Advanced Accelerator Facilities in the US

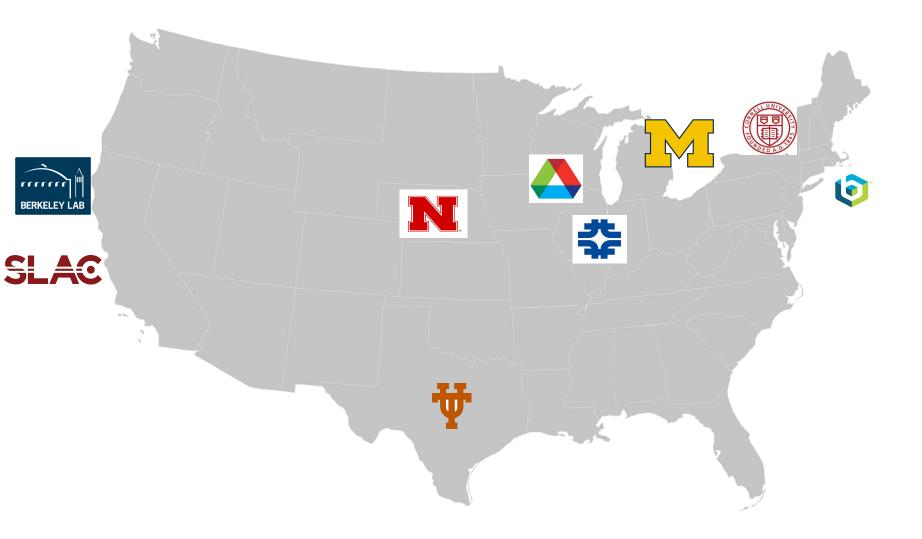
Spencer Gessner, SLAC Marlene Turner, LBNL

