EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA

Ralph W. Aßmann, Coordinator (INFN and DESY) EuroNNAc Special Topics

Workshop, Elba, Italy

21 September 2022

\$


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

The EuPRAXIA Project

- First ever design of a plasma accelerator facility.
- Conceptual Design Report for a distributed research infrastructure funded by EU Horizon2020 program. Completed by 16+25 institutes.
- Challenges addressed by EuPRAXIA since 2015:
 - Can plasma accelerators produce usable electron beams?
 - For what can we use those beams while we increase the beam energy towards HEP and collider usages?
- Next phase consortium: > 50 institutes
- Preparatory Phase project: 1 Nov 2022 31 Oct 2026
- Start of 1st operation: 2028

600+ page CDR, 240 scientists contributed

European Plasma Research Accelerator with eXcellence In Applications

Versatile – Designed for Users in Multiple Science Fields

Topics of research: proteins, viruses, bacteria, cells, metals, semiconductors, superconductors, magnetic materials, organic molecules

R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

Delivers 10-100 Hz ultrashort pulses

- Electrons (0.1-5 GeV, 30 pC)
- Positrons
 (0.5-10 MeV, 10⁶)
- Positrons (GeV source)
- Lasers (100 J, 50 fs, 10-100 Hz)
- Betatron X rays (1-110 keV, 10¹⁰)
- FEL light (0.2-36 nm, 10⁹-10¹³)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

10 fm

100 fm

1 pm

isible ght	fire (400),000 bc), oil la	mp (10,000 bc,), gas lamp (50	0 bc), candle (5	500 bc)	

100 pm

10 pm

R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

10 nm

1 nm

100 nm

1 μm

10 fm

100 fm

1 pm

sible <i>fire (400,</i> ht	000 bc), oil la	amp (10,000 bc)	Anthonia Candle lig Leeuwen	e van Leeuwenl ght plus improv hoek discovere enomonads fro	hoek (1632-172 ved microscope ed the bacteria	

100 pm

10 pm

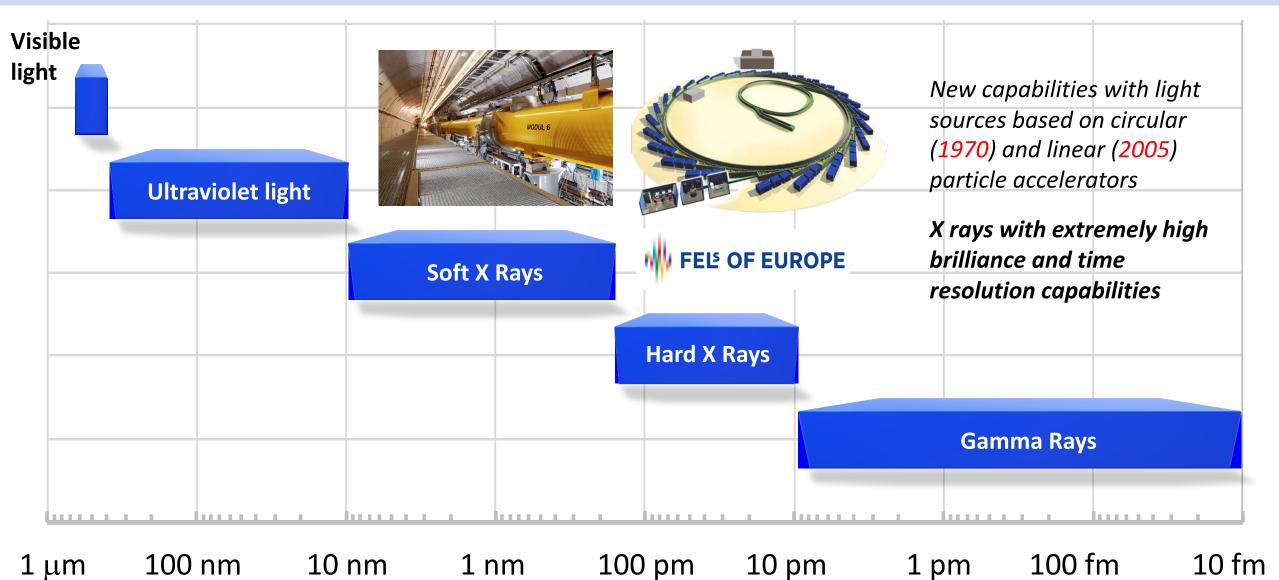
R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

