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Introduction

Intense ultrashort pulsed lasers are currently mainly based on Titanium-Sapphire (Ti:Sa) technology which, however, requires frequency-doubled Neodymium (Nd) lasers as optical pumping
sources. The use of these ultrashort pulse lasers is currently limited in average power, not exceeding ~ 100 Watts. This limitation is essentially due to the optical pumping technology, based on
flash lamps and this inherent high thermal load and low efficiency. Architectures based on Tm-doped gain media (Tm: YLF, Tm: YAG and Tm: Lu,03;) have recently been proposed for the potential
advantages of energy efficiency and scalability at high average power and emission around 2 um [2].

We report on the conceptual design of an amplification chain based on Tm-doped gain medium [1], for solid-state, ultra-short CPA laser pulses, aiming at high-efficiency, kHz repetition rate, high
peak power and kW-scale average power, with emission wavelength around 2 pm. A multi-pass configuration is presented, with three stages, with 4% doped Tm:Lu,0O4 ceramic thin discs, lateral

(edge) [3] pumping (EPDL) scheme with an output energy of >500mJ from an input energy pulse of 1 mJ. The modelling of multipass extraction (at the 1kHz rep rate) and thermal load is also
studied and discussed.

Overall architecture and amplifier(s) design

* 3 amplification stages, each based on 2 active media with a 4f multipass scheme. Active mirror configuration with CW lateral pumping (EPDL), with cooling on both front and rear sides.
®* Selected doping: 4% atomic
®* Pulse energy (each stage). 1mJ from front-end, >5 mJ seeding 1th amp, >60mJ from 2nd amp, >500mJ from 3rd amp Detail of the gain media structure
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Thermal Management

* FEM simulation model developed (using Mathematica) to study the heat distribution in the active medium
* Different longitudinal power distribution to optimize the heat dissipation were tested
[

A maximum temperature of ~300° C (for the third stage) is expected.

HEAT DISTRIBUTION MODEL LONGITUDINAL POWER DISTRIBUTION SIMULATIONS

Studied A(z) cases:

/Heat Trasfer Equation (numerically solved): For preliminary results an idealized SuperGaussian source Q(X,y,z) has been

T(z) at x=y=0 in stationary conditions:
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The functions A(z) and B(t) may taken into account the longitudinal power z (mm) z (mm)

distribution and the duty cycle respectively. Different Longitudinal heat

Side cooling (Air) R _ I _ _
distribution models can be used to model different longitudinal doping profiles:

Active medium parameters: h=150W/(m2K)

T(t) at x=y=0 (source isturnon att=0) Trasverse temperature distribution

Density: 9.33 g/cm?®
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With a parabolic heat distribution we decrease the density power on the inner disk regions, which are the most difficult to be cooled due the low thermal conductivity.
In case of a single cooled face, however, it is convenient to adopt an exponential-like distribution.

| Active medium

Conclusions

. Conceptual design of a 500mJ, 1kHz amplification chain based on Tm:Lu203 carried out;
. Optical amplification simulations predict an extraction efficiency up to ~10% so far,
- Thermal management simulations show the need for longitudinal power distribution and both rear and front cooling to reduce maximum temperature/gradient.
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