
Diffusion effects:  
• act as a computational regularization for the density singularity 
predicted by the CF model in the limit of cold wave breaking;  
• other studies already considered regularization effects[3] using:  
1. non-zero temperature in the limit of a 1D model; 
2. transverse fluctuations.

Cold Fluid Model:  
• equations for the electron density ne, momentum 
pe and electromagnetic fields E and B;
• we consider the ions to be immobile;
• CF approximation neglects thermal effects. 

∂ne
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Introduction: we explore a novel simulation route for Plasma Wakefield Acceleration (PWFA) by using the computational tool known as 
the Lattice Boltzmann Method (LBM)[1]. LBM is based on a discretization of the continuum kinetic theory while assuring the 
convergence towards hydrodynamics for coarse-grained fields (i.e., density, velocity, etc.). LBM is an established numerical tool in 
computational fluid dynamics, able to efficiently bridge between kinetic theory and hydrodynamics, but its application in the context 
of PWFA has never been investigated so far. Our work takes a step forward to fill this gap. Results of LBM simulations for PWFA are 
discussed and compared with those of a code (Architect[2]) implementing a Cold Fluid (CF) model for the plasma in cylindrical symmetry.

Lattice Boltzmann Simulations of Plasma 
Wakefield Acceleration

Lattice Boltzmann Method:  
• studies the evolution of a kinetic probability distribution function fi(x,t) to find a 
"fluid particle" in the position x at the time t with a kinetic velocity ξi; 
• the velocity space is discretized (i = 0, 1, …, Ntot -1) with a finite set of ξi;  
• the Boltzmann equation predicts the evolution of the fi(x,t)

   ;  

• 𝜏 represents the time that fi(x,t) takes to relax to its equilibrium value fi(eq)(x,t); 
• we use the LBM in its advection-diffusion framework[1]; 
 • diffusion is a built-in property that we can tune through the parameter 𝜏

.

fi(x + ξiΔt, t + Δt) − fi(x, t) = −
Δt
τ [fi(x, t) − f (eq)
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1
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1
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Conclusion: LBM introduces diffusion effects in the plasma evolution, 
differentiating from the CF implementation of the code Architect but still 
retaining a hydrodynamic character. The results of simulations support 
the applicability of LBM up to the onset of the non-linear regime. 
On diffusion effects, peculiar of LBM: 
• not considered before because small in early periods of the plasma waves; 
• may become necessary in the high repetition rate studies when the  
  behaviour of the plasma waves in late periods has to be understood[4].
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Simulations results:  
• we choose 𝜏 to result in the smallest diffusion parameter that 
allows for numerical stability for LBM; 
• LBM reproduces results qualitatively in agreement with CF model. 
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Future perspective: modern LBM developments point to 
applications that go beyond "strict hydrodynamics" 
and are well justified by the fact that LBM is grounded on 
kinetic theory. The Relativistic LBM[5] could be a 
powerful tool to simulate: 
• the hydrodynamics of 3D relativistic fluids, also in deep  
  non-linear regimes; 
• thermal effects in the plasma dynamic.


