategic Plan—we update it annually based on our progress and other developments in the field.
- The majority of CBB funding goes to supporting graduate student and postdoc research projects.
- Capital funding is very limited. Deployment of CBB ideas on actual accelerators typically relies on partnership, for example with national laboratory *affiliates*.
- We have a proposal process for university PIs—typically one proposal per graduate student or postdoc.
- The PI team is not static, but changes slowly over time as needs and interests evolve.

Grad Students and Postdocs I

Current Graduate Students

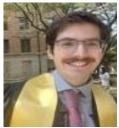
JP Gonzalez Aguilera, Chicago

Vivek Anil, Cornell

Asma Aslam. New Mexico

Zhaslan Baraissov, Cornell

Eric Cropp, UCLA



Northern

Illinois

Gabriel Gaitan, Cornell

David Garcia. UCLA

Gevork Gevorkyan, ASU

Jason Gibson. Florida

Aiden Harbick, BYU

Mariam Hasany, Cornell

Ajinkya Hire, Florida

Ali Kachwala, ASU Sept 7, 2022

Michelle Kelley, Cornell

Chris Knill. ASU

Patterson | Center for Bright Beams | APB workshop

Gerald Lawler. UCLA

Samuel Levenson,

Cornell

Lucy Lin,

Cornell

Desheng Ma, Cornell

Grad Students and Postdocs II

Current Graduate Students

Joshua

Mann,

UCLA

Chad

Pennington,

Christopher Pierce, Cornell

Pallavi Saha, ASU

Annabel Selino, Cornell

Cornell

Amy Zhu,

Cornell

Nathan Sitaraman, Cornell

Caleb Thompson, Chicago

Current

Postdocs

Michael Van Duinen, Chicago

Cornell

Charles Zhang, Cornell

Sept 7, 2022

Nathan Majernik Afnan Marzouk Elena Echeverria NIU Cornell UCLA Patterson | Center for Bright Beams | APB workshop

20

CBB Alumni

41 highly-trained scientists by the end of year 5 Interdisciplinary team science, plus training in entrepreneurship, communication, ethics, mentorship, diversity & inclusion....

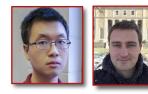
CBB priority: **Diversity** Accelerator Division of the American Physical Society has the lowest female representation of all 16 APS units except one (10%)

Darren Veit Matthew Andorf

Alex Cahill	Varian Medical Systems, Eng. Physicist
Colin Clement	Microsoft, Data Scientist
Paul Cueva	Corning, Scientist
Will DeBenedetti	Pacific Northwest Nat. Lab., Postdoc
Cameron Duncan	EPFL, Postdoc
Lipi Gupta	Lawrence Berkeley Nat. Lab, Postdoc
Matthew Gordon	National Lab, Postdoc
Daniel Hall	ASML, Sr. Design Engineer
Frank Ikponmwen	FDA, Analytical Chemist
Nikita Kuklev	Argonne Nat. Lab., Postdoc
William Li	Brookhaven Nat. Lab., Postdoc
James T. Maniscalco	SLAC, SRF Engineer
Allison McMillan	Interviewing
J. Kevin Nangoi	UC Santa Barbara, Postdoc
Alden Pack	Sandia Nat. Lab, Albuquerque, Postdoc
Joshua Thomas Paul	Argonne Nat. Lab, Postdoc
Ryan Porter	SLAC, Postdoc

	Jan Balajka	TU Wien, Postdoc
	Stanislav Baturin	Northern Illinois U., Asst. Professor
	Oksana Chubenko	Northern Illinois U., Asst. Professor
	Rachael Farber	University of Kansas, Asst. Professor
	Alice Galdi	U. of Salerno, Italy, Assoc. Professor
8	Jacob Graham	NASA Goddard, Space Res. Scientist
Postdoc	Siddharth Karkare	Ariz. State U., Asst. Professor
	Danilo Liarte	Cornell U., Res. Assoc.
	Andy Linscheid	Tom Tom, Germany
	Jared Maxson	Cornell U., Asst. Professor
	Jorge Giner Navarro	CIEMAT, Madrid, Researcher
	Ryan Roussel	SLAC, Postdoc
	Dulanga Somartne	Unknown
	Chenyu Zhang	ASML, Sr. Software Engineer
RA	Luca Cultrera	Brookhaven Nat. Lab., Scientist