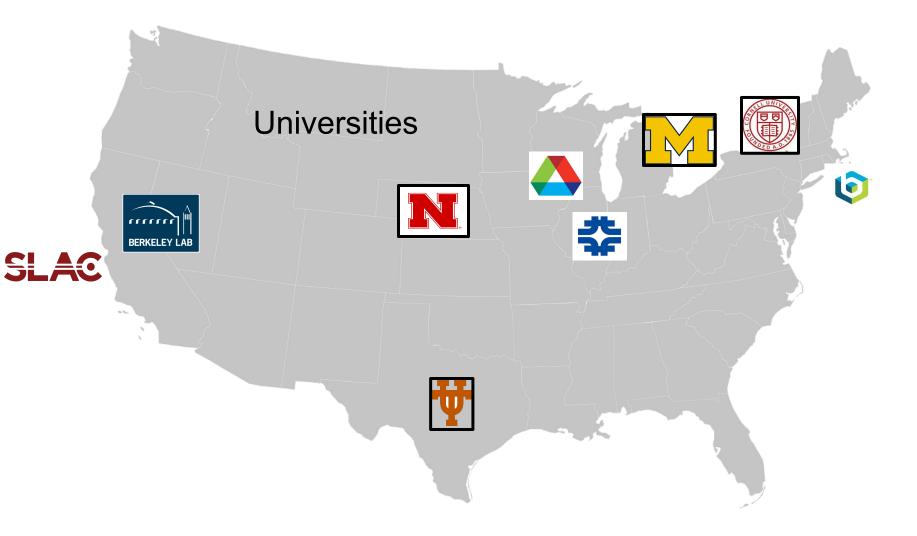
EuroNNAc, Elba September 22, 2022

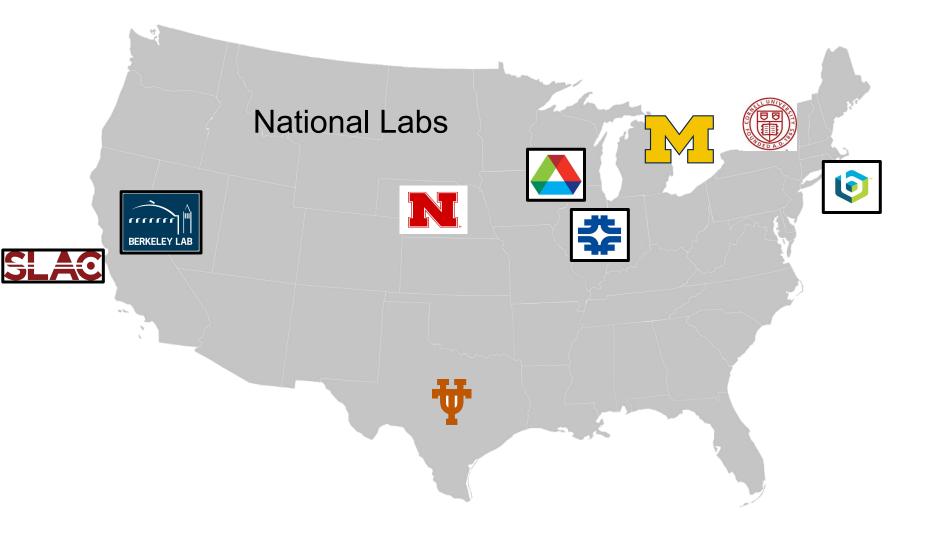
Stanford University

https://arxiv.org/pdf/2203.11290.pdf

Beam Test Facilities for R&D in Accelerator Science and Technologies


Christine Clarke,¹ Michael Downer,² Eric Esarey,³ Cameron Geddes,³ Mark J. Hogan,¹ Georg Heinz Hoffstaetter,⁴ Chunguang Jing,^{5,6} Steven M. Lund,⁷ Sergei Nagaitsev,^{8,9} Mark Palmer,¹⁰ Philippe Piot,^{11,6} John Power,⁶ Carl Schroeder,³ Donald Umstadter,¹² Navid Vafaei-Najafabadi,^{13,10} Alexander Valishev,⁸ Louise Willingale,¹⁴ and Vitaly Yakimenko¹

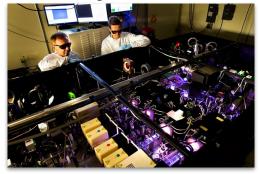

Thank you to my colleagues (especially C. Clarke and J. Power) for diligently compiling the Snowmass White Paper on US Beam Test Facilities.


https://arxiv.org/pdf/2203.11290.pdf

The capabilities of the US beam test facilities considered in this report possess one or more of the following capabilities: (O(100) MeV energy drive beams, O(10) Petawatt drive lasers, O(1)Gigawatt RF power sources, high-quality charged particle sources (e.g. low emittance electron beams), advanced beam manipulation systems (e.g. nonlinear integrable optics, optical stochastic cooling, emittance exchange) and capabilities to develop AI/ML for accelerator science.

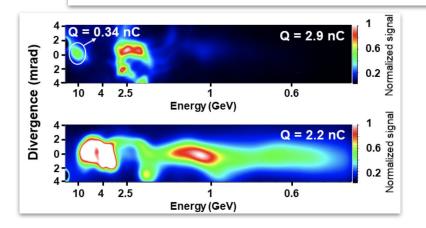
Thank you to my colleagues (especially C. Clarke and J. Power) for diligently compiling the Snowmass White Paper on US Beam Test Facilities.

University Facilities


Cornell CBETA ERL

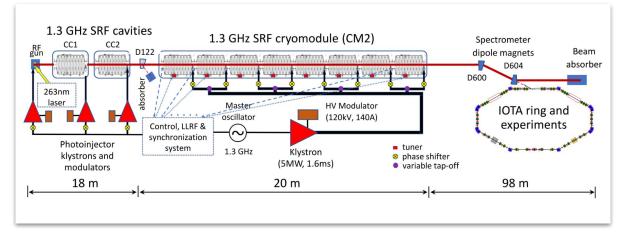
Nebraska Diocles Laser

Michigan Zeus Laser


Texas Petawatt Laser

Ur

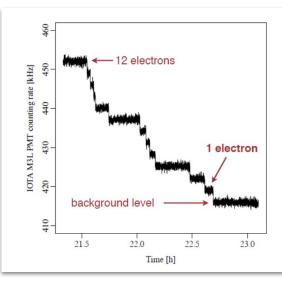
High-charge 10 GeV electron acceleration in a 10 cm nanoparticleassisted hybrid wakefield accelerator

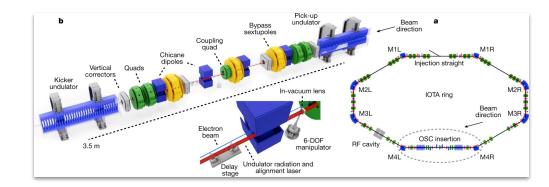

Constantin Aniculaesei^{1,*,#}, Thanh Ha^{1,#}, Samuel Yoffe⁵, Edward McCary¹, Michael M Spinks¹, Hernan J. Quevedo¹, Lance Labun^{1,2}, Ou Z. Labun¹, Ritwik Sain¹, Andrea Hannasch¹, Rafal Zgadzaj¹, Isabella Pagano^{1,3}, Jose A. Franco-Altamirano¹, Martin L. Ringuette¹, Erhart Gaul¹, Scott V. Luedtke⁴, Ganesh Tiwari⁷, Bernhard Ersfeld⁵, Enrico Brunetti⁵, Hartmut Ruhl⁶, Todd Ditmire¹, Sandra Bruce¹, Michael E. Donovan^{1,2}, Dino A. Jaroszynski⁵, Michael C. Downer¹, Bjorn Manuel Hegelich^{1,2,%}

