Beam driven wakefield characteristics probed by femtosecond-scale shadowgraphy

SUSANNE SCHÖBEL^{1,2}, RICHARD PAUSCH¹, YEN-YU CHANG¹, SÉBASTIEN CORDE³, JURJEN COUPERUS CABADAĞ¹, ALEXANDER DEBUS¹, HAO DING⁴, ANDREAS DÖPP⁴, MORITZ FÖRSTER⁴, MAX GILLJOHANN^{3,4}, FLORIAN HABERSTROH⁴, THOMAS HEINEMANN^{5,6}, BERNHARD HIDDING⁶, STEFAN KARSCH⁴, ALEXANDER KÖHLER¹, OLENA KONONENKO³, ALASTAIR NUTTER⁶, KLAUS STEINIGER¹, PATRICK UFER^{1,2}, ALBERTO MARTINEZ DE LA OSSA⁵, ULRICH SCHRAMM^{1,2}, and ARIE IRMAN¹

¹Helmholtz-Zentrum Dresden-Rossendorf, Germany
 ²Technische Universität Dresden, Germany
 ³LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, France
 ⁴Ludwig-Maximilians-Universität München, Germany
 ⁵Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
 ⁶University of Strathclyde, Glasgow, UK

Plasma based electron acceleration

Laser Wakefield Acceleration (LWFA)

T. Kurz - Realization of a compact plasma accelerator for high quality electron beams - Phd Thesis

- Laser lab size
- Lower phase velocity due to the refractive index of the plasma
 - Lower trapping threshold
 - Dephasing
- Higher field strengths + oscillating field
 - Hot background plasma
 - more fluctuations
- intrinsically short bunches (few fs)
 → high (>10kA) peak current

Plasma Wakefield Acceleration (PWFA)

T. Kurz - Realization of a compact plasma accelerator for high quality electron beams – Phd Thesis

- Requires relativistic electron driver (e.g. LINAC)
- Electron driver propagate with approx. the speed of light
 - Higher trapping threshold
 - No-dephasing
- Lower field strength + constant field
 - Cold background plasma
 - more stable wakefield
 - Acceleration of high brightness witness beams

Hybrid LWFA-PWFA staging

Complementary features of LWFA and PWFA: Combination of both schemes by driving PWFA with LWFA beam with the potential to reach:

- Higher brightness
- Enhanced stability
- > Higher energy
- → Talk by Stefan Karsch (Thursday, 10:15)
- → Poster by Patrick Ufer
- → Poster by Moritz Förster

B. Hidding et al., PRL 104, 195002 (2010)
A. Martinez de la Ossa et al., Phil. Trans. R. Soc. A 377: 20180175 (2019)
B. Hidding, et al., Appl. Sci. 2019, 9, 2626 (2019)
T. Kurz et al., Nat Commun 12, 2895 (2021)
L. Couperus Cadabag et al. Physical Review Research 3, 1042005 (2021)

J. Couperus Cadabag et al. Physical Review Research 3, L042005 (2021)

Susanne Schöbel

LPWFA setup @ HZDR

DRACO Laser 100 TW line

- 2.3J on target
- 30fs duration
- focused by F/20 off-axis parabola

- two similiar nozzles (3mm diameter) used as LWFA and PWFA stage
- Blocker foil (Kapton) avoids LWFA driver laser to propagate into PWFA stage
- Pre-ionization laser for PWFA stage from the back
- 10-fs duration optical probing perpendicular to wakefield evolution axis

LWFA Electron beam parameters

Peak energy:	328 <u>+</u> 29 MeV
Energy spread:	$44 \pm 18 \text{ MeV}$
FWHM bunch charge:	318 <u>+</u> 71 pC
Divergence (rms):	1.81 ± 0.17 mrad
FWHM duration:	14.8 ± 1.6 fs

G. Raj et al. Physical Review Research 2, 023123 (2020)

s.schoebel@hzdr.de

Plasma wave structures in two regimes

Pre-ionized Self-ionized [un] 20 [un] 20 0--200 -150-100-50-300 -250-200 -150-100-300-250 Ô -50 Ō distance [µm] distance $[\mu m]$ $n_{\rm n} = 8.00 \times 10^{18} \, {\rm cm}^3$ 10 $n_{\rm c} = 8.00 \times 10^{18} \, {\rm cm}^3$ z = 0.80 mm10 z = 0.80 mr°u/u n₂/n₀ [mא] x [μη] x 10-1 -10-1010 10 [GV/m] 200 [m/ 0 ² _200 ² 200 [mn] x [μη] X ₋₂₀₀ ш^ү -10-10_40 ζ [μm] -20 0 -80 -60-20 -80 -60 -40 0 ζ [μm]

- additional laser for pre-ionization prior to drive beam arrival → large plasma volume surrounding the wakefield
- Multiple stable cavities, just slowly dampening
- driver beam enters neutral gas, ionization due to the drivers space charge field → narrow plasma channel ~ same size as cavity

 Quick dampening and smearing out of the cavity structures

Cavity size vs. driver charge

- different shots for PWFA plasma density of $n_p = 3 \cdot 10^{18} \text{ cm}^{-3}$
- Size of the first cavity is elongated
- trailing are close to the linear plasma wavelength of λ_p = 19.3µm
- Corresponding spectrometer data: less energy of driver leads to more elongation

Cavity size vs. driver charge

- LWFA driver charge and energy connected via beam loading: less energy→ higher charge
- 3D PIConGPU Simulation: energy constant, different driver bunch charge: elongation depends on the charge
- deceleration of the driver: charge is hard to reconstruct from remaining bunch
- Energy peak position is preserved (see simulation) → via beam loading allows estimation of charge possible
- J. Couperus et al., Nature Communication 8, Article number: 487 (2017)
- J. Götzfried et al. Phys. Rev. X 10, 041015 (2020)
- M. Kirchen et al. Phys. Rev. Lett. 126, 174801 (2021)

Susanne Schöbel

s.schoebel@hzdr.de

EuroNNAc Special Topics Workshop, 18th-24th September 2022

Cavity size vs. driver charge

- Elongation of first cavity depends on bunch charge
- Cavities at different densities show: charge is dominant for the elongation (compared to e.g. bunch duration)

Cavity size vs. driver charge and propagation distance

- probing further downstream: less elongation
- remaining charge at probing position defines cavity size

Cavity size vs. driver charge and propagation distance

- probing further downstream: less elongation
- remaining charge at probing position defines cavity size

Probe measurements could be used to measure the driver **depletion** along the jet

Summary and Outlook

- Length of the first cavity correlates to charge/peak current of the driver beam
- Confirmed by 3D PIConGPU Simulation
- Driver bunch depletion (charge loss during propagation through the plasma) can be studied using this method
- Optical probing gives an inside view into PWFA, more things to explore e.g.:
 - Breakups
 - plasma wave through shock
 - first cavity shape

More information:

- → New J. Phys. 24 (2022) 083034
- → Poster Susanne Schöbel (Nr.)

Susanne Schöbel

s.schoebel@hzdr.de

EuroNNAc Special Topics Workshop, 18th-24th September 2022

MORITZSCHLIEB.DE