

Laser-plasma acceleration at ELI-Beamlines

Alexander Molodozhentsev

on behave of ELI-Beamlines

ELI-Beamlines, Institute of Physics Prague, Czech Republic ST-4: Distributed Plasma Accelerator Landscape in Europe and Technical Progress towards Applications

This work is partially supported by the project Advanced research using high intensity laser produced photons and particles (CZ.02.1.01/0.0/16.019/0000789) from European Development Fund.

Date: 21.09.2022 | Page: 1

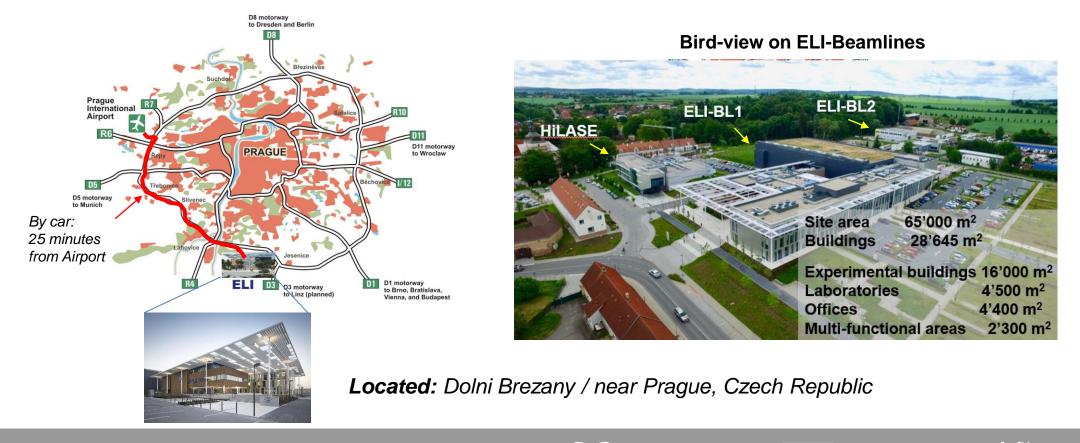
Content

- **o** ELI-Beamlines (Institute of Physics, CAS): user-oriented facility
- Laser systems and laser beamlines at ELI-Beamlines
- Laser-plasma acceleration at ELI-Beamlines: current status

* This work is partially supported by the project Advanced research using high intensity laser produced photons and particles (CZ.02.1.01/0.0/16.019/0000789) from European Development Fund.

• ELI-Beamlines (Institute of Physics, CAS): user-oriented facility

- Laser systems and laser beamlines at ELI-Beamlines
- Laser-plasma acceleration at ELI-Beamlines: current status



ELI-Beamlines on the Plasma Accelerator Landscape in Europe

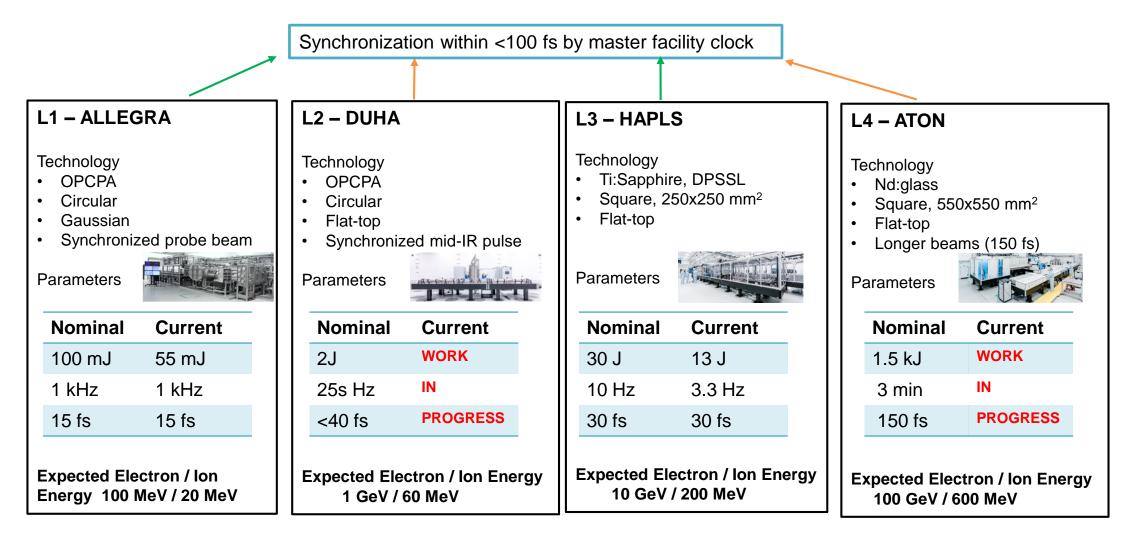
Date:

