Laboratoire d'Optique Appliquée

Palaiseau - FRANCE http://loa.ensta.fr

ENSTA ENSTA

Carrier-envelope phase control of a kilohertz laser-wakefield accelerator

Lucas Rovige

PhD student with Jérôme Faure

20/09/2022

EUROPEAN NETWORK FOR NOVEL ACCELERATORS

2022 EuroNNAc Special Topics Workshop

Outline of the presentation

I. Introduction to LWFA with near-single cycle pulses

II. Predicted CEP effects

III. CEP-controlled injection: experiments and simulations

Accelerating electrons in wakefields

Principle : Tajima & Dawson, PRL 1979

loa

Avantages :

- Extreme fields: 1 MeV / 10 µm
 → Compact accelerator
- fs bunch $< \lambda_p/4$

Scaling laws : toward kHz lasers

Average laser power ≈ constant

Laser pulse has to be resonant with plasma wave: $R \approx \lambda_p/2$, $c\tau \approx \lambda_p/2$

Laser energy scaling
$$E_L \propto \tau^3 \propto \lambda_p^3$$
 Electron energy gain $\Delta E \propto \tau^2 \propto \lambda_p^2$
 $30 \text{ fs} \rightarrow 1 \text{ J} \rightarrow 100 \text{ MeV-1 GeV}$
 $3 \text{ fs} \rightarrow 1 \text{ mJ} \rightarrow 1-10 \text{ MeV}$ and high density n_e>10²⁰ cm⁻³

Near-single cycle pulse!

Lu et al., PRSTAB 10, 0613001 (2007)

Beaurepaire et al., NJP **16**, 023023 (2014)

Motivations for high-repetition rate

- Statistics in experiments (source and applications)
- Active feedback loops
- Electrons at 1-20 MeV : fit several applications

(Ta Phuoc, Nat. Phot. 2012)

Motivations for high-repetition rate

- Statistics in experiments (source and applications)
- Active feedback loops
- Electrons at 1-20 MeV : fit several applications

Our Goals: source for applications

- Operate at kHz (with only <10 mJ)
- Accelerate electrons to few MeV
- High beam quality
- Sub-10 fs duration

(Ta Phuoc, Nat. Phot. 2012)

1 TeraWatt few-cycle kHz laser system

M. Ouillé et al., Light: Science & Applications, **9**, 47 (2020) F. Böhle et al., Laser Physics Letters, **11**, 9 (2014)

Plan

I. Introduction to LWFA with near-single cycle pulses

II. Predicted CEP effects

III. CEP-controlled injection: experiments and simulations

CEP and ponderomotive force

CEP = **C**arrier-**E**nveloppe **P**hase

loa

Many cycles = ponderomotive force

- Only the envelope plays a role
- Polarization independent
- Axial symmetry

CEP and ponderomotive force

CEP = **C**arrier-**E**nveloppe **P**hase

Quasi-identical

Many cycles = ponderomotive force

- Only the envelope plays a role
- Polarization independent
- Axial symmetry

 $CEP = \pi/2$

Different

Single cycle = cannot average on the optical cycle !

- Necessary to consider the waveform of the electric field
- Broken symmetry

CEP slippage

In the plasma :

 $v_{\varphi} > v_g$

The CEP slips by 2π after propagation of :

$$L_{2\pi} = \lambda_0 \frac{c}{v_{\varphi} - v_g} \simeq \lambda_0 \frac{n_c}{n_e}$$

CEP and bubble asymmetry

Nerush et Kostyukov, PRL (2009) : CEP-dependent asymmetry in the plasma response

loa

J. Huijts et al. Phys. of Plasma (2021)

The wakefield oscillates with the shifting CEP

Other recent work on CEP (circular polarization) : F. Salehi *et al*, PRX, (2021)

P	lan
	I. Introduction to LWFA with near-single cycle pulses
	II. Predicted CEP effects
	III. CEP-controlled injection: experiments and simulations

Experimental set-up

Experimental set-up

- Laser CEP-controlled
- 300 mrad RMS stability
 (30 mrad on 200 averaged shots)

1 exp. point = 20 x 200 = **4000 shots**

1 exp. point = 20 x 200 = **4000 shots**

loa

J. Huijts, L. Rovige *et al.* Physical Review X (2022)

J. Huijts, L. Rovige et al. Physical Review X (2022)

Experiment : CEP and polarization control

• Polarization control by adding a $\lambda/2$ -waveplate

Experiment : CEP and polarization control

• Polarization control by adding a $\lambda/2$ -waveplate

(2022)

Charge and energy dependence on CEP

• 30% charge variation with CEP

• No clear effect on the energy spectrum

loa

Rovige et al. arXiv:2205.08374 (2022)

PIC simulation : wake oscillation with CEP

PIC simulation : wake oscillation with CEP

PIC simulations : tracking of the sub-bunches

- Bunches perform a Betatron oscillation and then oscillate in the laser field
- Final transverse momentum associated to initial transverse momentum

PIC simulations : pointing variations with CEP

Experimental behavior well reproduced by the simulations

Conclusion and perspectives on CEP

- First experimental observation of CEP effect in LWFA
- Control on the injection through CEP
- The micro-bunches have really interesting properties:
 - sub-fs duration
 - emittance of a bunch ~ 50 nm ! (in sims)
 - collective betatron oscillation
- Recently proposed idea in: [Kim et al, Phys. Rev. Lett. 127, 164801 2021]:
 - Use single-cycle as injector
 - Combined with longer driver pulse

From : [Kim et al, Phys. Rev. Lett. 127, 164801 –2021]

The team

kHz laser-plasma source

J. Huijts, J. Monzac, A. Vernier, I. Andriyash, J. Faure

Salle Noire Laser system: M. Ouillé, J. Kaur, Z. Cheng, R. Lopez-Martens

Gas jet fabrication:

V. Tomkus, V. Girdauskas, G. Raciukaitis, J. Dudutis, V. Stankevic, P. Gecys

Supplementary

CEP effects in Helium

CEP and asymmetric laser spot

CEP and ionization injection in argon

Tracking of a micro-bunch

- Different CEP = shifted injection time for the micro-bunch
- Different initial conditions → different transverse momenta
- Similar longitudinal momenta

loa

Micro-bunch injection

CEP effects : what is expected

Ionization-injection case

Lifschitz & Malka, NJP 14 053045 (2012)

CEP effects : what is expected

Self-injection case

Asymetry in self-injection leads to CEP-dependent pointing

Perspectives : 8-10 MeV at kHz!

Soon in $H_2 = 15$ MeV possible ?

8-10 MeV

P100 He

New design : shocked micro-jet

-100

0

x (μm)

100

200

300

-200

Why use a shock ?

- High density region, possibly well above the tip of the nozzle
 → avoid damage
- Creates a density gradient:
 useful for triggering injection
 → stabilize the beam

OSS = **O**ne-**S**ided **S**hock

L. Rovige et al, RSI 92, 083302 (2021)

5h hands-off continuous operation

