

Early dynamics of the self-modulation instability growth rate

M. Moreira^{1*}, P. Muggli^{2,3}, and J. Vieira¹

¹ GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal ² CERN, Geneva, Portugal ³ Max-Planck Institute for Physics, Munich, Germany

What determines the growth regime?

*mariana.t.moreira@tecnico.ulisboa.pt

EuroNNAc Special Topics Workshop September 18-24 2022, Elba, Italy

Motivation

Methods

The growth rate of the SMI is a function of the seed frequency

๏at an early phase, very different growth regimes are accessible with a small amount of detuning

 \bullet these growth regimes are associated with a characteristic phase shift between $\sigma_{\!r}$ and the plasma response

These results help us understand why it is possible to control the growth of the SMI with plasma density steps ๏a single density step early in the SMI development shifts the wakefields w.r.t. the bunch radius oscillation

References

[1] M. Turner *et al.* (The AWAKE Collaboration), Phys. Rev. Lett. **122**, 054801 (2019)

[2] K. V. Lotov, Phys. Plasmas **18**, 024501 (2011); K. V. Lotov, Phys. Plasmas **22**, 103110 (2015)

- ‣ Concepts for single-stage, TeV-scale **plasma wakefield acceleration (PWFA)** rely on long particle bunches as the driver
- \cdot When a long ($L \gg \lambda_p$) particle bunch propagates in plasma, it is subject to the <code>self-</code> **modulation instability (SMI)**
- \star The SMI typically modulates the bunch radius **at the plasma wavelength** λ_p
- ‣ **Self-modulation** can be seeded **(SSM)** to avoid instability and to generate highamplitude wakefields, as in the case of the AWAKE experiment [1]

How does the growth rate depend on the seed frequency?

Application: wakefield amplitude optimization

Conclusions

 $k\ [k_p]$

0 0.5 1 1.5 2

 * For the theoretical curve, \emph{L} and $\sigma_{\rm{z}}$ are scaled for each k such that the same number of wavelengths is considered in the analysis (~ 44 λ_p).

M. Moreira acknowledges valuable discussions with J. Farmer.

Parameters *γ*_{*b*} = 427 $σ$ ^r = 200 μm
≈ 0.53 k_p^{-1} $\sigma_z = 12 \text{ cm} \approx 320 \; k_p^{-1}$ $M_b = 50 \ m_e \Rightarrow k_\beta^{-1}/k_p^{-1} \approx 1500$ $n_0 = 2 \cdot 10^{14}$ cm⁻³

Simulation results obtained at MareNostrum (Barcelona Supercomputing Center) and LUMI (LUMI consortium).

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.

- ‣ **2D cylindrical** simulations seeded at $\text{different } k's \Rightarrow \sigma_{r,k}(\zeta, z)$
- ‣ one simulation without perturbation \Rightarrow $\sigma_{r,\text{adiab}}(\zeta, z)$

 $\Pi(z) =$ $\int d\zeta \left[\sigma_{r,k}(\zeta, z) - \sigma_{r,\text{adiab}}(\zeta, z) \right]$ $\int d\zeta \, |\sigma_{r,k}(\zeta,0) - \sigma_{r,\text{adiab}}(\zeta,0)|$

Acknowledgments

‣ a plasma **density step** has been proposed to solve the problem of a falling wakefield amplitude after saturation of the SMI in AWAKE [2]

Average amplitude of longitudinal wakefield

‣ **effect** of the density step on the **phase shift** is consistent with understanding of the growth rate presented here

Theory

Evolution of radius perturbation:

$$
\frac{d^2r_1}{dz^2} = \text{RHS}(r_1)
$$

assuming:

 \cdot flat-top transverse profile with radius r_b

‣ small perturbation:

 $r_b = r_0 + r_1, \quad r_1 \ll r_0$

```
First-order evolution of r_1 (valid for z\lesssim k_{\beta}^{-1}):
r_1(\zeta, z) = r_{10} + \text{RHS}(r_{10}) \frac{1}{2} z^2\Pi(z) =\int d\zeta \mid r_1(\zeta, z) \mid\int d\zeta \, |r_{10}(\zeta)|
```
Simulation

Bunch radius and plasma response after the step