The ELI Beamlines Facility (IoP) is a leading European laser research centre and part the pan-European Research Infrastructure to support scientific excellence in Europe.

• ELI-Beamlines (IoP): user-oriented facility

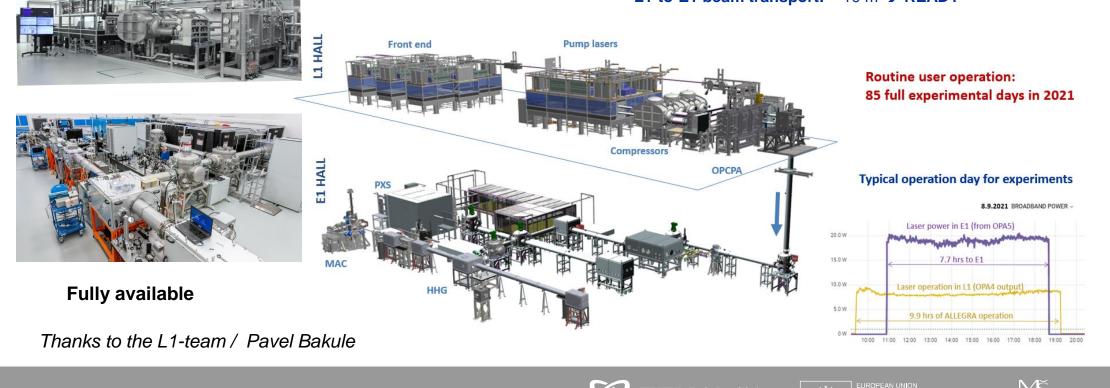
• Laser systems and laser beamlines at ELI-Beamlines