10 nm

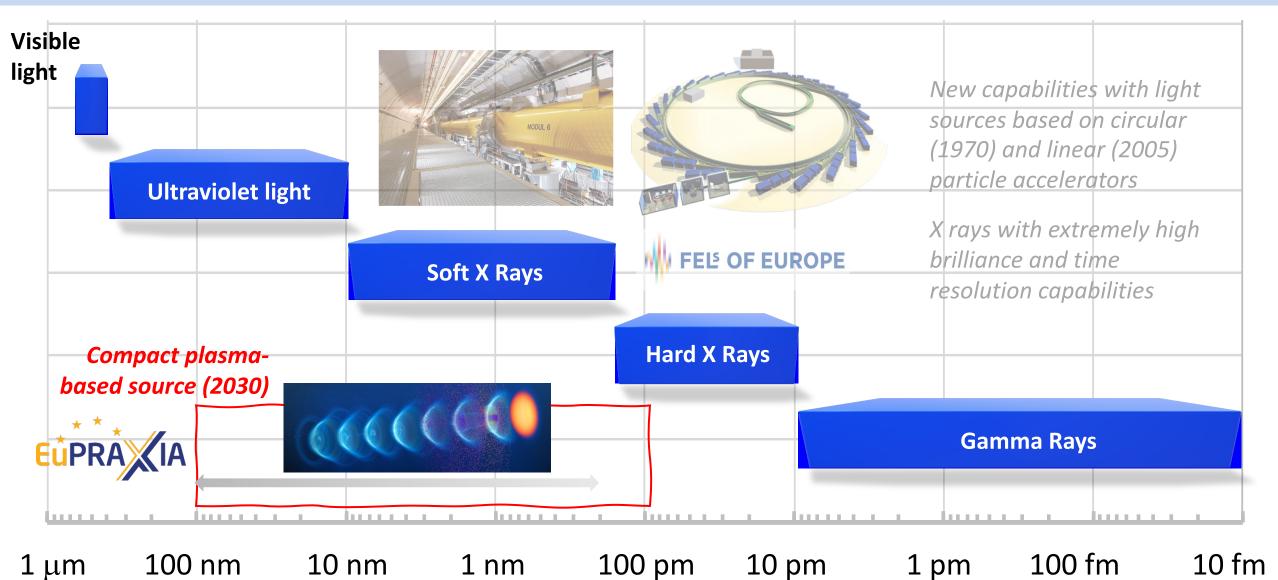
1 nm

100 nm

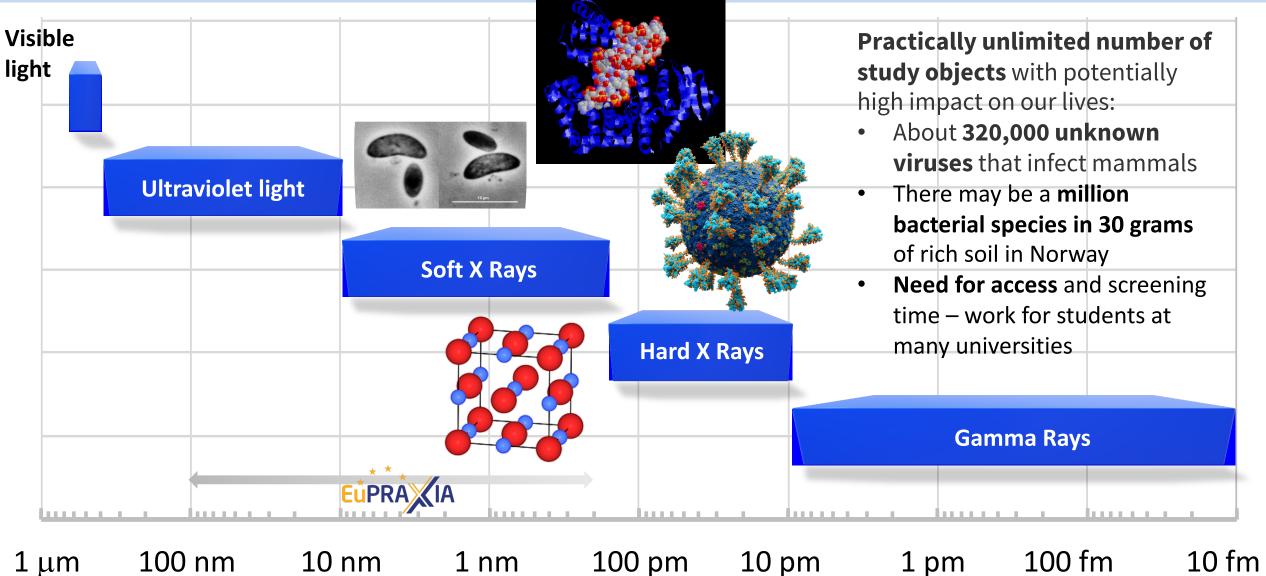
1 μm

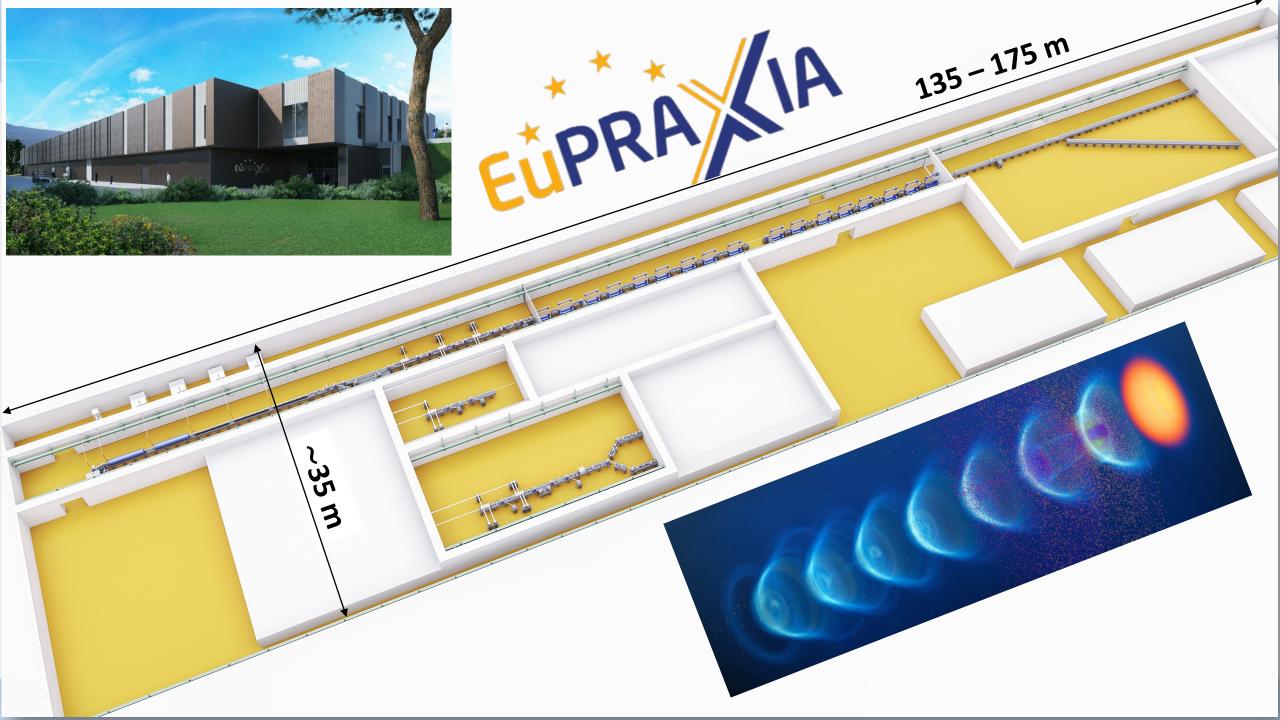


R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022



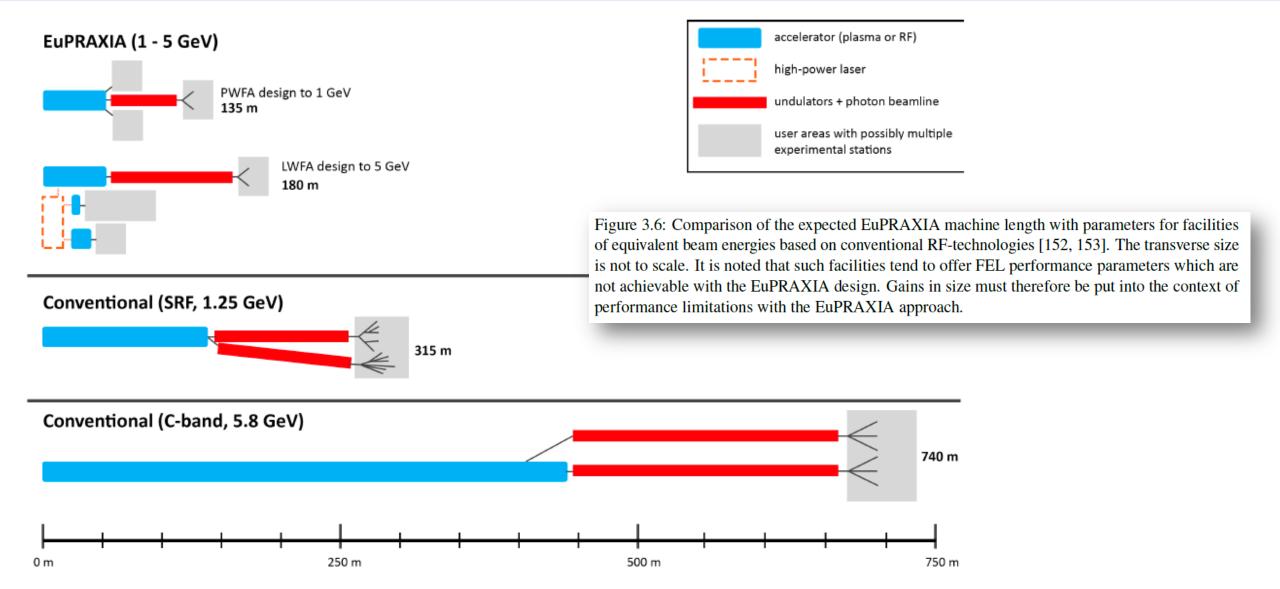
R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022





Why Additional Compact Light Sources?

at the moment less powerful than the big machines



EuPRAXIA Facility Size: COMPACT

R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

IMPORTANT: EuPRAXIA design includes lab space, RF injectors, transfer lines, undulator lines, shielding, ...

EMERGENCY OFF

EUPRAXIA

Schemes and their Building Blocks

Electron Driver: X Band RF Linac

1	Geome	Geometrical parameters			
• • •	a[mm]	2 ÷ 5			
1/2	b [mm]	9.828 ÷ 10.917			
	d [mm]	8,332 (2π/3 mode)			
	r [mm]	1			
••	t [mm]	2.5			

Figure 12.7: Basic EuPRAXIA X-band accelerating cell.

Accelerating section parameter	Symbol	Unit	Value
Average iris radius	$\langle a \rangle$	mm	3.2
Structure length	Ls	mm	500
Quality factor	Q		6400
Normalised group velocity	vg/c	%	2.5 - 0.77
Filling time	TF	ns	121
Number of cells	Nc	-	60
Average shunt impedance per unit length	$\langle R \rangle$	$M\Omega m^{-1}$	90
Effective shunt impedance per unit length	Rs	$M\Omega m^{-1}$	330

Table 12.6: Characteristics of the EuPRAXIA constant gradient accelerating section.

	Parameter	Unit	Valu	e
Ns	Number of sections		16 (2 modules x	8 sections)
D	RF power	MW	50 (at klystron ou	tput couplers)
P_k	available per klystron	IVI VV	40 (at section inp	out couplers)
			PWFA – LWFA	Ultimate
$\langle E_{acc} \rangle$	Max. average gradient	MV/m	57	80
PRF	Total RF power required	MW	79	155
AT	Number of blustrons		2	4
N _k	Number of klystrons		(reduced power)	(full power)

Table 12.7: Main parameters of the X-band linac RF system for different scenarios: injection in the plasma (LPWA - PWFA) and ultimate performance.

Laser Plasma Injector

Figure 23.4: Scheme 1 using a single-stage injector / accelerator generating an FEL-quality 5 GeV beam.

Laser-driven Plasma Accelerator Section

Figure 23.14: Scheme 2 combining a 150 MeV laser-plasma injector with an LPAS to 5 GeV.

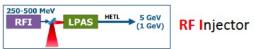
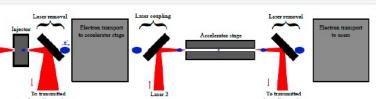


Figure 23.24: Scheme 3 combining a 500 MeV RF injector with an LPAS to 5 GeV.

