

Mitigation of the onset of hosing in the linear regime through plasma frequency detuning

M. Moreira¹

P. Muggli^{2,3}, J. Vieira¹

¹ GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² CERN, Geneva, Switzerland

³ Max Planck Institute for Physics, Munich, Germany

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

The AWAKE Collaboration, in particular the AWAKE team based at CERN B. Holzer

Simulation results obtained at PizDaint (Swiss National Supercomputing Centre), MareNostrum (Barcelona Supercomputing Center) and LUMI (LUMI consortium)

Acknowledgments

Supported by the Seventh Framework Programme of the European Union

An instability with many faces

Growth rate - it's a spectrum

• "a long-wavelength hosing instability in laser-plasma interactions" has been studied some time ago****

FIG. 2. The growth rate for hosing vs wave number for $\tilde{x}_R = 256.$

- disruptive instability that modulates the bunch centroid at the plasma wavelength
- competes with the self-modulation instability (for long drivers)

The bogeyman of wakefield acceleration

Suppressing hosing in particle drivers

- a lot of research towards mitigation has focused on the short-bunch, nonlinear regime*
- fewer options for mitigation in the long-beam, linear-wakefield regime** exist (relevant for single-stage TeV-level PWFA schemes)

 \Rightarrow what does this seed frequency dependence look like for beam hosing?

1

^{*} [T. J. Mehrling, et al., Phys. Rev. Accel. Beams 22, 031302 \(2019\)](https://doi.org/10.1103/PhysRevAccelBeams.22.031302) [R. Lehe, et al., Phys. Rev. Lett 119, 244801 \(2017\)](https://doi.org/10.1103/PhysRevLett.119.244801) ** [J. Vieira, et al., Phys. Rev. Lett. 112, 205001 \(2014\)](https://doi.org/10.1103/PhysRevLett.112.205001)

The hosing growth rate as a function of seed frequency

A novel approach to hosing mitigation

Conclusion

Methods and parameters

Theory

$$
\frac{d^2y_c}{dz^2} = \frac{m_e}{\gamma M_b} \left\langle F_y \right\rangle =
$$

First-order evolution of certains for $y_c(\zeta, z) = y_{c0}(\zeta) + \text{RHS}(y_{c0})$

Bunch centroid equation:

plasma response

For a Gaussian transverse bunch profile (2D Cart.):

- electron bunch
- bunch profile: longit. cosine and transv. Gaussian
- cold beam $(\varepsilon_N = 0)$
- head of beam, window length $L = 140 k_p^{-1} (\sim 22 \lambda_p)$

$$
\left\langle F_y \right\rangle = \sqrt{\frac{\pi}{8}} \frac{n_{b0}}{n_0} \left(\frac{q_b}{e} \right)^2 \sigma_y \exp(\sigma_y^2) \int_{\zeta}^{\infty} d\zeta' \sin(\zeta - \zeta') f(\zeta')
$$

$$
\left\{ \exp \left[y_c(\zeta') - y_c(\zeta) \right] \text{erfc} \left[\frac{y_c(\zeta') - y_c(\zeta) + 2 \sigma_y^2}{2 \sigma_y} \right] - \exp \left[y_c(\zeta) - y_c(\zeta') \right] \text{erfc} \left[\frac{y_c(\zeta) - y_c(\zeta') + 2 \sigma_y^2}{2 \sigma_y} \right] \right\}
$$

$RHS(y_c)$

troid (valid for
$$
z \leq k_{\beta}^{-1}
$$
):

\n $\int \frac{1}{2} z^2$

Parameters

$$
n_0 = 0.5 \cdot 10^{14} \text{ cm}^{-3}
$$

\n
$$
\gamma_b = 480
$$

\n
$$
\sigma_r = 200 \text{ }\mu\text{m} \qquad \approx 0.27 \text{ } k_p^{-1}
$$

\n
$$
\sigma_z = 12 \text{ cm} \qquad \approx 160 \text{ } k_p^{-1}
$$

\n
$$
M_b = m_e \qquad \Rightarrow k_\beta^{-1} / k_p^{-1} \approx 980
$$

\n
$$
n_{b0} / n_0 = 0.001 \Rightarrow N_b = (1.9-3.8) \cdot 10^9
$$

- 1) initial centroid perturbation: $y_{c0}(\zeta) = 0.05 \sin(k \zeta)$
- 2) obtain evolution of $y_c(\zeta, z)$
- 3) measure the **amplitude** response:

 $\Pi(z) =$ $\int d\zeta \left[y_c(\zeta, z) \right]$ $\int d\zeta \, |y_c(\zeta,0)|$

How?

with

- theoretical model
- simulations

$$
k_{\beta}^{2} = \frac{1}{2 \gamma_{b}} \left(\frac{\omega_{b}}{c} \right)^{2} = \frac{1}{2 \gamma_{b}} \frac{q_{b}^{2} n_{b0}}{\varepsilon_{0} M_{b}} \frac{1}{c^{2}}
$$

How does the HI growth rate depend on the seed frequency?