TBD


Cornell U., Res. Assoc

Academia/Education Industry Gov't/ National Lab

Maria Brian

Eylen Nilani Alex I

CBB Workforce Development



CBB Young Scientists

- 30 grad students
- 9 postdocs
- 20 undergraduates includes ~8 in REU programs

Accelerator Education

- Accelerator and related lectures
 on YouTube
- Hands-on accelerator training Cornell Cryo DC gun, CESR, Advanced Photon Source (ANL), IOTA (FNAL), Pegasus (UCLA), HiRES (LBNL), CBETA, MEDUSA (Cornell).
- University courses Last year: U Chicago, UCLA
- USPAS and NAPAC schools

Developing the path to DOE labs:

- Lab affiliates (SLAC, FNAL, ANL, BNL, LBNL)
- SCGSR
- DOE lab speakers and poster judges at CBB Symposium
- DOE lab career panel
- Student co-mentors from DOE labs

Sept 7, 2022

Ŕ	$\langle \rangle$
C	

Pubs/proceedings this year

Colors show the univ. departments/institutions of the authors.

P. Denham and P. Musumeci, "Analytical Scaling Laws for Radiofrequency Based Pulse Compression in Ultrafast Electron Diffraction Beamlines." arXiv, Jun. 03, 2021	UCLA
M. Gordon, S. B. van der Geer, J. Maxson, and YK. Kim, "Point-to-point Coulomb effects in high brightness photoelectron beam lines for ultrafast electron diffraction," <i>Phys. Rev. Accel. Beams</i> , vol. 24, no. 8, p. 084202, Aug. 2021	Chicago LEPP
A. Dick, J. Jarvis, and P. Piot, "Characterization of the Sub-mm Delay Plates for the IOTA Optical-Stochastic-Cooling Experiment," FERMILAB-FN-1130-AD, 1827262, oai:inspirehep.net:1950815, Jul 2021	NIU FNAL
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D. Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, "Photoemission characterization of N-polar III-nitride photocathodes as candidate bright electron beam sources for accelerator applications," <i>Journal of Applied Physics</i> , vol. 131, no. 12, p. 124902, Mar. 2022	BNL LASSP LEPP ASU
A. A. McMillan, C. J. Thompson, M. M. Kelley, J. D. Graham, T. A. Arias, and S. J. Sibener, "A combined helium atom scattering and density-functional theory study of the Nb(100) surface oxide reconstruction: Phonon band structures and vibrational dynamics," <i>J. Chem. Phys.</i> , vol. 156, no. 12, p. 124702, Mar. 2022	Chicago LASSP
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, "Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit," <i>Phys. Rev. Lett.</i> , vol. 128, no. 11, p. 114801, Mar. 2022	LASSP LEPP CHEM
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C. Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V. Bazarov, and J. M. Maxson, "A kiloelectron- volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes," <i>Structural Dynamics</i> , vol. 9, no. 2, p. 024302, Mar. 2022	LASSP AEP BNL
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek, K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J. Santucci, G. Stancari, and A. Valishev, "First Experimental Demonstration of Optical Stochastic Cooling," arXiv:2203.08899 [physics], Mar. 2022	FNAL NIU
J. B. Gibson, A. C. Hire, and R. G. Hennig, "Data-Augmentation for Graph Neural Network Learning of the Relaxed Energies of Unrelaxed Structures," arXiv:2202.13947 [physics], Feb. 2022	Florida
J. N. Nelson, N. J. Schreiber, A. B. Georgescu, B. H. Goodge, B. D. Faeth, C. T. Parzyck, C. Zeledon, L. F. Kourkoutis, A. J. Millis, A. Georges, D. G. Schlom, and K. M. Shen, "Interfacial charge transfer and persistent metallicity of ultrathin SrIrO ₃ /SrRuO ₃ heterostructures," <i>Science Advances</i> , vol. 8, no. 5, p. eabj0481, Feb. 2022	AEP LASSP
S. Deyo, M. Kelley, N. Sitaraman, T. Oseroff, D. B. Liarte, T. Arias, M. Liepe, and J. P. Sethna, "Dissipation by surface states in superconducting RF cavities," arXiv:2201.07747 [cond-mat, physics:physics], Jan. 2022	LASSP LEPP