<section-header>

FAST/IOTA

FAST/IOTA @ Fermilab



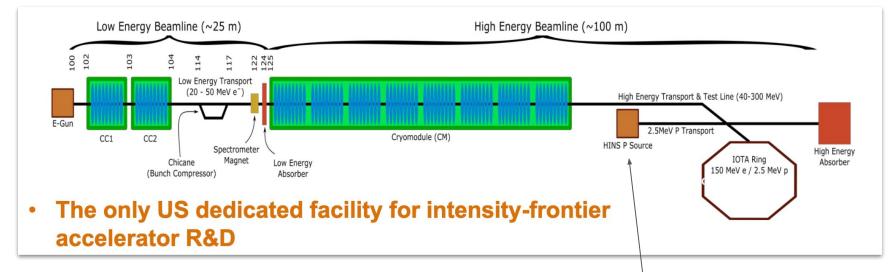

Unique Capabilities:

- Non-linear optics testing
- Single electron dynamics
- Optical stochastic cooling

FAST/IOTA @ Fermilab

Research Highlights

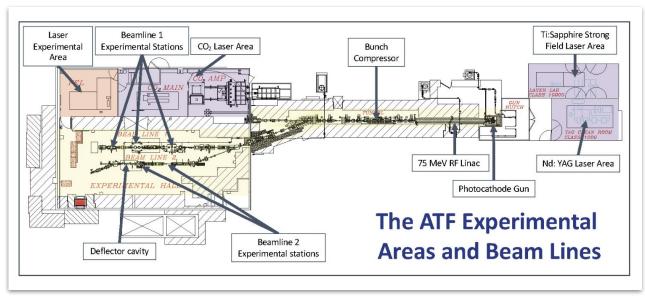
Experimental Study of a Single Electron in a Storage Ring via Undulator Radiation


S. Nagaitsev et. al., IPAC2019-MOPRB089

https://accelconf.web.cern.ch/ipac2019/papers/moprb089.pdf

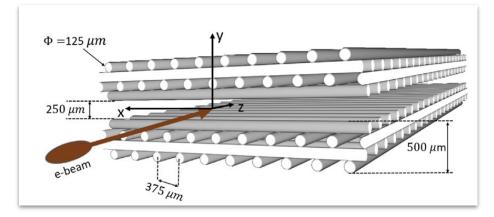
Experimental demonstration of optical stochastic cooling J. Jarvis et. al., *Nature* (2022) <u>https://www.nature.com/articles/s41586-022-04969-7</u>

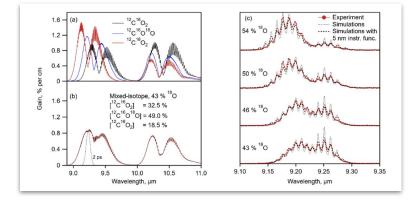
FAST/IOTA @ Fermilab


Upgrades

Proton injector

ATF @ Brookhaven




Unique Capabilities:

• 10 µm CO₂ laser

ATF @ Brookhaven

Research Highlights

Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure P.D. Huang et. al., *PRL* (2018) <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.</u> 164801 Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers M. Polyanskiy et. al., OSA Continuum (2020) https://opg.optica.org/osac/fulltext.cfm?uri=osac-3-3-459&id=4 27803 Upgrades:

- Further development of CO₂ laser.
 - Near term goal = 25 TW

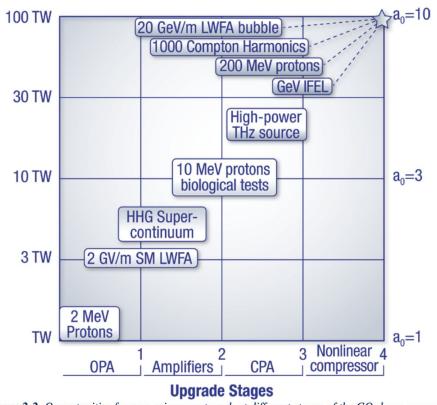
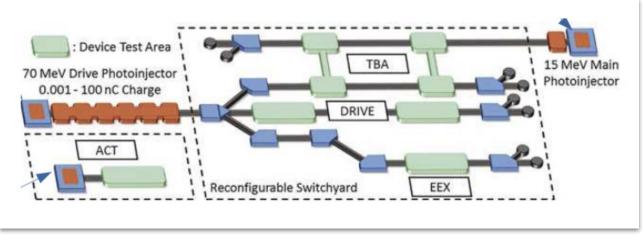
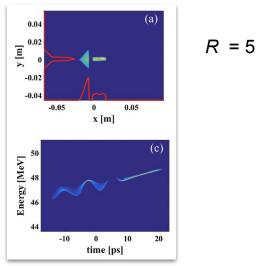