Particle-driven Plasma Accelerator Section

Figure 23.40: Scheme 5 combining a 500 MeV RF injector with a PPAS to 1 GeV.

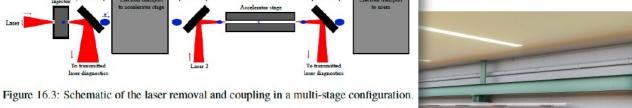
R. Assmann - PSI Colloquium - 20 May 2022


EUPRAXIA

MASTER

Laser-Driver Chain

Oscillator AMP: AMP1 AMP: AMP2 PHOTOCATHODE AND DIAGNOSTICS 19 (37) J, 0.8 µm ROPAGATIO AMP3 PROPAGATION COMPRESSION OPAGATIO COMPRESSION COMPRESSION 5(7)J, 30(20)fs, 15(30)J, 30(20)fs, 50(100)J, 60(50)fs, 20(100)Hz 20(100)Hz 20(100)Hz TO FOCUSING TO FOCUSING TO FOCUSING LASER1 LASER2 LASER3


Figure 10.1: Block diagram of the three laser driver chains.

LASER1 - Injector 150 MeV			
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	5	7
Max Total Output Energy	J	8.8	12.5
Shortest Pulse Duration	fs	30	20
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6
LASER2 - Injector 1 GeV			
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	15	30
Max Total Output Energy	J	18.8	37.5
Shortest Pulse Duration	fs	30	20
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6
LASER3 - Accelerator 5 GeV	2		
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	50	100
Max Total Output Energy	J	62.5	125
Shortest Pulse Duration	fs	60	50
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6

R. Assmann - PSI Colloquium - 20 May 2022

EUPRAXIA Laser Transport Lines: In- and Outcoupling

R. Assmann - PSI Colloquium - 20 May 2022

Electron Beam Transport Lines

EUPRAXIA Matching to Entrance of Undulator Section

 $\langle \beta_{x,y} \rangle$ [m]

5

5

5

5

5

Table 19.5: Electron beam matching parameters at the entrance of the undulator section in the case

of a short-wavelength design (undulator period: $\lambda_{\mu} = 20$ mm, module length: $L_{\mu} = 2$ m, distance

 β_x [m]

3.16

3.16

3.39

3.16

3.40

 β_{v} [m]

7.31

7.31

6.89

7.31

6.87

 α_x

-0.697

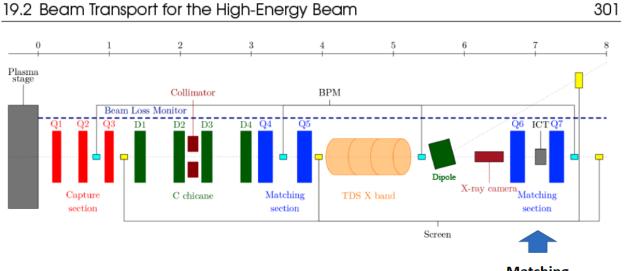
-0.698

-0.613

-0.698

-0.608

 α_{ν}


1.556

1.556

1.174

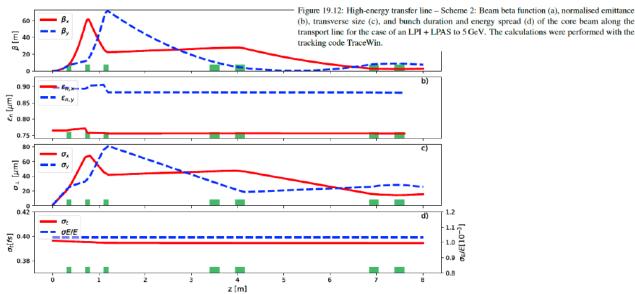
1.556

1.155

Matching

1.0 -0.9 6

0.8


R. Assmann - PSI Colloquium - 20 May 2022

EUPRAXIA

Beam Transport Solutions

Performance Simulations (end of transport) Start-to-end into undulator section, then semi-analytical

Name	E [GeV]	I _{peak} [kA]	σ _E /E [%]	(ε _n) [μm]	<β> [m]	<i>L</i> ^{2<i>cm</i>} [nm]	L _c ^{3 cm} [nm]
Scheme 2-5 GeV	4.96	2.63	0.052	0.58	5	20	61
Scheme 3-5 GeV	5.41	2.74	0.052	0.34	5	14	42
Scheme 3-1 GeV	1.09	1.75	0.103	0.44	4	140	430
Scheme 5-1 GeV	1.07	1.06	0.047	0.55	4	320	9 90

Table 24.3: Best slice values of the relevant parameters at the undulator entrance and expected cooperation lengths.

Name	E [GeV]	I _{peak} [kA]	σ_E/E [%]	ε _{n,x} [μm]	ε _{n.y} [μm]	σ _x [μm]	σ _y [µm]	ℓ _s [µm]
Scheme 2-5 GeV	4.98	2.93	0.108	0.53	0.59	0.87	0.92	0.11
Scheme 3-5 GeV	5.41	2.85	0.046	0.38	0.32	1.06	0.98	1.3
Scheme 5-1 GeV	1.07	1.95	0.098	0.67	0.59	0.83	0.98	0.9
Scheme 3-1 GeV	1.09	1.88	0.923	0.4	0.41	2.2	2.2	1.2

Scheme 1: LPI-5 GeV

LPAS-5 GeV

LPAS-1 GeV

LPAS-5 GeV

PPAS-1 GeV

between modules: 360 mm).

R. Assmann - PSI Colloquium - 20 May 2022

Scheme 2: LPI-150 MeV +

Scheme 3: RFI-500 MeV +

Scheme 3: RFI-500 MeV +

Scheme 5: RFI-500 MeV +

Table 24.1: Best slice values of the relevant parameters at the plasma exit

scheme 5 - 1 GeV

Figure 24.1: Magnetic unit cell of a system made up of an undulator as well as focussing and defocusing auadrupoles for the $\lambda_x = 3$ cm configuration, associated with the specified electron beams and superimposed with the longitudinal profiles of their Twiss β_x (solid red line) and β_y (dotted blue line) functions.

R. Assmann - PSI Colloquium - 20 May 2022

B₀ [T]

0.81

1.56

0.81

1.56

Κ

1.5

4.36

1.5

4.36

Performance Simulations (short period)

Start-to-end into undulator section, then semi-analytical

Name	λ_R [nm]	Pierce ρ [%]	L _{G,3d} [m]	Psat [GW]
Scheme 3-5 GeV	0.19	0.099	1.7	4.39
Scheme 2-5 GeV	0.3	0.084	2.74	1.75
Scheme 3-1 GeV	4.67	0.236	0.59	1.94
Scheme 5-1 GeV	4.86	0.188	0.63	1.29

Table 24.4: FEL semi-analytical results for the short-undulator-period configuration based on the best slice parameters of Table 24.3.

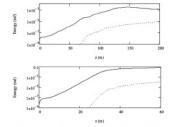


Figure 24.4: Growth of the SASE FEL energy per pulse of Scheme 2-5 GeV (top) and Scheme 3-5 GeV (bottom) beam distributions with the short-undulator-period solid line) and third (dotted line) harmonics are shown.

R. Assmann - PSI Colloquium - 20 May 2022

Name	Saturation length [m]	Linewidth [%]	Pulse dura- tion [fs]	Photons per pulse [10 ¹⁰]	Brightness $[\times 10^{30} \text{ s}^{-1} (\text{mm mrad})^{-2} (01\% \text{bw})^{-1}]$
Scheme 2-5 GeV	126	0.18	0.4	0.19	3.7
Scheme 3-5 GeV	38	0.23	2.0	3.2	40
Scheme 3-1 GeV	28	0.25	2.4	2.3	0.5
Scheme 5-1 GeV	16	0.59	2.0	1.3	0.08

Table 24.5: Results of the time-dependent simulations with longitudinal dynamics, obtained with PERSEO, for the short-undulator-period configuration.

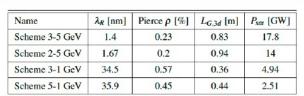


Table 24.6: FEL semi-analytical results for the long-undulator-period configuration based on the best slice parameters of Table 24.3.