Y. Gao, W. Lin, K. A. Brown, X. Gu, G. H. Hoffstaetter, J. Morris, and S. Seletskiy, "Bayesian optimization experiment for trajectory alignment at the low energy RHIC electron cooling system," <i>Phys. Rev. Accel. Beams</i> , vol. 25, no. 1, p. 014601, Jan. 2022	LEPP BNL
G. Ha, KJ. Kim, P. Piot, J. G. Power, and Y. Sun, "Bunch Shaping in Electron Linear Accelerators," Reviews of Modern Physics, Oct. 2021	NIU <mark>ANL</mark>
R. G. Farber, S. A. Willson, and S. J. Sibener, "Role of nanoscale surface defects on Sn adsorption and diffusion behavior on oxidized Nb(100)," Journal of Vacuum Science & Technology A, vol. 39, no. 6, p. 063212, Dec. 2021	Chicago
J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R. S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, "Creating superconductivity in WB2 through pressure-induced metastable planar defects," <i>arXiv:2109.11521 [cond-mat]</i> , Sep. 2021	Florida
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, "An adaptive approach to machine learning for compact particle accelerators," Sci Rep, vol. 11, no. 1, p. 19187, Sep. 2021	LBNL UCLA
J. T. Paul, A. Galdi, C. Parzyck, K. M. Shen, J. Maxson, and R. G. Hennig, "Computational synthesis of substrates by crystal cleavage," npj Comput Mater, vol. 7, no. 1, pp. 1–6, Sep. 2021	Florida LASSP LEPP
C. Zhang, Z. Baraissov, C. Duncan, A. Hanuka, A. Edelen, J. Maxson, and D. Muller, "Aberration Corrector Tuning with Machine-Learning-Based Emittance Measurements and Bayesian Optimization Microscopy and Microanalysis, vol. 27, no. S1, pp. 810–812, Aug. 2021	^{I,"} LEPP AEP <mark>SLAC</mark>
D. B. Durham, C. M. Pierce, F. Riminucci, S. R. Loria, K. Kanellopulos, I. Bazarov, J. Maxson, S. Cabrini, A. M. Minor, and D. Filippetto, "Characterizing plasmon-enhanced photoemitters for bright ultrafast electron beams," in <i>Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX</i> , Aug. 2021	SLAC LEPP LBNL
O. Chubenko, S. Karkare, D. A. Dimitrov, J. K. Bae, L. Cultrera, I. Bazarov, and A. Afanasev, "Monte Carlo modeling of spin-polarized photoemission from p-doped bulk GaAs," <i>Journal of Applied Physics</i> , vol. 130, no. 6, p. 063101, Aug. 2021	ASU LEPP
J. Lim, A. C. Hire, Y. Quan, J. Kim, L. Fanfarillo, S. R. Xie, R. S. Kumar, C. Park, R. J. Hemley, Y. K. Vohra, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J. Hamlin, "High-pressure study of the low-Z rich superconductor Be22Re," Phys. Rev. B, vol. 104, no. 6, p. 064505, Aug. 2021	^e Florida
T. Y. Posos, O. Chubenko, and S. V. Baryshev, "Confirmation of Transit-Time Limited Field Emission in Advanced Carbon Materials with Fast Pattern Recognition Algorithm," arXiv:2108.07440 [physics], Aug. 2021	ASU
N. Majernik, G. Andonian, R. Roussel, S. Doran, G. Ha, J. Power, E. Wisniewski, and J. Rosenzweig, "Multileaf Collimator for Real-Time Beam Shaping using Emittance Exchange," arXiv:2107.00125 [physics], Jun. 2021	
A. Galdi, J. Balajka, W. J. I. DeBenedetti, L. Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, "Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates," <i>Appl. Phys. Lett.</i> , vol. 118, no. 24, p. 244101	LEPP CHEM BNL
R. Roussel, A. Hanuka, and A. Edelen, "Multiobjective Bayesian optimization for online accelerator tuning," Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 062801, Jun. 2021	Chicago <mark>SLAC</mark>
J. Mann and J. Rosenzweig, "Semi-Classical Cutoff Energies for Electron Emission and Scattering at Field-Enhancing Nanostructures with Large Ponderomotive Amplitudes," arXiv:2105.10601 [cond mat], May 2021	UCLA
S. T. Wang, M. B. Andorf, I. V. Bazarov, W. F. Bergan, V. Khachatryan, J. M. Maxson, and D. L. Rubin, "Simulation of transit-time optical stochastic cooling process in Cornell Electron Storage Ring," Phys. Rev. Accel. Beams, vol. 24, p. 064001, Jun. 2021	LEPP
9/23/22 Maxson EuroNNAC Workshop	23

Questions?