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. Motivation

Accelerators: Damage threshold: Average gradient:
Radiofrequency accelerators 200MV/m electric field amplitude | 50MeV/m
Dielectric based accelerators up to 9 GV/m [|] > | GeV/m

The goal of dielectric laser acceleration (DLA) is a miniaturized MeV electron source on a chip.

Acceleration concept:

a) In free space: interaction averages to zero o
-------------------------- Applications:

- Table top accelerator
- Minimally invasive beam
irradiation tools
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b) With dielectric structure: synchronized electron continually accelerates
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SEM picture of the single-sided silica
2 laser beam \/ laser beam structure with which a gradient of
propagation propagation

direction Half-period later direction 25MeV/m could be achieved.

3. Acceleration and confinement

Forces acting on a charged particle as a function of the synchronous phase
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@, : Synchronous phase between electrons and optical nearfield for x<0

Gaps In the periodic structure for jumps in the synchronous phase
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Particle tracking simulation of different particles (colours) showing the breathing of the envelope of the trajectories.
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Experimental verification of electron guiding using APF: Current measured through the structure as a function of the peak field.
Red: Experimental data, Blue: Simulation results. a) Guiding of the electrons through the structure. ¢) At too high fields overfo-
cusing effect which leads to an electron loss. The insets b and d show the spectrally resolved current time delay [2].
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2. Acceleration, deceleration and deflection

- Excitation of spatial evanescent harmonics by a laser with wavelength A and m times per grating period )\p oscillation.

/

Synchronicity condition for acceleration ::\‘ f/\\ //\ t

B =A /(mA) & /‘ f‘\\

— Maintaining of phase synchronicity by adjusting the structure period |
Depending on the timing between the laser field and the particle, the \
force on the electron acts

(1) accelerating / A
(2) decelerating 1,/
t Q\* ‘-

and/or deflecting

— Symmetric field pattern achieved by introducing a second structure
on top with illumination from two sides. iy
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Optical evanescent nearfields of |st spatial
harmonic (m = 1) [3].
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— Sub-100nm alignment precision of the gratings in x,y,z, and two
angles by trial and error

— Instead, one-step fabricated dual pillar structure with distributed
bragg reflector

4. Energy doubler design - FIRST PRELIMINARY DATA

New accelerating structures:
- APF confinement

— |aser off
—laser on

| O0um long

- Top illuminated _
— Confinement of accelerated electrons - 28.4keV start

- Linear pulse front tilt (see 5.)
. = 600MV/m - 700MV/m
Expected gradient: 30MeV/m
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5. Pulse front tilt for micro-meter long structures

- Temporal and spatial overlap of the laser intensity front and the electron beam continuously along the structure
by introducing a linear pulse front tilt definded by

v = 0.32c
tan(@,,) = 1/PB . o ‘ e
PFT
- Shorter structures with acceleration and a '—i.”ea'” pulse front
linear gradient curve tited laser beam —

— Linear PFT with tan(©,,) = |/ = const.

- Diffraction grating

Measurement of PFT angle with inverted field interfero-
meter [/]: Linear pulse front tilt for shorter structures

M

- Longer structures with higher acceleration and a
M I Delay non-linear gradient curve

Mirror (M) — Non-linear PFT with tan(©,.) = |/ B(z)

BS

Camera

Simulation: Non-linear acceleration leads to a
Beamsplitter (BS) non-linear tilt angle of the pulse front
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6. Outlook - Going from 30keV to |MeV 21
- For the current energy doubler design: average gradient of approximately 30MeV/m over a |mm long structure Image on camera 0.4} ~
The goal in the future Is an energy gain of |MeV over a several millmeter long structure. - . 70 ~_
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L S a small section with the macro . . . . Options to obtain a non-linear pulse front tilt:
ﬂ cells for the guiding effect (APF) 3.2 3.4 3.6 3.8 - Stairstep echelon [6]
over this long distance. Position of interference on camera in mm - Deformable mirrors
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