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~ When a long (L > 4,) particle bunch propagates in plasma, it is subject to the self- Simulation results obtained at MareNostrum (Barcelona
modulation instability (SMI) Supercomputing Center) and LUMI (LUMI consortium).

- The SMI typically modulates the bunch radius at the plasma wavelength 1, This poster presentation has received support from the
European Union’s Horizon 2020 Research and Innovation

> Self-modulation can be seeded (SSM) to avoid instability and to generate high- programme under Grant Agreement No 101004730.
amplitude wakefields, as in the case of the AWAKE experiment [1]

How does the growth rate depend on the seed frequency? What determines the growth regime?

Approach: - ~ > three growth regimes can be identified
> introduce an initial sinusoidal radius perturbation at k: th ~ each regime is associated with a phase shift between o, and the plasma
. e growth rate eventually 5y
Ao,(6) o sin(k ¢) peaks at k,, as expected response (r F, )/o,
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> damping [I11(z) < 1]is possible for 1
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* For the theoretical curve, L and o, are scaled for each k such that the

same number of wavelengths is considered in the analysis ( ~ 44 /1],).

Application: wakefield amplitude optimization

Theory Parameters . Average amplitude of longitudinal wakefield
ny =2 - 10" cm™ > a plasma density step has been 0.8

Evolution of radius perturbation: _ 4 sroposed to solve the problem of a — . .
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assuming: M,=50m, = k;'/k; "' ~ 1500
> flat-top transverse profile with radius r;,

> small perturbation: Simulation |
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Bunch radius and plasma response after the step

> effect of the density step on the
phase shift is consistent with
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First-ord lution of r (valid forz < k; 1):
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e these growth regimes are associated with a characteristic phase shift between o, and the plasma response

These results help us understand why it is possible to control the growth of the SMI with plasma density steps
® a single density step early in the SMI development shifts the wakefields w.r.t. the bunch radius oscillation



