EuroNNAc Special Topics Workshop Elba Island, Italy EUROPEAN NETWORK FOR NOVEL ACCELERATORS

Development and characterization of Plasma Targets for LWFA experiments at SPARC_LAB

Gemma Costa (LNF-INFN) gemma.costa@lnf.infn.it

Special topic Laser Technology and LWFA Results (e-, p+, ion)

On behalf of the SPARC_LAB collaboration

The main focus of the SPARC_LAB facility is the study and implementation of several plasma-based acceleration and radiation generation techniques

The FLAME high power laser

Laser-plasma test station @FLAME

Preformed plasma capillary

- Diameter: *mm scale*
- Length: *cm scale*
- H₂ pressure: *tens of mbar*
 - Discharge: 20 kV
 - Current: up to 2kA
 - Plasma density: 10¹⁸ cm⁻³
 - Repetition rate: 1 Hz
 - Vacuum: *10⁻⁷ mbar*

A Biagioni, et al., DOI: 10.1088/1748-0221/14/03/C03002

Discharge circuit ICCD camera Discharge circuit Spectro Current monitor Lcable w SCR switch High volta generato c Gas valve Hydrogen generator Valve controller Delay generato

SPARC

Capillary tests and laser parameters

Study and characterisation of different kinds of capillaries for LWFA schemes

damage preventing

3D-printed plastic holder + 5 sapphire pieces

- Oscillator: 80 MHz, 220 mW
- Probe: *10 mJ, 50 fs, 60 μm* focus FWHM

Experimental Setup

6

G Costa, et al., DOI: 10.1088/1742-6596/1596/1/012044

G Costa, et al., submitted

500 µm diameter - 1 inlet less uniform longitudinal density

Spectroscopic plasma density measurements

Stark Broadening effect:

measuring the spectral broadening of the emission lines of the hydrogen caused by the pressure.

$$n_e = 8.022 \times 10^{12} \left(\frac{\Delta \lambda}{\alpha}\right)^{\frac{3}{2}} cm^{-3}$$

- $\Delta \lambda = FWHM H_{\beta}$
- $H_{\alpha} = 656 \text{ nm}, H_{\beta} = 486 \text{ nm}$
- $\alpha = const.$

G Costa, et al., DOI: 10.1088/1361-6587/ac5477

G. Costa

Plasma density measurements by varying the peak current of the discharge curve -

G Costa, et al., DOI: 10.1088/1361-6587/ac5477

Interferometry for capillary discharge

Conclusions

FAST

- Test area for new laser-plasma interaction targets @ SPARC_LAB
- Overview of plasma target used for LWFA experiments
- Low power laser pulse guiding in a parabolic plasma profile
- Transverse and longitudinal plasma profiles diagnostic
- Ongoing tests for interferometric measurements in plasma capillaries

Thank you for the attention

On behalf of the SPARC_LAB collaboration

Backup slides

1. 1st cylindrical lens

- 2. 2nd cylindrical lens = 1st external channel wall
- 3. 3rd cylindrical lens = 1st internal channel wall
- 4. 3^{rd} cylindrical lens = 2^{nd} internal channel wall
- 5. 3rd cylindrical lens = 2nd external channel wall
- 6. 2nd cylindrical lens

Beam initial conditions

Final image plane

FG Bisesto, et al., DOI: 10.1088/1612-202X/ab6bd3

Laser alignment in the plasma channel

G. Costa