Each growth regime is associated with a phase shift

- the phase shift can be measured with a crosscorrelation method*
- phase shift "spectrum" confirms three growth regimes

* For the theoretical curve, *L* and σ_z are scaled for each k such that the same number of wavelengths is considered in the analysis ($\sim 22 \lambda_p$).

Behaviour is analogous with a harmonic oscillator

The hosing growth rate as a function of seed frequency

A novel approach to hosing mitigation

Conclusion

- hosing: growing centroid and centroid velocity $v_c/c = dy_c/dz$
- initially, y_c and v_c are phase-shifted by $\pi/2$
	- $y_c(\zeta, z) = A \sin[k\zeta \varphi(z)]$ 2.5 • assume the centroid evolves as
	- $v_c(\zeta, z)/c = A \varphi'(z) \sin(k\zeta \varphi(z) \frac{\pi}{2})$ bulc • the centroid velocity would be
- $\frac{1}{2}$ • different phase shifts to plasma response $\left\langle F_{y}\right\rangle$ **⇒** detuning impacts both quantities differently
- $n = \frac{1}{2}$ • solution: alternate between $k < k_p$ and $k > k_p$

0 0.5 1 1.5 2

z = 0:5 k!¹ z = 1:0 k!¹ z = 2:0 k!¹

Can this knowledge be used to mitigate hosing?

Simply staying in damping regime does not work

control local plasma density *np*

control ratio of seed k (initial perturbation) to local k_p

Amplitude response as a function of local plasma density

- the total transverse energy is almost two orders of magnitude smaller than the case without steps
- instability picks up in the resonant plasma density
- a second set of steps prolongs the suppressive effect

Hosing can be mitigated with plasma density steps

• for small centroids $(y_c \ll 1)$:

Measuring the mitigation effectiveness A proof-of-concept density step configuration

$$
\left(\frac{d^2}{dz^2} + k_{\text{HO}}^2(\zeta, z)\right) y_c(\zeta, z) = F(\zeta, z, y_c)
$$

• multiply by v_c :

$$
\frac{d}{dz} \left(\frac{1}{2} v_c^2 + \frac{1}{2} k_{\text{HO}}^2 y_c^2 \right) = v_c F
$$

transverse energy

• initial centroid displacement at $k_{p,0}$: $y_{c0}(\zeta) = 0.05 \sin(k_{p,0}\zeta)$

3D OSIRIS simulations

Hosing can be mitigated with plasma density steps

Does the mitigation set-up destroy a self-modulated bunch?

Methodology There is significant impact on the accelerating field amplitude

• preliminary study indicates a **large drop** in the amplitude of E_z (~ -40%)

Virtually no effect on bunch charge

• the SMI can be **optimised** with a small, early density step*

• similar impact on this configuration ("opt.")

* [K. V. Lotov, Phys. Plasmas 18, 024501 \(2011\);](https://doi.org/10.1063/1.3558697) [K. V. Lotov, Phys. Plasmas 22, 103110 \(2015\)](https://doi.org/10.1063/1.4933129)

The self-modulation instability obeys similar physics

㱺 **Poster session tonight!**

#49 - "Early dynamics of the self-modulation instability growth rate"

The hosing growth rate as a function of seed frequency

A novel approach to hosing mitigation

Conclusion

2.5

-2

0

ı

Conclusions

$\boldsymbol{\varsigma}$ **The hosing growth rate depends on the perturbation wavelength**

- the amplitude response evolves along the propagation
- the amplitude "spectrum" can be probed via plasma density detuning (such as a density step)

A hosing seed can be suppressed through a series of plasma density steps

- however, set-up may significantly impact the wakefield amplitude driven by a self-modulated bunch
- implications for the control of the growth of transverse beam-plasma instabilities in general
- a small amount of detuning (either Δk or $\Delta n_{p}^{}$) can lead to very different growth regimes
- these growth regimes are associated with a characteristic phase shift between the radius and the plasma response

There is a particular amplitude response early in the development of hosing

㱺 **For more information:** <https://doi.org/10.48550/arXiv.2207.14763>

