- L. Verra¹, G. Zevi Della Porta¹, J. Pucek², T. Nechaeva², M. Bergamaschi²,
- E. Gschwendtner¹, and P. Muggli²
- (for the AWAKE Collaboration)
- ¹CERN Geneva, ²Max-Planck Institute for Physics Munich
- EuroNNAc Special Topics Workshop 19.09.2022

L. Verra¹, G. Zevi Della Porta¹, J. Pucek², T. Nechaeva², M. Bergamaschi²,

E. Gschwendtner¹, and P. Muggli²

(for the AWAKE Collaboration)

¹CERN Geneva, ²Max-Planck Institute for Physics

EuroNNAc Special Topics Workshop 19.09.2022

Self-Modulation Instability

N. Kumar et al., Phys. Rev. Lett. **104** (25), 255003 (2010) A. Pukhov et al., Phys. Rev. Lett. **107** (14), 145003 (2011)

Seeding of the Self-Modulation

- For precise witness injection, timing and amplitude of the wakefields must be reproducible from event to event
- Obtained by seeding the instability
 - \rightarrow setting timing and initial amplitude of the wakefields
 - ightarrow controlling the instability

Seeding requires applying wakefields on the proton bunch with amplitude larger than that of the wakefields initially driven by the bunch

Seeding of the Self-Modulation

- For precise witness injection, timing and amplitude of the wakefields must be reproducible from event to event
- Obtained by seeding the instability

 → setting timing and initial amplitude of the wakefields
 → controlling the instability

Y. Fang et al., Phys. Rev. Lett. 112, 045001 (2014)

Seeding requires applying wakefields on the proton bunch with amplitude larger than that of the wakefields initially driven by the bunch

Seeding of the Self-Modulation

- For precise witness injection, timing and amplitude of the wakefields must be reproducible from event to event
- Obtained by seeding the instability

 → setting timing and initial amplitude of the wakefields
 → controlling the instability

With long electron bunch: tailoring of the longitudinal distribution using a mask (a) no plasma Front Back Difficult for high-energy proton bunches Transverse Size (pixel) 120 (d) $L^{\text{beam}}/\lambda_{\text{pe}}=3.1$ 60 58.3 58.8 57.8 (BNL) Energy (MeV)

Y. Fang et al., Phys. Rev. Lett. 112, 045001 (2014)

Seeding requires applying wakefields on the proton bunch with amplitude larger than that of the wakefields initially driven by the bunch

AWAKE Run 1: ionization-front seeding

Seed wakefield is provided by the fast onset of the beamplasma interaction

- The head of the bunch remains
 un-modulated
- Growth rate and seed
 wakefields
 depend on the bunch density at
 the ionization front location
 → no independent control

F. Batsch et al. (AWAKE Coll.), Phys. Rev. Lett. **126**, 164802 (2021)

AWAKE Run 2

AWAKE Run 2a (2021-22): electron bunch seeding

- The electron bunch drives the seed wakefield
- The seed wakefield modulates the p⁺ bunch charge distribution
- Self-modulation grows from the initial modulation

The entire proton bunch is modulated!

Experimental and timing setup

• Q_e = 220 pC

- $\varepsilon_{\rm N} \sim 1 \,\mu{\rm m}$
- $\sigma_{\rm r}$ = 0.2 mm
- $\sigma_{\rm t}$ ~5 ps
- E = 19 MeV

plasma: $n_{pe} = 1.10^{14} \text{ cm}^{-3}$

- $\sigma_{\rm r} = 0.1 0.2 \,{\rm mm}$
- ε_N ~ 1.5-3.5 μm
- $\sigma_{\rm t}$ ~240 ps
- p = 400 GeV/c

 $t_{seed} \sim 0-40 \ ps$

Experimental and timing setup

Electron bunch seeding: timing **reproducibility**

proton bunch charge Q_p =40.8nc 73 ps streak camera window electron bunch charge Q_e = 250 pC n_{pe} = 1.10¹⁴ cm⁻³ \rightarrow f_{pe} = 89.7 GHz T_{pe} = 11.1 ps

Waterfall plots of single-event time-resolved images

rms(t_{μ}) / T_{pe} ~ 0.23

Electron bunch seeding: timing reproducibility

proton bunch charge Q_p =40.8nc 73 ps streak camera window electron bunch charge Q_e = 250 pC n_{pe} = 1.10¹⁴ cm⁻³ \rightarrow f_{pe} = 89.7 GHz T_{pe} = 11.1 ps

The microbunches appear at the same time t_{μ} along the bunch event after event

Self-Modulation of the proton bunch is seeded by the electron bunch!

