Stability of ionization-injection-based laser-plasma accelerators.

Experimental results on long-term stability at PLASMED X

PRAB 25 031301, 2022

S. Bohlen¹ & J. C. Wood¹, T. Brümmer¹, F. Grüner², C. A. Lindstrøm¹, M. Meisel^{1,2}, T. Staufer², R. D'Arcy¹, K. Põder¹ and J. Osterhoff¹

¹ Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany ² Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany

Bundesministerium für Bildung und Forschung

Overview of DESY Campus

Overview of DESY Campus

MPA4: Laser-Driven Plasmas & Applications

Fundamentals of LPAs and industrial and medical applications

MPA4: Laser-Driven Plasmas & Applications

Fundamentals of LPAs and industrial and medical applications

Stable electron beams with ionisation injection

Spectral stability at actual repetition rate of 2.5 Hz

Stable electron beams with ionisation injection

Electron peak energy decreases by 4.7 MeV, probably due to heating of gratings

Stable electron beams with ionisation injection

Average charge: 14.5 \pm 3.8 *pC*; constant over 8 hours, 100% injection

Learning from correlations

Electron energy as a function of density and energy

Self-stabilization at dephasing limit

Electron energy can be stabilized by operating close to dephasing limit

Scan of normalized laser potential

Self-stabilization at dephasing limit

Electron energy can be stabilized by operating close to dephasing limit

Learning from correlations

Electron charge as a function of density and energy

Plasma density strongly influences charge

Self-focusing significantly alters injection

Plasma density strongly influences charge

Fluctuations 3 times higher than expected from increase in particle number

Overlap inside the plasma possible

Information of the Thomson beam can be transported out of the plasma

Overlap inside the plasma possible

Information of the Thomson beam can be transported out of the plasma

Measurement of the electron energy evolution in the plasma

Thomson scattering enables non-invasive measurement of the electron energy

Energy of scattered photons: $E_{\gamma} \approx 4\gamma_e^2 * E_{Laser} * \Lambda^{[1]}$

[1] J. M. Krämer et. Al., Scientific Reports **8**: 1398 (2018)

In-situ measurements enable experimental study and optimization of processes inside plasma wakefield

Applications: X-Ray Fluorescence Imaging (XFI*).

Scanning of a body with X-rays to detect Gold Nanoparticles (GNPs)

Possible applications:

- Imaging of cancer cells
- Pharmacokinetics (tracking of medical drugs)

*Collaboration with University of Hamburg ^[1]Manohar et al. (2016), Sci. Rep., 6: 22079 ^[2] image from <u>www.bruker.com</u>: How XRF works Page 25

Precision-tunable narrowband x-ray source

New design using active-plasma lens recently accepted in Scientific Reports

T. Brümmer et al., Compact all-optical precision-tunable narrowband hard Compton X-ray source, accepted in Scientific Reports

Summary

Stability of LPAs using ionisation-injection.

- Robust system for generation of electron beams at 2.5 Hz and charge constant over run of 8 hours and 72.000 shots
- Energy stabilization by operation close to dephasing limit
- Fluctuations of charge predominantly from shot-to-shot fluctuations of gas density
- New diagnostic: in-situ measurement of longitudinal evolution of beam energy and local acceleration gradient
- Developed new concept for tunable narrowband collimated x-ray source