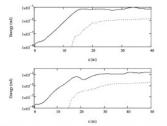


Figure 24.5: Growth of the SASE FEL energy per pulse of Scheme 5-1 GeV (top) and Scheme 3] GeV (bottom) beam distributions for the short-undulator-neriod configuration. The fundamental olid line) and third (dotted line)

R. Assmann - PSI Colloquium - 20 May 2022

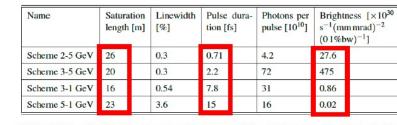
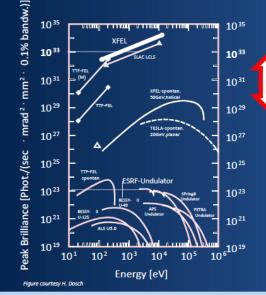
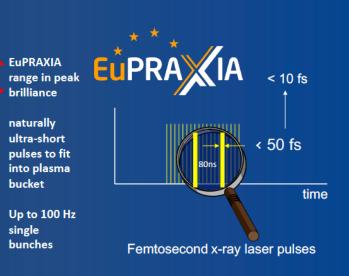




Table 24.7: Results of the time-dependent simulations with longitudinal dynamics, obtained with PERSEO, for the long-undulator-period configuration.

R. Assmann - PSI Colloquium - 20 May 2022

	1

EUPRAXIA

5

5

E [GeV]

 λ_R [nm]

0.22

1.65

5.5

41

 λ_u [mm]

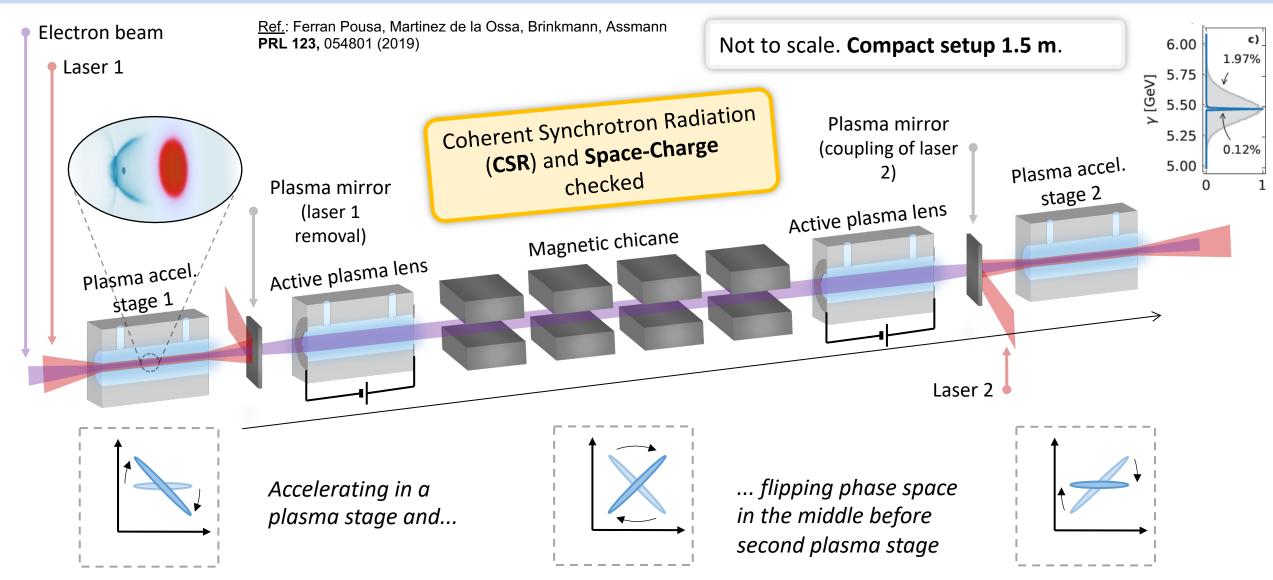
20

30

20

30

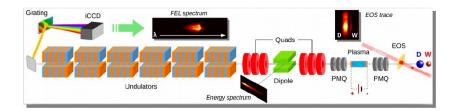
Table 24.2: Undulator configurations used for the FEL environment.

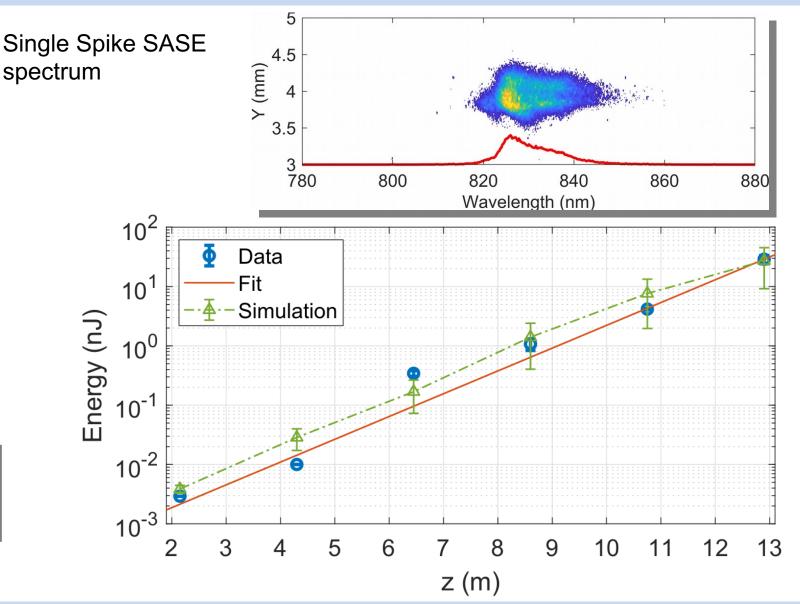

R. Assmann - PSI Colloquium - 20 May 2022

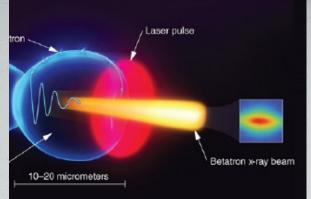
Performance Simulations (long period) Start-to-end into undulator section, then semi-analytical

Solving Energy Spread (Touschek Prize 2020)

E^t**PR**^A**XI**A




EuPRAXIA FEL: Feasibility Proof Achieved



Recent groundbreaking results in Frascati: **First FEL lasing from a beamdriven plasma accelerator**

Nature 605, 659–662 (2022)

Betatron X Rays: Design Compact Medical Imaging Line

Fully plasma-based beamline for generating betatron radiation as a **compact X-ray source for medical imaging and material analysis**. The user area is behind the wall on the right.

Added value

- It fits new locations, close to users, patients, bridges, ...
- Strengthening the European research area!

R. Assmann - EuroNNAc ST Workshop - 21 Sep 20

EuPRAXIA facility rendering picture

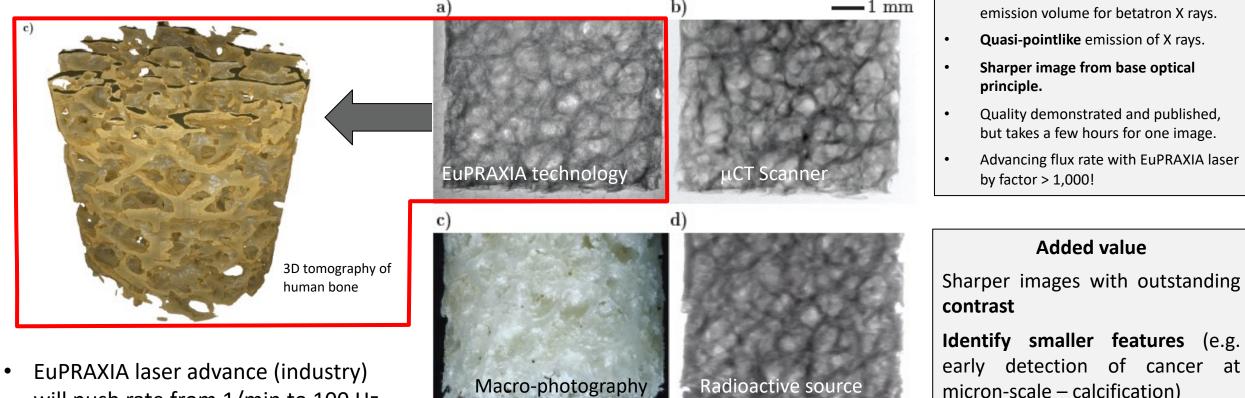
Also: applications **cultural heritage** (XAS technique), ...