• Laser-plasma acceleration at ELI-Beamlines: current status



ELI-BEAMLINES LASERS for Laser-plasma Acceleration

L1-ALLEGRA laser system and laser beam transport at ELI-Beamlines

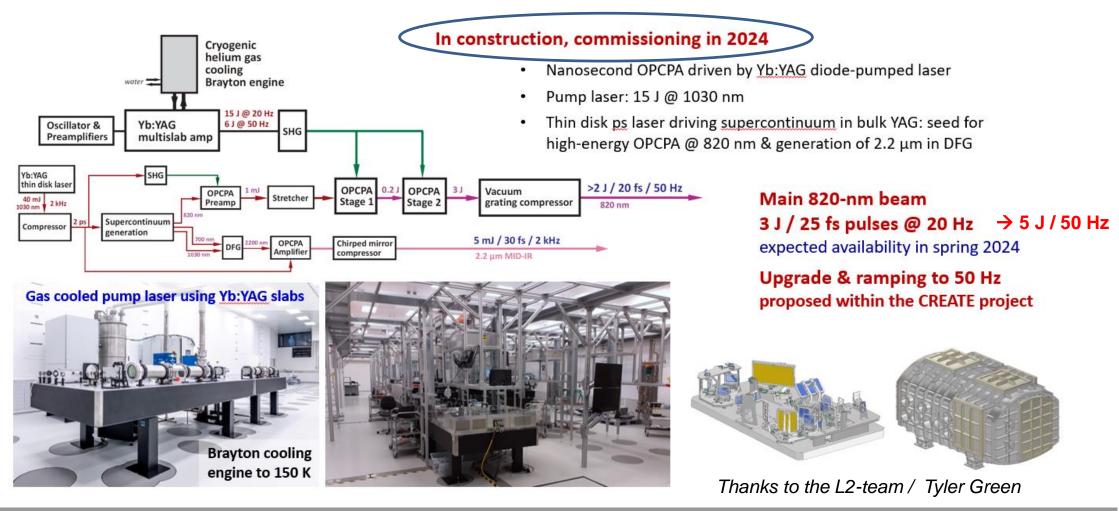

Optically synchronized 5 thin-disk commercial pump lasers Total available pump power @515 nm: >370 W @ 1 kHz

Date:

7 OPCPA stages based on BBO and LBO crystals Design: 100 mJ / <15 fsec (<u>plan:</u> end of 2023)

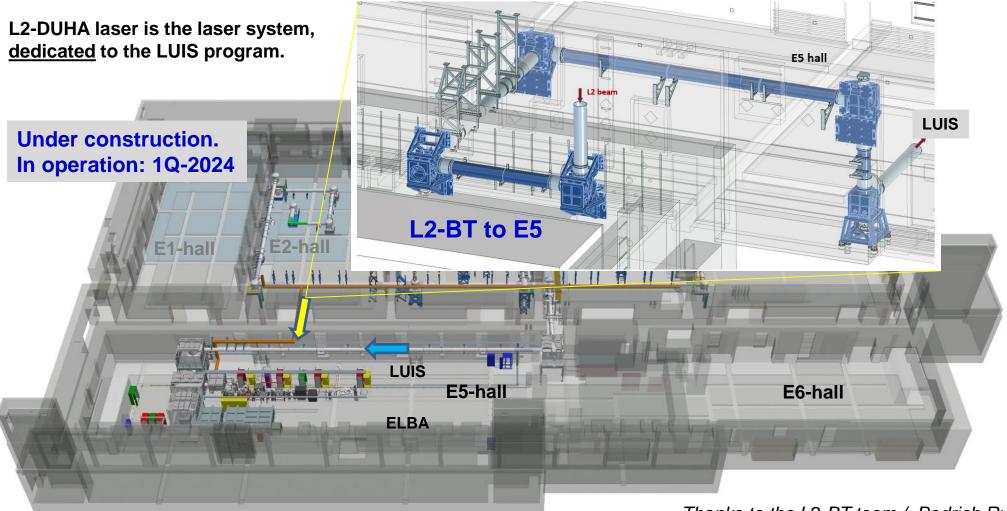
Current performance

>62 mJ OPCPA output (~16% pump-to-signal efficiency)
>55 mJ / 14.2 fs after compression
L1-to-E1 beam transport: ~ 10 m → READY



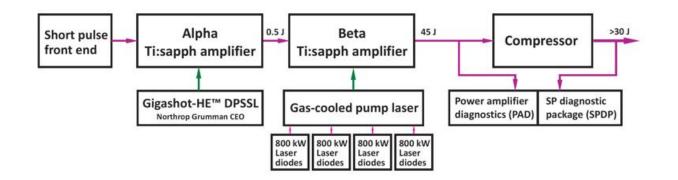
L2-DUHA laser system and laser beam transport at ELI-Beamlines

L2 laser is the dedicated system for the E5-LUIS development (compact LPA-based FEL)