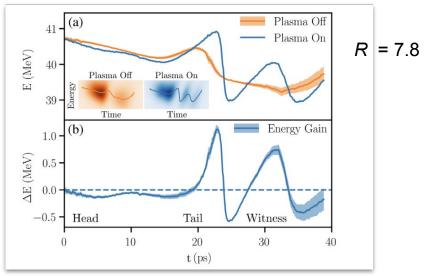
Figure 2-2. Opportunities for new science outreach at different stages of the CO₂ laser upgrade.

AWA @ Argonne



Unique Capabilities:

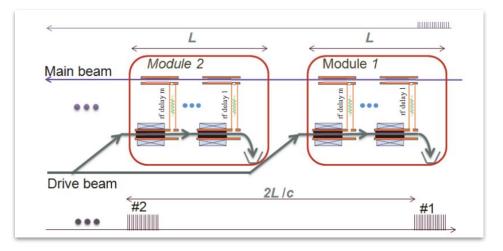
- Two-Beam acceleration
- High-gradient structures
- Bunch shaping and emittance exchange


AWA @ Argonne

Research Highlights

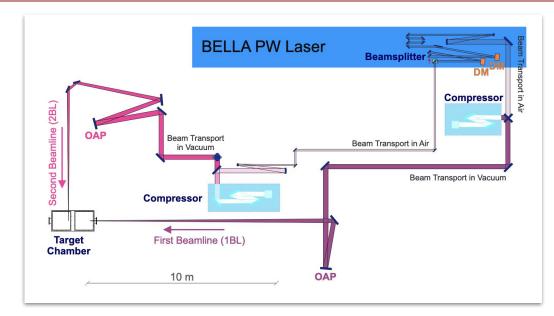
Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line Q. Gao et. al., *PRL* (2018)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120. 114801


Single Shot Characterization of High Transformer Ratio Wakefields in Nonlinear Plasma Acceleration R. Roussel et. al., *PRL* (2020)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124. 044802

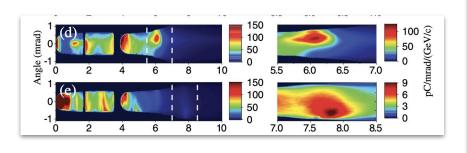
AWA @ Argonne

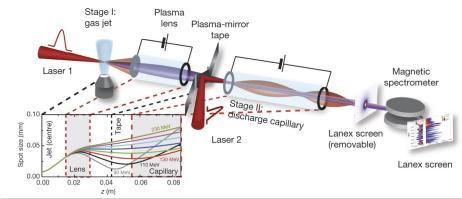

Upgrades

 Expand AWA bunker for AWA-HE (high-energy) using a staged approach.

BELLA

BELLA @ Berkeley


Unique Capabilities:


• Petawatt-class, high-quality laser for LWFA

BELLA @ Berkeley

Research Highlights

084801

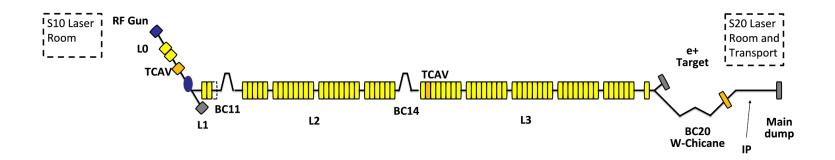
Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide A.J. Gonsalves et. al., *PRL* (2019) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122. Multistage coupling of independent laser-plasma accelerators S. Steinke et. al., *Nature* (2016) <u>https://www.nature.com/articles/nature16525</u>

BELLA @ Berkeley

Upgrades

- Staging of two GeV-class LWFA stages.
- BELLA -> k-BELLA using kHz laser technology.