Electron beam from this compact setup can be used on longer-term for **VHEE radiation therapy** involving FLASH and grid mini-beam concepts

E[•]**PRA**[×]IA **Betatron X Rays: Compact Medical Imaging**

Physics & Technology Background:

micron-scale – calcification)


organs during surgery)

Laser advance in EuPRAXIA \rightarrow fast

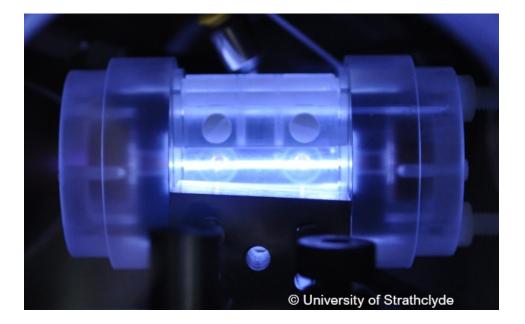
imaging (e.g. following moving

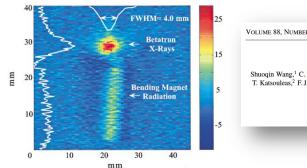
Small EuPRAXIA accelerator \rightarrow small

J.M. Cole et al, "Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone". Nature Scientific Reports 5, 13244 (2015)

- EuPRAXIA laser advance (industry) will push rate from 1/min to 100 Hz.
- Ultra-compact source of hard X rays \rightarrow exposing from various directions simultaneously is possible in upgrades

FOOD & HEALTH




Betatron X Ray Source in Numbers

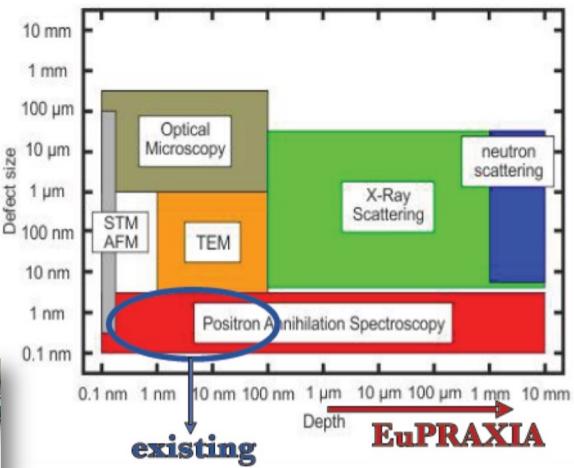
Property	Symbol	Characteristic Value	Implication
Hard photon energy	$E_{\rm crit}$	$> 25 \mathrm{keV}$	deeply penetrating
Small source size	r _β	$\sim \mu \mathrm{m}$	exhibits high spatial resolution
Small divergence	$\dot{\theta}$	$\sim 10 \mathrm{mRad}$	makes beamline
Short pulse	τ	$\sim 10\mathrm{fs}$	ultra-fast dynamics
Bright	$N_{\rm ph}$	$> 10^9$ (photons per shot)	single-shot imaging

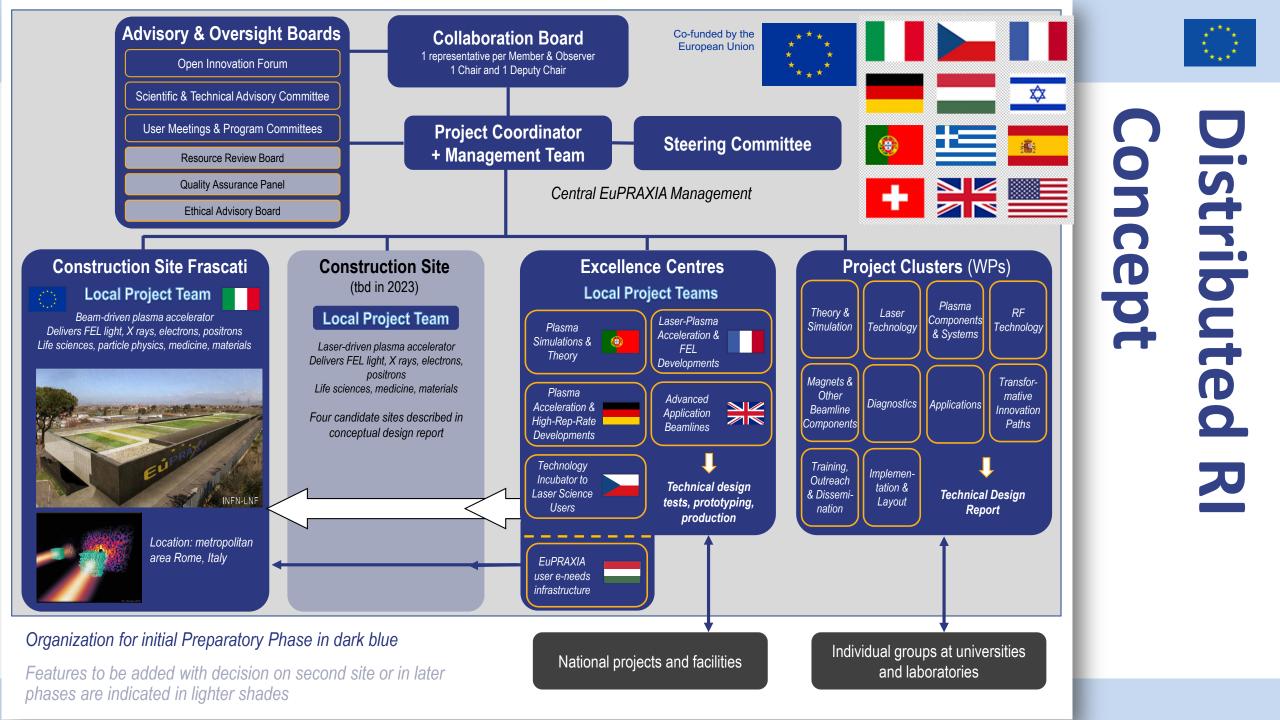
Table 24.8: Important properties of a plasma betatron-radiation source and their implications.

	VOLUME 88, NUMBER 13	PHYSICAL REVIEW LETTERS	1 April 2002		
-15	X-Ray Emission from Betatron Motion in a Plasma Wiggler				
5	T. Katsouleas, ² F. J. Decker, ³	n. ¹ B.E. Blue, ¹ E.S. Dodd, ¹ K. A. Marsh, ¹ W.B. Mori, ¹ C. Jos M.J. Hogan, ³ R. H. Iverson, ³ P. Raimondi, ³ D. Walz, ³ R. Sier ¹ University of California, Los Angeles, California 90095 iniversity of Southern California, Los Angeles, California 90089 Stanford Linear Accelerator Center, Stanford, California 94309			
-5		⁴ <i>CERN</i> , Switzerland (Received 8 October 2001; published 19 March 2002)			

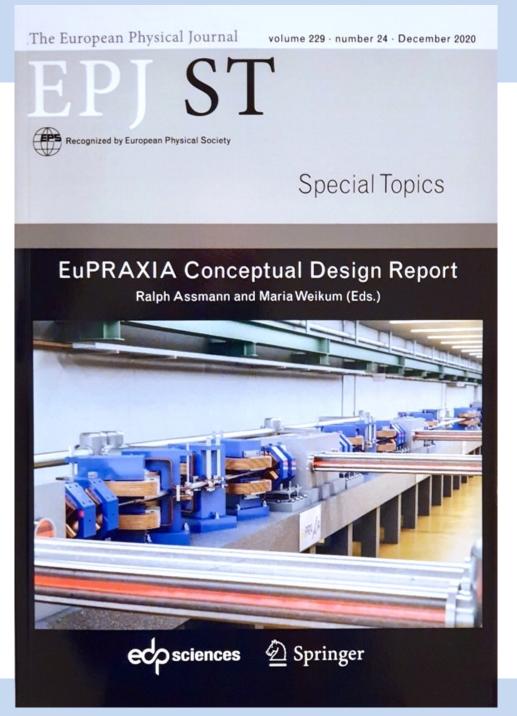
Laser power	10 TW	100 TW	1 PW	
Pulse duration τ (fs)	12	37	120	
Spot size w_0 (µm)	4	10	35	
Plasma density n_e (cm ⁻³)	5×10^{19}	5×10^{18}	5×10^{17}	
Plasma length (mm)	90×10^{-3}	3	90	
Peak electron energy $\gamma m_e c^2$ (MeV)	60	600	6×10^{3}	
Beam charge (nC)	0.1	0.4	1	
X-ray energy (keV)	0.6	8	110	
Source size (µm)	1.4	1.8	2.4	
Divergence θ (mrad)	70	7	0.7	
Undulator parameter α_{β}	7	9	12	
Peak X-ray brightness *	2×10^{21}	3×10^{23}	1×10^{26}	
Photon number	2×10^{8}	3×10^{9}	4×10^{10}	

Table 24.9: Scalings for betatron radiation from established scaling laws ([427]). The figures for 10 and 100 TW systems agree well with reported measurements.


* Units for peak X-ray brightness are photons/(mm²mrad²s¹01%BW).