L2-DUHA laser system and laser beam transport at **ELI-Beamlines**

Thanks to the L2-BT-team / Bedrich Rus

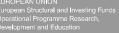


L3-HAPLS laser system and laser beam transport at ELI-Beamlines

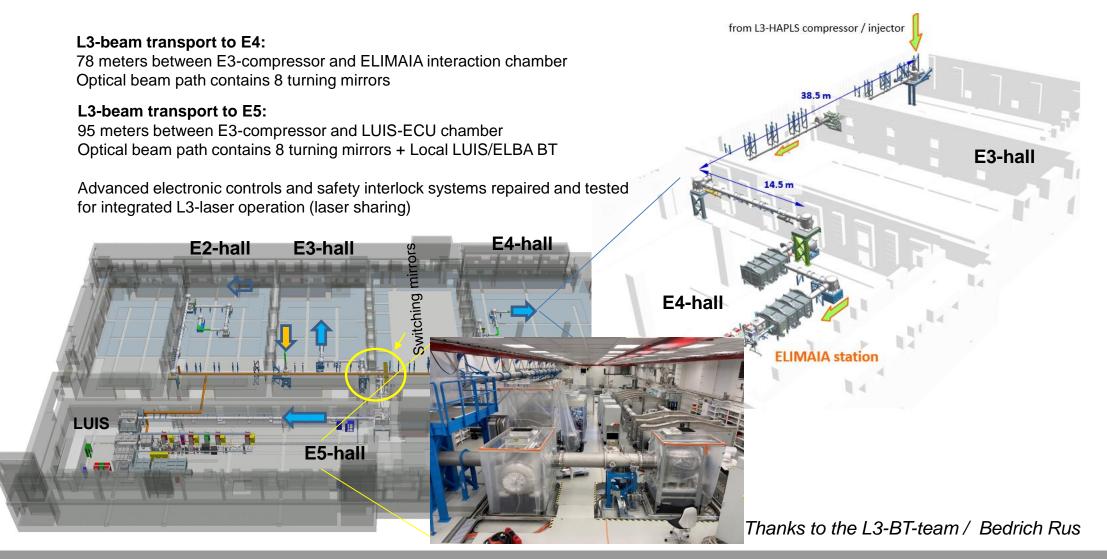
- Fully laser-diode-pumped laser
- <u>Ti:sapphire</u> short-pulse chain
- Advanced gas cooled power amplifiers

Design performance 1 PW / 10 Hz >30 J / <30 fs Current performance 0.5 PW / 3¹/₃ Hz 13.3 J / 27.3 fs

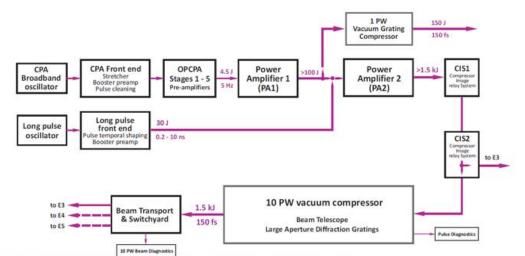
Performance ramping to design specs in progress


Page:

Thanks to the L3-team / Bedrich Rus



L3-HAPLS laser system and laser beam transport at ELI-Beamlines



L4-ATON: kJ CPA laser system to provide 10 PW peak power

Mixed Nd:glass providing spectral bandwidth >13 nm Direct CPA pulse compression to ≤150 fs

Advanced liquid cooling to ultimately achieve 1 shot /minute Nanosecond kJ pulses with programmable temporal shape 10PW compressor in final phase of completion

Design performance:

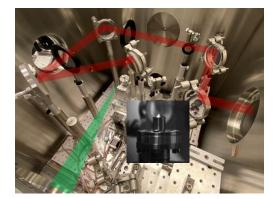
10 PW capability 1.5 kJ / 150 fs / 1 shot per min kJ ns pulse capability 1.5 kJ in 0.5 to 10 ns

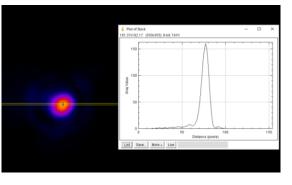

Thanks to the L4-team / Bedrich Rus

Date:

- ELI-Beamlines (IoP): user-oriented facility
- Laser systems and laser beamlines at ELI-Beamlines
- **o** Laser-plasma acceleration at ELI-Beamlines: current status

Laser-plasma acceleration using the L1-ALLEGRA laser system /1


ALFA (Allegra Laser For Acceleration)