Waterfall plots of single-event time-resolved images

With e^{-} bunch \rightarrow seeded SM

rms(t_{μ}) / T_{pe} ~ 0.23

Electron bunch seeding: timing **reproducibility**

proton bunch charge Q_p =40.8nc 73 ps streak camera window electron bunch charge Q_e = 250 pC n_{pe} = 1.10¹⁴ cm⁻³ \rightarrow f_{pe} = 89.7 GHz T_{pe} = 11.1 ps

The microbunches appear at the same time t_{μ} along the bunch event after event

Self-Modulation of the proton bunch is seeded by the electron bunch!

Average of time-resolved images

Timing is not reproducible
 → on-axis projection shows no structure
 → no bunch train on average

Timing is reproducible →on-axis projection shows clear structure! → <u>bunch train on average</u> Modulation at the plasma frequency

Electron bunch seeding: timing **control**

- The timing of the modulation is defined by the timing of the seed bunch
- → A shift Δt_{seed} gives a variation in the appearance time of the microbunches Δt_{μ}

Electron bunch seeding: timing **control**

- The timing of the modulation is defined by the timing of the seed bunch
- → A shift Δt_{seed} gives a variation in the appearance time of the microbunches Δt_{μ}

210 ps-scale averaged time-resolved images

Electron bunch seeding: timing control

- The timing of the modulation is defined by the timing of the seed bunch
- → A shift Δt_{seed} gives a variation in the appearance time of the microbunches Δt_{μ}

SM starts from the bunch front → The entire bunch is self-modulated! AWAKE Run 2a: <u>electron bunch seeding</u>

Self-modulation growth and growth rate

Independent control

of the seed wakefields and of the growth rate

Self-modulation growth and growth rate

Independent control

of the seed wakefields and of the growth rate

Defocused protons leave the plasma before SM reaches saturation

- \rightarrow they propagate with straight trajectory (W₁ \rightarrow p₁)
- → their position at a screens gives information on the amplitude of the wakefields in the first meters of propagation

ns-scale time-resolved images to study the transverse distribution along the bunch
 → not enough time resolution to see the microbunches

ns-scale time-resolved images to study the transverse distribution along the bunch
 → not enough time resolution to see the microbunches

• We define the transverse extent w as the full width at 20% of the maximum for each time-column of the image

Control of the instability growth

Conclusions

Demonstration:

- The electron bunch seeds effectively • the self-modulation
- The timing of the wakefields is tied to • that of the seed
- The entire bunch self-modulates •

Understanding:

- Earlier defocusing effect ٠ when seeding
- Adiabatic focusing effect ٠ with and without seeding

Independent control of $W_{\perp 0}$ and of Γ with Q_e and Q_p

Conclusions

- The timing of the wakefields is tied to that of the seed
- The entire bunch self-modulates
- Important milestone for AWAKE
- Physics result: control of an instability

Understanding:

- Earlier defocusing effect when seeding
- Adiabatic focusing effect with and without seeding

Key results published in:

L. Verra et al. (AWAKE Collaboration), *Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma*, Phys. Rev. Lett. **129**, 024802 (2022)

- Independent control of $W_{\perp 0}$ and of Γ with Q_e and Q_p

Further physics studies

• Competition between instability and seeded regimes

Thank you for your attention!

Backup slides

Seeded Self-Modulation for AWAKE Run 2

Electron bunch seeding

The entire proton bunch is modulated!

The electron bunch provides the seed wakefield

- \rightarrow seeding relies on the electron bunch properties:
 - initial bunch charge density
 - alignment

P. Muggli et al., Seeding self- modulation of a long proton bunch with a short electron bunch, Journal of Physics: Conference Series **1596**, 012066 (2020).

Seed bunch charge scan ($Q_e \rightarrow W_{\perp 0}$)

- All profiles with plasma ON follow the same trend in the focusing part
- The larger Qe, the earlier global defocusing starts (i.e, where w>w_{off})
 - → SM wakefields (defocusing) dominate over adiabatic focusing earlier due to LARGER SEED WAKEFIELDS AMPLITUDE!
- At any *t* along the bunch, *w* is larger for larger Q_e
 → LARGER GROWTH due to LARGER SEED WAKEFIELDS AMPLITUDE

$$W_{\perp 0} \propto \frac{n_e}{n_{pe}}$$

Proton bunch charge scan ($Q_p \rightarrow \Gamma$)

Larger Q_p:

- earlier defocusing effect (even if ad focusing in stronger $\propto Q_p$)
- larger w at any time when defocusing dominates

Both effects are due to larger growth rate

$$\Gamma \propto \left(\frac{n_p t}{n_{pe} z}\right)^{\frac{1}{3}}$$

Transverse time-integrated images

3D imaging

By changing the position of the OTR on the slit, we obtained time-resolved images at different heights.

 \rightarrow study SM in the plane perpendicular to the slit

Seeded SM reproducibility