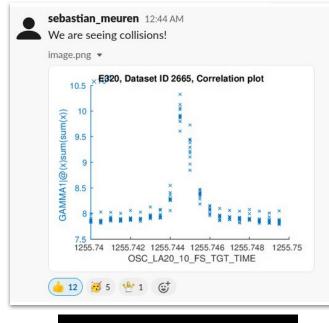
REPORT OF WORKSHOP ON Laser Technology for k-BELLA and Beyond



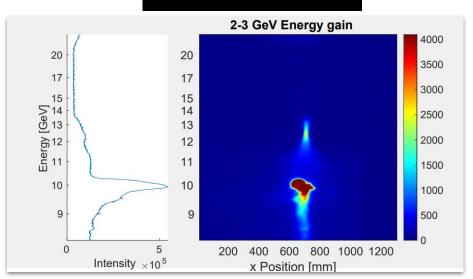
MAY 9-11, 2017

WORKSHOP HELD AT LAWRENCE BERKELEY NATIONAL LABORATORY

FACET-II @ SLAC

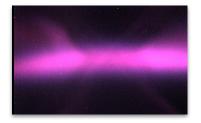

Unique Capabilities:

- 100 kA-class beams
- Laser for non-linear QED
- Positron PWFA


Slide courtesy C. Clarke

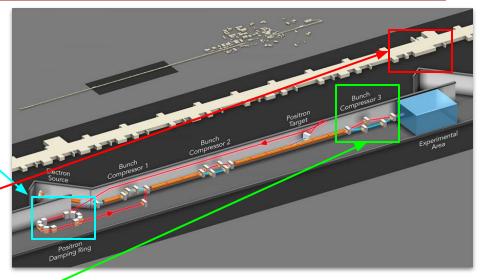
FACET-II @ SLAC

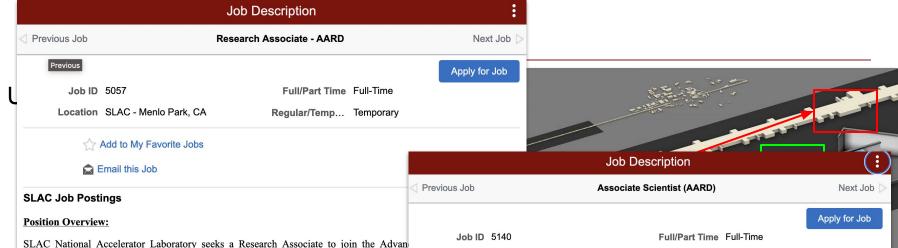
First Results from 2022! (Preliminary)


First signs of electron-gamma collisions with a laser timing scan

2-3 GeV acceleration of

electrons in a Hydrogen plasma


Color image of meter-scale H2 plasma



FACET-II @ SLAC

Upgrades

- Positron PWFA
 - Would be the only facility with electron driven wakefields for positron acceleration.
- Laser upgrade from 20 TW to 200 TW to access highly non-linear QED regimes.
- Reconfigure final bunch chicane for higher-quality beams.

Location SLAC - Menlo Park, CA

Email this Job

SLAC Job Postings

Position Overview:

FACET-II.

Add to My Favorite Jobs

Regular/Temp... Temporary

SLAC National Accelerator Laboratory seeks an Associate Scientist to join the Advanced Accelerator Research

Department within the FACET and Test Facilities Division of the Accelerator Directorate. The Advanced Accelerator Research Department develops and executes experiments in high-gradient plasma acceleration using the unique facilities

at the SLAC National Accelerator Laboratory including FACET-II. FACET-II is a National User Facility in the middle kilometer of the SLAC linear accelerator facility that supports experimental programs combining high energy electron

beams and their interaction will lasers, plasmas and solids. The successful candidate will work with other physicists, postdocs, and graduate students from SLAC and external collaborators to develop, conduct and analyze experiments at

SLAC National Accelerator Laboratory seeks a Research Associate to join the Advan Department within the FACET and Test Facilities Division of the Accelerator Directorate. Research Department develops and executes experiments in high-gradient plasma acce facilities at the SLAC National Accelerator Laboratory. FACET-II (Facilities for Experimental Test beams at SLAC) will study plasma acceleration, using short, intens positrons from the middle kilometer of the SLAC linac. The successful candidate will w postdocs, and graduate students from SLAC and external collaborators to develop, conduc at FACET-II.

• Reconfigure final bunch chicane

for higher quality beams

Go to <u>https://careers.slac.stanford.edu/</u> and search for jobs #5057 and 5140. Accelerator Test Facilities in the United States have produced world-class research and results over the past decade.

Current facilities are debuting new capabilities aimed at developing technologies for a future collider based on Advanced Accelerator concepts.

Staging is critical!

- Currently pursued by BELLA (LWFA) and AWA (SWFA).
- Need a demonstration facility for PWFA. Something to follow FACET-II?

Final Focus and Beam Delivery is also critical!

• Research could be carried out in conjunction with ATF2@KEK.