- Up to 55 mJ at moment (nominal plan 100 mJ)
- 1 kHz laser repetition rate
- Laser pointing stability 1-2 µrad
- 16 fs after compressor
- Laser focal spot size (FWHM) 3.6 µm
- Laser intensity 6.1×10¹⁸ W/cm² (~1.5P_{critical})
- Normalized laser strength parameter $a_0 \sim 1.7$
- Laser-plasma interaction in the gas-jet

Setup with super-sonic nozzle

Laser focal spot

Thanks to the ALFA-team / Gabriele Grittani

Date:

Laser-plasma acceleration using the L1-ALLEGRA laser system /2

Manuscript is in preparation

Laser parameters on parabola (measured)

- Energy: 32 mJ
- Pulse duration: 16 fs
- Energy in the focal spot: 55%
- Repetition rate: 1 kHz

Measured electron beam parameters: Case (C)

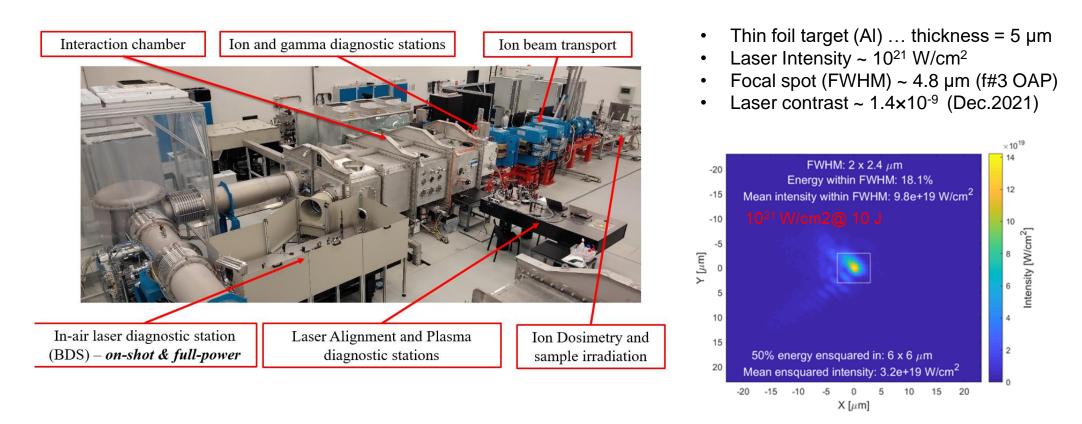
Electron beam energy ~ 40 MeV Estimated divergence FWHM ~ 5 mrad FWHM average energy spread ~ 30% Total charge ~ 10pC/pulse

Plasma density measurement:

- Interferometry ± 30%

Possible injection mechanism: self-injection PIC simulations – in progress

Thanks to the ALFA-team / Gabriele Grittani

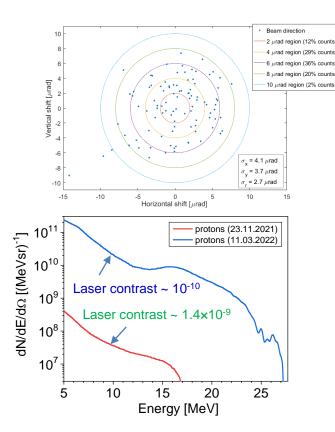


Laser-plasma acceleration using the L3-HAPLS laser system /1

Laser-proton acceleration (ELIMAIA / E4-Hall) → Basic commissioning of Ion Accelerator

Thanks to the ELIMAIA-team / Lorenzo Giuffrida

ELIMAIA commissioning using L3-10J laser



Laser-plasma acceleration using the L3-HAPLS laser system /2

Laser-proton acceleration (ELIMAIA / E4-Hall) → Basic commissioning of Ion Accelerator

Excellent pointing stability of the integrated system <u>at full-power</u>: L3-laser + Laser-Beam-Transport (~ 80m) + Target-Station