- Electron beams from EuPRAXIA (also lower quality) can be used to produce positrons from a beam target.
- Relevant here are lower energy positrons. EuPRAXIA:
 - Energy: 0.5-10 MeV
 - Intensity per pulse: 10⁶ e⁺
- Those positrons penetrate deeper → new performance reach material science
- Detection of nano and sub-nano scale defects.



Sorry for the very fast run through.

For more details on our innovative concepts, applications and new solutions please refer to our 2020 Conceptual Design Report.

Can we move our idea and our dream into reality?

Can we build this new European Research Infrastructure?

600+ page CDR, 240 scientists contributed

The Next Level: ESFRI Roadmap Update 2021

- E uropean
- **S** trategy
- F orum on
- R esearch I nfrastructures
- https://roadmap2021.esfri.eu
- Roadmap projects selected after thorough review by ESFRI committee and approved by **EU** governments every few years
- 2006 2008 2012 2016 2018 - **2021**

EuPRAXIA facility rendering picture

The

ITIRF

CHALLENGES AND STRATEGY FOR THE

https://roadmap2021.esfri.eu

ESFRI PROJECTS

10	NAME	FULL NAME	TYPE LEGAL Status (y)	roadmap Entry (Y)	OPERATION Start (y)	INVESTMENT Cost (M€) (OPERATION COST (M€/Y)
9	EST	European Solar Telescope	single-sited	2016	2029*	200.0	12.0
PHYSICAL SCIENCES & ENGINEERING	ET	Einstein Telescope	single-sited	2021	2035*	1,912.0	37.0
	EuPRAXIA	European Plasma Research Accelerator with Excellence in Applications	distributed	2021	2028*	569.0	30.0
	KM3NeT 2.0	• EuPRAXIA is the	in 2021: Einstein Telescope (I only accelerator facility select first plasma accelerator facilit	ed in th	ne last !	5 years	3.0

- Two new entries in 2021: Einstein Telescope (ET) and EuPRAXIA •
- EuPRAXIA is the only accelerator facility selected in the last 5 years •
- EuPRAXIA is the first plasma accelerator facility ever included •

PHYSICAL SCIENCES & ENGINEERING

EuPRAXIA-PP (Preparatory Phase) Approved

Von: European Commission <<u>EC-NO-REPLY-GRANT-MANAGEMENT@nomail.ec.europa.eu</u>> Betreff: For Action - EuPRAXIA - 101079773 - GAP-101079773 - Evaluation results and start of grant preparation Datum: 12. April 2022 um 16:13:44 MESZ An: Ralph Assmann <ralph.assmann@Inf.infn.it>

Europa / Funding & Tenders Portal notification

Dear Madam/Sir,

Congratulations. Your proposal has reached the stage of Grant Agreement preparation.

To view the evaluation results and the instructions on how to provide additional information and data required for the preparation of your Grant Agreement, log on to the Funding & Tenders Portal > My Proposal(s) (<u>https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/myarea/proposals</u>) and click on Action > Follow-up.

Regards, Grant Management Services

Please do not reply to this message

This message has been automatically generated by the Grant Management Services of the European Commission with the following configuration:

To: Coordinator Contact **Cc:** Account Administrator, LEAR, Participant Contact and Coordinator Contact **Priority:**High You can change your preferences on email alerts in the "Notifications" area of your Funding & Tenders Portal Complemented by other projects:

EuPRAXIA Doctoral Network (approved)

(2023 – 2027)

2.6 M€ EU funding, 10 MSCA Fellows Coordinated by U Liverpool (C. Welsch) Start date: 1 Jan 2023

Others coming (miss no opportunity)

0.51 M€

Switzerland: 0.69 M€

- Prepares the implementation of the full RI in Europe
- Total project volume (including in-kind): 8.3 M€
 - EU funding: 2.49 M€ (plus in-kind)

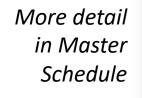
UK:

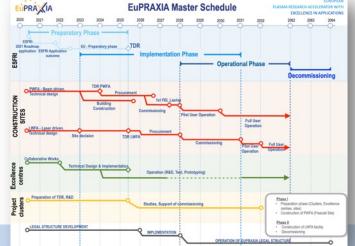
Additional funding

E^t**PRAX**IA

- Work organized in 16 Work Packages
- Project dates: 1 Nov 2022 31 Oct 2026
- Coordinator and location of headquarters: INFN
- 34 participating organizations from 12 countries
- Establish, amongst others, "Board of Financial Sponsors" with representatives of funding agencies. So far ~ 25% of total M&P funding (569 M€) secured. Site 1 financed.

EuPRAXIA Schedule





SUCCESS – ON TRACK

European World-Class RI on compact accelerators for the end of the 2020's to the beginning of the 2060's

EuPRAXIA-PP Consortium I

EuPRAXIA-PP Consortium II

EuPRAXIA-PP Consortium III

EuPRAXIA-PP Consortium IV

Complemented by institutes in EuPRAXIA ESFRI consortium: **additional 17 institutes** from France, Germany, Poland, Sweden, United Kingdom, China, Japan, United States . Russian institutes presently suspended.

PP Steering Committee: Leaders Behind EuPRAXIA

Governing Board (Decision-making body)

> Steering Committee

Scientific Advisory Board

Technical & Industrial Advisory Board

Board of Financial Sponsors WP1 - Coordination & Project Management R. Assmann, INFN & DESY M. Ferrario, INFN WP2 - Dissemination and Public Relations C. Welsch, U Liverpool S. Bertellii, INFN WP3 - Organization and Rules A. Specka, CNRS A. Ghigo, INFN WP4 - Financial & Legal Model. **Economic Impact** A. Falone, INFN **WP5** - User Strategy and Services F. Stellato, U Tor Vergata E. Principi, ELETTRA **WP6 - Membership Extension** Strategy B. Cros, CNRS A. Mostacci, U Sapienza

WP7 - E-Needs and Data Policy R. Fonseca, IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria, IST H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & **Systems** K. Cassou, CNRS J. Osterhoff, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to Industry L. Gizzi, CNR P. Crump, FBH

WP13 - Diagnostics A. Cianchi, U Tor Vergata R. Ischebeck, EPFL WP14 - Transformative Inno

WP14 - Transformative Innovation Paths

B. Hidding, U Strathclyde S. Karsch, LMU

WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN

WP16 - TDR EuPRAXIA Site 2

A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC

WP's on coordination & implementation as ESFRI RI (organization, legal model, financing, users) WPs on technical implementation and sites

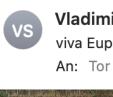
Headquarter and Site 1: EuPRAXIA@SPARClab

- Frascati`s future facility
- > 130 M€ invest funding
- Beam-driven plasma accelerator
- Europe`s most compact and most southern FEL
- The world`s most compact RF accelerator (X band with CERN)

Canteen

It Fits the Frascati Site

(also fits sites at a large university, hospital, company, ...)



Directorate building

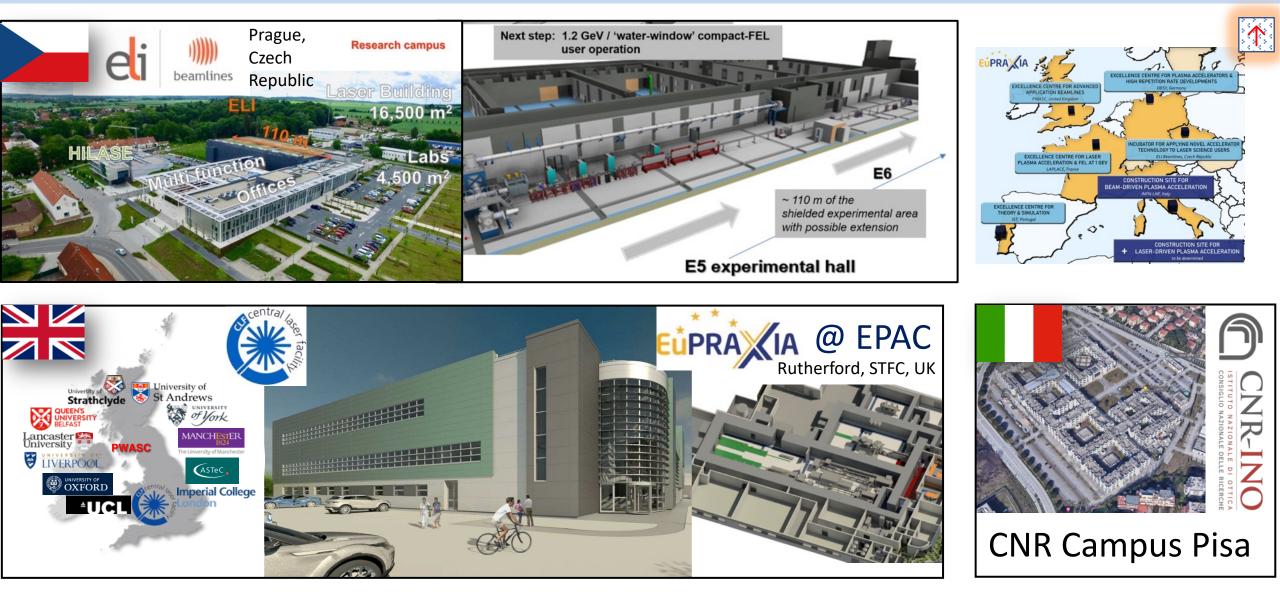
INFN central administration SPARClab (seeding with plasma acc.)