 \rightarrow 2.7 µrad at full power (10J-level) over 54 min of continuous operation (1Hz)

 \rightarrow Corresponds to shot-to-shot linear shift on ELIMAIA-target ~ 1µm

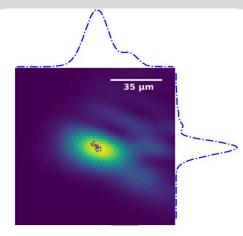
		Campaign: Dec.2021		
Laser energy	Joules	9.95 ± 0.025	\rightarrow	±0.3 %
Laser intensity (FWHM)	10 ²¹ W/cm ²	1.39 ± 0.01	\rightarrow	±0.8 %
Electron temperature T_{hot}	MeV	3.06 ± 0.12	\rightarrow	± 3.9 %
Maximum proton energy	MeV	14.48 ± 0.17	\rightarrow	± 1.2 %
Proton flux (> 3 MeV)	sr ⁻¹	$(6.1 \pm 0.03) \times 10^{10}$	\rightarrow	± 5.3 %
Pointing stability	µrad	2.7 (RMS)		

Thanks to the ELIMAIA-team / Lorenzo Giuffrida

ELIMAIA commissioning using L3-10J laser

Laser-plasma acceleration using the L3-HAPLS laser system /3

E5-LUIS (Phase0): high quality laser-driven electron accelerator for incoherent photon undulator radiation \rightarrow pre-commissioning results (L3 low-energy operation / mJ / 30fsec / 3Hz)

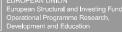

Thanks to the LUIS-team / A.Molodozhentsev

MAIN results of the 1st experimental campaign (1-week: May 2022)

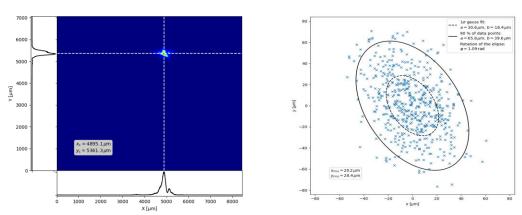
- Final verification of all technologies (control system, vacuum, safety)
- Final alignment of all components of the L3-to-E5/LUIS beam transport (5+4=9 flat mirrors + 2 switching mirrors + 1 OAP)
- Target: gas-cell
- Sapphire capillary gas-loading verification with Differential Pumping
- Focal spot measurement (FWHM) ~ 25 μm
- Measured laser pointing stability → RMS ~ 1.5 µrad
- Switching mirror test

L3 laser (low-energy) beam in focus (May 2022) with the pointing stability

LUIS-Phase0 setup is ready for LPA-commissioning (4Q-2022)


EuroNNAc Special Topics

Workshop


Laser-plasma acceleration using the L3-HAPLS laser system /4

E5-ELBA: all-optical GeV electron beam collider with PW laser

	(o) tem	Focal length	ength = 10 m ad-on Configuration formance Nominal L3 performance 30 J 30 fs 10 Hz 800 nm > 10 J > 2 GeV < 20%				
	Parameter	Current L3 Performance	Nominal L3 performance	-			
~	Laser energy before WS splitting	13 J	30 J				
Ë	Laser time duration	27 fs	30 fs				
LASER	Repetition Rate	3.3 Hz	10 Hz				
	Laser Wavelength	800 nm	800 nm				
	Laser Energy for LWFA	> 5 J	> 10 J				
N	Electron beam energy (mean of QME peak)	> 1 GeV	> 2 GeV				
Ř	Energy spread (FWHM)	< 20%	< 20%				
С Ш	Electron beam charge in QME peak	> 25 pC	> 40 pC				
ELECTRON	Electron beam divergence	< 2 mrad	< 2 mrad				
	Electron beam pointing stability	< 2 mrad	< 2 mrad				
CP LASER	Laser Energy for Collider Laser	> 5 J	> 10 J				
	Focal number	1.5	1.5				
	Focal length	375 mm	375 mm				
	Focal spot FWHM	< 2 µm	< 2 µm				
Ъ	Peak intensity	> 1.5 x 10 ²¹ W/cm ²	>3 x 10 ²¹ W/cm ²				
	Collision angle	0° and 40°	0° and 40°				

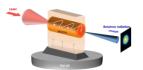
Thanks to the ELBA-team / Gabriele Grittani

Pre-commissioning results (L3 "mJ" operation / May 2022)

Measured laser pointing stability (RMS) ~ $2\div3 \mu$ rad Measured laser spot size in focus (FWHM) ~ 150 μ m

Page:

* * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 *
 * *
 * *
 * *



Laser-plasma acceleration using the L3-HAPLS laser system /5

E3-BETATRON: betatron radiation setup / gas-jet → Experimental Campaign: Plan → Nov-2022

Thanks to the BETATRON-team / U.Chaulagain

Electron beam energy	MeV	500 ÷ 1000			
Plasma density	10 ¹⁸ cm ⁻³	~ 10			
Laser pulse energy	Joules	10 (30)			
Laser pulse duration	fsec	30			
Normalized vector field amplitude (a_0)		~ 2.5			
Focal spot size (FWHM)	μm	~ 30 (f#25)			
Expected betatron parameters					
Betatron source size	μm	~ 5 µm			
Broadband critical energy	keV	20 ÷ 50			
Number of Photons / shot		10 ⁹ - 10 ¹⁰			
Photon beam divergence	mrad	< 20			

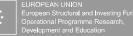
| Page:

of Physics * ' ch * of Sciences * ,

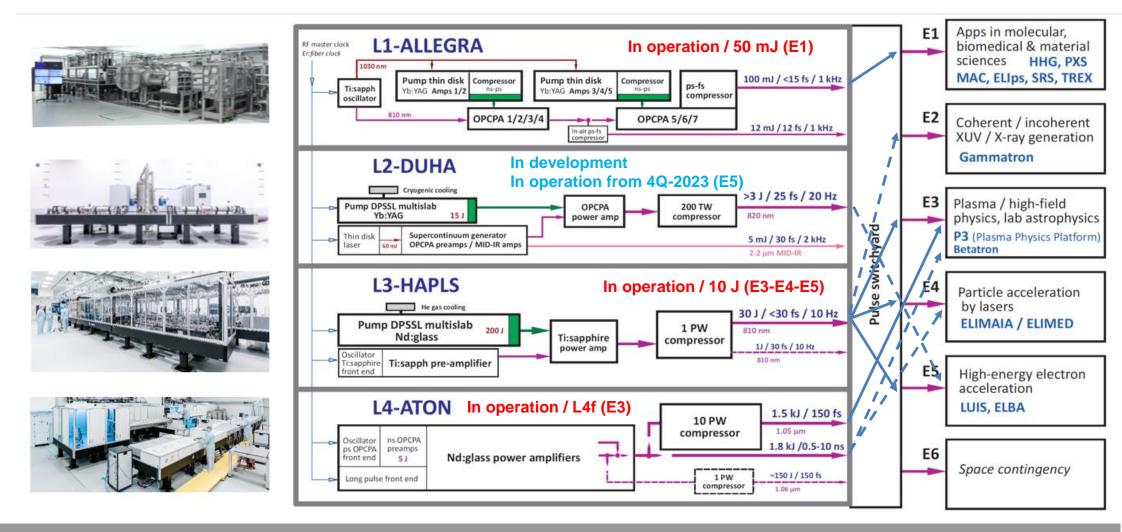
A very big thank you to colleagues who sent me slides, photos and thoughts including:

... in alphabetic order ...

Bedrich Rus Daniele Margarone Gabriele Grittani Jaroslav Nejdl Lorenzo Giuffrida Pavel Bakule Tyler Green Stefan Weber Uddhab Chaulagain


Thanks you for your attention !

Date:



Laser systems at ELI-Beamlines (overview)

beamlines

Experimental halls