Vladimir Shiltsev viva Eupraxia! An: Tor Raubenheimer,

r, Ralph Assmann

15. September 2022 um 12:07

Tor Raubenheimer SLAC, Stanford University, USA

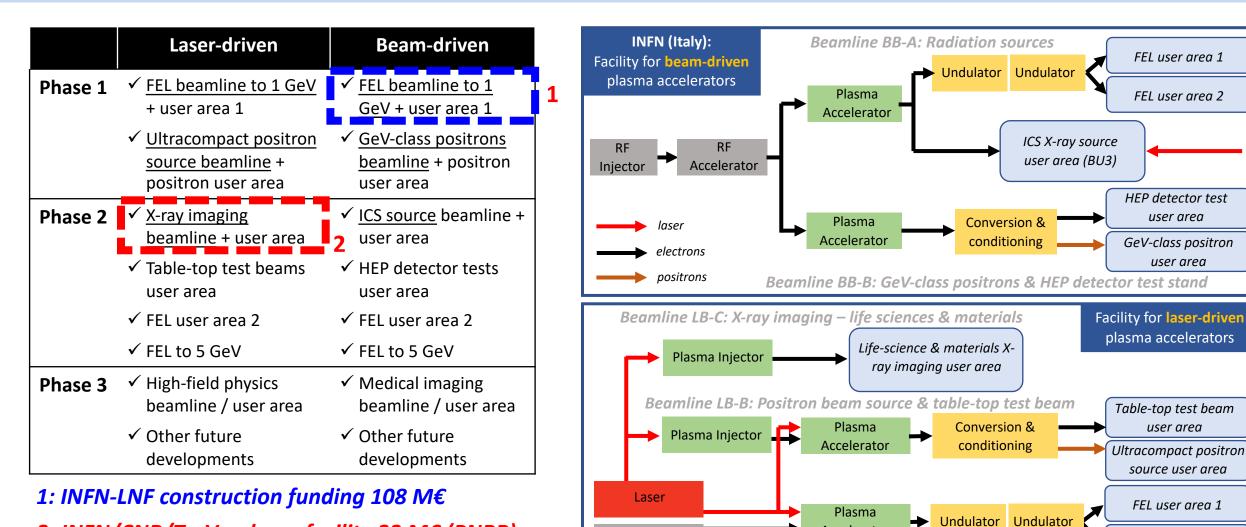

Vladimir Shiltsev, Fermilab National Laboratory, USA

R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

Candidate 2nd Sites from CDR

Selection Criteria 2nd EuPRAXIA Site

(from CDR, fulfilled by 1st Site LNF/INFN)


Legal/Political	Technical	Financial				
Compliance of host institution with EuPRAXIA Access Policy	Site provides sufficient space (about 175 m x 35 m)	Commitment to sustainability of EuPRAXIA (host lab covers site operation costs)				
Compliance of host institution with EuPRAXIA Open Innovation and Open Science Policy	Laboratory has infrastructures in one or several of RF accelerators, laser installations, user access.	Previous investments into local infrastructures of relevance for EuPRAXIA (leverage effect)				
Agreement of host institution with the long-term scientific agenda of EuPRAXIA	Site provides required services and facilities for support of external users, including E infrastructure	Existence of one or a mix of funding sources able to finance implementation of the site				
Laboratory has existing group requirements (laser, radio-prot	Note: approach reduces cost (pre-invest, and risks of cost-overun					

Phased Implementation of Construction Sites

FEL user area 2

RF Injector

Accelerator

Beamline LB-A: FEL

2: INFN/CNR/TorVer demo facility 22 M€ (PNRR)

Conclusion

- We consider it a major success that EuPRAXIA was selected for the 2021 update of the ESFRI Roadmap (besides Einstein Telescope the only project from physical sciences). We think it reflects on **quality and readiness** of our work and technology.
- EuPRAXIA is the first ever plasma accelerator project with a Conceptual Design Report.
- EuPRAXIA is the first ever plasma accelerator project on the ESFRI roadmap.
- Being on the ESFRI roadmap: Just approved EuPRAXIA-PP project will establish a fully European project, with European shareholders.
- Significant funding secured already (160 M€), ca. 25% of full implementation.
- We hope to make it an **example of European innovation**, bringing science to new applications and new areas. Following inspiration of particle physics detectors.
- Start-up mode for preparatory phase with 1,550 person months ... Two more countries joined: Spain and Greece. Important: Decision 2nd site.

DESIGNING THE FUTURE

The EuPRAXIA Consortium is preparing a conceptual design for the world's first multi-GeV plasma-based accelerator with industrial beam quality and dedicated user areas.

Thank Your where the other of the other of the other of the other other

INTERNATIONAL COLLABORATION

EuPRAXIA brings together a consortium of 16 laboratories and universities from 5 EU member states. The project, coordinated by DESY, is funded by the EU's Horizon 2020 programme. The consortium has been joined by 18 associated partners to make additional in-kind contributions.

The consortium holds open international events to strengthen collaborations, to connect to interested users from FEL's, high-energy physics, medicine and industry, and to assess the development of the project.

> Computer simulation of a laser wakefield

© Dr Jorge Vieira, Instituto Superior Tecnico, Lisbon

ADVANCED TECHNOLOGIES

The project is structured into 14 working groups dealing with simulations of high gradient laser plasma accelerator structures, design and optimization of lasers and electron beams, research into alternative and hybrid techniques, Free Electron Lasers (FEL), high-energy physics, and radiation source applications.

EuPRAXIA joins novel acceleration schemes with modern lasers, the latest correction technologies and largescale user areas. The consortium offers unique training opportunities for researchers in a multidisciplinary field. Image of a plasma cell. © DESY, Heiner Müller-Elsner

Particle accelerators have become powerful and widely used tools for industry, medicine and science. Today there are some 30,000 particle accelerators worldwide, all of them relying on well-established technologies.

The achievable energy of particles is often limited by practical boundaries on size and cost, for example, in hospitals and university laboratories, or available funding for very large scientific instruments at the energy frontier.

A new type of accelerator that uses plasma wakefields promises accelerating gradients as much as 1,000 times higher than conventional accelerators! This would allow much smaller machines for fundamental and applied research.

The goal of this project is to produce a conceptual design for the world's first multi-GeV plasma-based accelerator that can provide industrial beam quality into dedicated user areas.

OPENING NEW HORIZONS

Participants in the

EuPRAXIA Steering

Committee Meeting

Paris, February 2016

© Sylvaine Pieyre, LLR

The project will bridge the gap between successful proofof-principle experiments and ground-breaking, ultra-compact accelerators.

With a smaller size and improved efficiency, plasma-based technologies have the potential to revolutionize the world of particle accelerators multiplying their applications to medicine, industry and fundamental science.

Additional Slides

EuPRAXIA is Europe`s Most Recent and Most Innovative Particle Accelerator Project on ESFRI

R. Assmann - EuroNNAc ST Workshop - 21 Sep 2022

https://www.esfri.eu/latest-esfri-news/new-ris-roadmap-2021

The ESFRI Roadmap

ESFRI

- E uropean
- **S** trategy
- F orum on
- R esearch

nfrastructures

https://roadmap2021.esfri.eu

NEW PROJECTS FILLING GAPS In European RI capacities

The new entries in the Roadmap 2021 reinforce important areas of research in which insufficient capacities exist in Europe. They will also make essential contributions to fostering research relevant for some of the key EU priorities, such as health, the Green Deal, digital transition or strengthening the EU social pillar.

CHALLENGES AND Strategy for the Future

Why do we care? Projects selected after very thorough review of technical readiness, feasibility, user needs, strategic impact, alignment with EU's grand societal goals. ESFRI delegates from governments. Final roadmap approved by science ministers.

https://roadmap2021.esfri.eu

pag 18	🕨 ESFRI PROJI	ECTS								
	NAME	FULL NAME	ТҮРЕ		LEGAL Status (y)	roadmap Entry (Y)	OPERATION Start (y)	INVESTMENT Cost (M€)	OPERATION Cost (M€/Y)	
DIGIT	EBRAINS	European Brain ReseArch INfrastructureS	distribu	ted	AISBL, 2019	2021	2026*	323.8	19.8	
	SLICES	Scientific Large-scale Infrastructure for Comput Communication Experimental Studies	ting/ distribu	ted		2021	2024	137.7	6.5	
	SoBigData++	European Integrated Infrastructure for Social Mining and Big Data Analytics	distribu	ted		2021	2030*	130.5	5.0	
ENERGY	IFMIF-DONES	International Fusion Materials Irradiation Facility DEMO Oriented NEutron Source	- single-s	ited		2018	2033*	884.0	56.0	
	MARINERG-I	Marine Renewable Energy Research Infrastruct	ure distribu	ted		2021	2030*	8.9	0.9	
ENT	DANUBIUS-RI	International Centre for Advanced Studies on River-Sea Systems	distribu	ted	ERIC Step1	2016	2024*	202.5	23.9	
ENVIRONMENT	DiSSCo	Distributed System of Scientific Collections	distribu	ted		2018	2025*	420.3	12.1	
	eLTER RI	Integrated European Long-Term Ecosystem, crit and socio-ecological system Research Infrastru		ted		2018	2026*	150.0	50.0	

https://roadmap2021.esfri.eu

PAG 18	DESFRI PROJE	стя								
	NAME	FULL NAME	ТҮРЕ	LEGAL Status (y)	ROADMAP Entry (Y)	OPERATION Start (Y)	INVESTMENT Cost (M€)	OPERATION Cost (M€/Y)		
HEALTH & FOOD	EIRENE RI	Research Infrastructure for EnvIRonmental Exposure assessmeNt in Europe	distributed	l	2021	2031*	202.0	42.2		
	EMPHASIS	European Infrastructure for Multi-scale Plant Phenomics and Simulation	distributed	l	2016	2021	160.0	3.6		
	EU-IBISBA	European Industrial Biotechnology Innovation and Synthetic Biology Accelerator	distributed	l	2018	2025*	52.6	65.1		
<u> </u>	METROFOOD-RI	Infrastructure for promoting Metrology in Food	and Nutrition distributed	I	2018	2020	102.4	31.0		
⊣≥	E-RIHS	European Research Infrastructure for Heritage	Science distributed		2016	2025*	54.0	5.0		
A	EHRI	European Holocaust Research Infrastructure	distributed		2018	2025*	15.0	2.0		
Social & Cult	GGP	The Generations and Gender Programme	distributed		2021	2028*	18.2	1,1		
	GUIDE	Growing Up in Digital Europe: EuroCohort	distributed		2021	2032*	580.6	17.8		
	OPERAS	OPen scholarly communication in the Europea Research Area for Social Sciences and Humar		AISBL, 2019	2021	2029*	15.0	0.9		
	RESILIENCE	REligious Studies Infrastructure: tooLs, Innova Experts, conNections and Centres in Europe	tion, distributed		2021	2034*	318.4	9.5		

DAC

OPERATION

12.0

37.0

30.0

3.0

COST (M€/Y)

https://roadmap2021.esfri.eu

200.0

569.0

196.0

	ESFRI PROJECTS									
	NAME	FULL NAME	TYPE LEGAL Status (y)	roadmap Entry (Y)	OPERATION Start (Y)	INVESTMENT Cost (M€)				
	POT	Furencen Color Tolocopo	cingle cited	2016	2020*	200.0				
Z.	EST	European Solar Telescope	single-sited	2016	2029*	200.0				
£	ET	Einstein Telescope	single-sited	2021	2035*	1,912.0				
PHYSICAL SCIENCES & ENGINEERING	EuPRAXIA	European Plasma Research Accelerator with Excellence in Applications	distributed	2021	2028*	569.0				
	KM3NeT 2.0	EuPRAXIA is the second se	distributed les in 2021: Einstein Telescope (E ne only accelerator facility selecte ne first plasma accelerator facility	ed in th	ne last !	5 years				

PHYSICAL SCIENCES & ENGINEERING

EuPRAXIA surrounded by three telescopes...

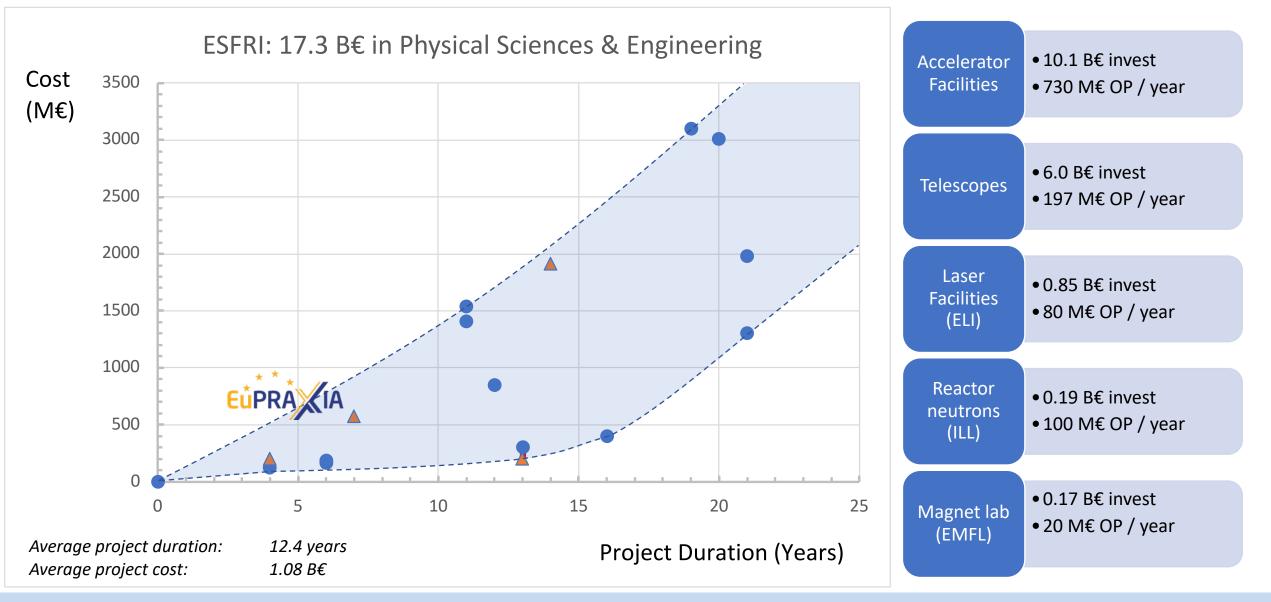
(Physical Sciences & Engineering)

PAG

19

PHYSICAL SCIENCES & ENGINEERING

NAME	FULL NAME	TYPE	LEGAL Status (y)	Roadmap Entry (Y)	OPERATION Start (Y)	INVESTMENT Cost (M€)	OPERATION Cost (M€/Y)
СТА	Cherenkov Telescope Array	single-sited	gGmbH, 2014	2008	2024*	400.0	20.0
ELI ERIC	Extreme Light Infrastructure	single-sited	ERIC, 2021	2006	2018	850.0	80.0
ELT	Extremely Large Telescope	single-sited	ESO#	2006	2027*	1,309.0	48.0
EMFL	European Magnetic Field Laboratory	distributed	AISBL, 2015	2008	2014	170.0	20.0
ESRF EBS	European Synchrotron Radiation Facility Extremely Brilliant Source	single-sited	ESRF#	2016	2020	128.0	82.0
European Spallation Source ERIC	European Spallation Source	single-sited	ERIC, 2015	2006	2026*	3,009.0	140.0
European XFEL	European X-Ray Free-Electron Laser Facility	single-sited	European XFEL#	2006	2017	1,540.0	137.0
FAIR	Facility for Antiproton and Ion Research	single-sited	GmbH, 2010	2006	2025*	NA	NA
HL-LHC	High-Luminosity Large Hadron Collider	single-sited	CERN#	2016	2027*	1,408.0	136.0
ILL	Institut Max von Laue - Paul Langevin	single-sited	ILL#	2006	2012	188.0	100.0
SKAO	Square Kilometre Array Observatory	single-sited	SKAO, 2011	2006	2027*	1,986.0	77.0
SPIRAL2	Système de Production d'Ions Radioactifs en Ligne de 2e génération	single-sited	GANIL	2006	2019	307.3	5.2


https://roadmap2021.esfri.eu

ESFRI LANDMARKS 💿

ESFRI Roadmap 2021

(Physical Sciences & Engineering – Projects Red Triangles)

